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Abstract. Given a ground-level query image and a geo-referenced aerial
image that covers the query’s local surroundings, fine-grained cross-view
localization aims to estimate the location of the ground camera inside
the aerial image. Recent works have focused on developing advanced
networks trained with accurate ground truth (GT) locations of ground
images. However, the trained models always suffer a performance drop
when applied to images in a new target area that differs from train-
ing. In most deployment scenarios, acquiring fine GT, i.e. accurate GT
locations, for target-area images to re-train the network can be expen-
sive and sometimes infeasible. In contrast, collecting images with noisy
GT with errors of tens of meters is often easy. Motivated by this, our
paper focuses on improving the performance of a trained model in a
new target area by leveraging only the target-area images without fine
GT. We propose a weakly supervised learning approach based on knowl-
edge self-distillation. This approach uses predictions from a pre-trained
model as pseudo GT to supervise a copy of itself. Our approach includes
a mode-based pseudo GT generation for reducing uncertainty in pseudo
GT and an outlier filtering method to remove unreliable pseudo GT.
Our approach is validated using two recent state-of-the-art models on
two benchmarks. The results demonstrate that it consistently and con-
siderably boosts the localization accuracy in the target area.

1 Introduction

Visual localization, a fundamental task in vision and mobile robotics, aims to
identify the location of a camera only from the images it takes. Commonly,
the image is compared to a pre-constructed map. However, constructing a suit-
able map with traditional survey-grade mapping vehicles (often equipped with
cameras, LiDAR, and high-precision GNSS sensors) is both laborious and ex-
pensive. On the other hand, aerial or satellite images provide global coverage
and become more easily accessible, making them promising map sources. In this
work, we focus on the task of fine-grained cross-view localization to pinpoint
the precise geospatial location of a ground camera within a geo-referenced aerial
image patch covering local surroundings. The key underlying assumption of this
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Fig. 1: Learning-based cross-view localization models often perform well when test
images are from the same area used in training, as shown in the green box. When
inference in a new target area where no fine ground truth is available, the standard
practice (in purple) directly deploys a model trained in a different area, leaving an
obvious domain gap. Due to this domain gap, the direct generalization often results
in a performance drop, causing uncertain or erroneous predictions. To address this,
we propose a knowledge self-distillation-based weakly-supervised learning approach (in
cyan) to adapt the model to the target area using only ground-aerial image pairs
without fine ground truth locations. This leads to better localization performance.

task [10, 22, 37, 39, 51, 56, 59] is that although we do not have an accurate fine-
grained location of the ground camera, we do have a noisy localization prior
available at inference time to identify the aerial image that covers the ground
camera’s location. For applications such as autonomous driving, fine-grained
cross-view localization is a viable supplement to traditional positioning sensors,
such as GNSS, especially in urban canyons where the GNSS positioning error
can reach tens of meters [3].

As shown in Figure 1, there are two main scenarios in cross-view localization.
(1) Same-area testing (Figure 1, green box): When the fine ground truth, i.e.
the accurate location of the ground camera, is available in the target area, a
cross-view localization model can be trained on this data and then deployed
for inference on new test images. (2) Cross-area testing (Figure 1, yellow box,
left): When there is no fine ground truth in the target area, it is common to
train the model on images from a different area for which fine ground truth
is available, and then the trained model is directly deployed in the target area.
Because of the domain gap between the two areas, the predicted location becomes
less reliable. Although many works [10, 22, 37, 39, 56, 59, 71] have been proposed
for fine-grained cross-view localization, they all suffer from this performance
drop when directly deploying in a new target area. Nevertheless, this cross-area
scenario is more realistic for real-world use cases, since collecting fine ground
truth of every region is expensive and sometimes infeasible. Recent works [10,22,
37] even found errors in ground truth locations in popular datasets [1,12,53,71].
Therefore, an alternative to fully-supervised training on fine ground truth is
needed to scale cross-view localization models to larger areas.

We propose to address this problem of cross-area localization by relying on
the exact same key assumption in the fine-grained cross-view localization task.
Namely, it is straightforward to collect ground images with noisy ground truth,
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i.e. the rough location of the ground camera, at a new area to identify the
local aerial image patch. For instance, inaccurate GNSS measurements in urban
canyons are unreliable as fine ground truth [3], but can still be used as noisy
localization prior. Then, our goal is to improve a pre-trained model’s localization
performance in the target area by leveraging only the ground-aerial image pairs
in the target area, without associated fine ground truth locations1.

For this goal, we adopt knowledge self-distillation [11, 49] to finetune a fine-
grained cross-view localization model in a weakly-supervised manner in which
only rough location is used for pairing the ground and aerial images. We use a
model pre-trained from another area as the teacher model to generate pseudo
ground truth for the target-area images and use it to train a student model,
which is initialized as a copy of the teacher model. Since the teacher’s output
can be uncertain in the target area, directly using it as pseudo ground truth
might reinforce incorrect localization estimates and lead to sub-optimal results.
We address this by introducing methods to reduce the uncertainty and filter out
the outliers in the pseudo ground truth. Concretely, our contributions are2:

(1) We propose a knowledge self-distillation-based weakly-supervised learn-
ing approach that considerably improves models’ localization performance in a
new area by only leveraging the ground-aerial image pairs without ground truth
locations. The proposed approach is validated using two state-of-the-art methods
on two benchmarks. (2) For methods with coarse-to-fine outputs, we investigate
how to reduce the uncertainty and suppress the noise in teacher model’s predic-
tions. Using our proposed single-modal pseudo ground truth leads to a better
student model than using the multi-modal heat maps from the teacher model.
(3) We design a simple but effective method for filtering outliers in the pseudo
ground truth. Training with filtered pseudo ground truth further improves the
localization accuracy of the student model.

2 Related Work

Cross-view localization is formulated differently depending on the use case.
For large-scale coarse localization, a common formulation is image retrieval [18,
23, 25, 33, 38, 40, 46, 54, 61, 70]. In this setting, the continuous aerial imagery is
divided into small patches. The ground query image’s location is approximated
by the retrieved patch’s geolocation. However, for fine-grained localization, image
retrieval methods need to sample the patch densely [57,58], and it increases both
computation and storage usage.

Recently, there have been increasing attempts to estimate the precise loca-
tion directly, sometimes together with the orientation, of the ground camera on
a known aerial image patch. In [71], the location offset between the ground query
and the aerial image is regressed based on their image descriptors. Instead of
1 Recent models need the ground camera’s orientation for training. We assume the

camera orientation is known since it can be acquired easily, e.g . by the digital com-
pass in a mobile phone or a vehicle.

2 Our code is available at: https://github.com/tudelft-iv/Adapting_CVL

https://github.com/tudelft-iv/Adapting_CVL
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regression, [59] formulated the localization task as a dense classification problem
to capture the multi-modal localization uncertainty. Later, this idea is extended
by [56] to include coarse-to-fine predictions and build orientation equivariant
ground image descriptors. Several works [37,41,51] explored the geometry trans-
formation between ground and aerial views. [37] estimated the ground camera
pose using the iterative Levenberg–Marquardt algorithm and [51] made use of a
deep homography estimator [6] to infer the ground camera pose. In [10,35,36,39],
the ground camera pose is estimated by densely comparing a Bird’s Eye View
(BEV) representation constructed using ground images to an aerial representa-
tion. SliceMatch [22] took an efficient generative testing approach to select the
most probable pose from a candidate set. Commonly, the localization output is
represented as a heat map [10,22,39,51,56,59], where the value at each location
(i.e. pixel in the aerial image) denotes how likely the ground camera locates
there, and state-of-the-arts [39, 56] construct the heat map in a coarse-to-fine
manner. Despite extensive methodological consideration, the performance of the
above approaches dropped considerably when directly generalizing to images
collected in an area that differs from the training set. We aim to bridge this gap.

Unsupervised domain adaptation (UDA) is a well-studied problem in
many other vision tasks [50,66]. The objective is to adapt a model trained in the
source domain to the target domain without labels from the target domain, such
that the adapted model can perform well on the test samples from the target
domain. More specifically, UDA can be categorized as source-free [20, 24, 28, 67]
and non-source-free [7,16,19,21,45,52,55,69] depending on if the source domain
labels are used during adaptation. To minimize the discrepancy between features
from the source and target domain, some works [13,26,44] use manually crafted
metrics to measure this discrepancy. Adversarial methods [27, 47, 65] deploy a
discriminator to achieve this. [4, 42, 48] observed that predictions in the target
domain often contain more uncertainty than those in the source domain. Hence,
additional objectives, e.g. entropy minimization [15], are included for training
the model in a semi-supervised manner using images from both the source and
target domain. Another promising type of domain adaptation is based on pseudo
labels [60, 64]. It bears similarities to knowledge distillation (KD) [5]. KD’s
primary objective is to transmit the knowledge acquired by a more comprehen-
sive teacher model to a smaller student model [14,49]. Knowledge self-distillation,
in which the teacher and student share the same architecture, is a special branch
of KD pioneered by Born-Again Networks [11]. The key idea is to use the model
from the previous step to generate pseudo labels for training the model at the
current step. Recent works [2,8,17,19,43,62,63] also tried to use the information
from deeper layers to supervise the shallower layers inside the model. To apply
KD for UDA, the teacher model generates pseudo labels in the target domain
to adapt the student model [9, 30, 68]. Since the pseudo labels are not always
reliable, uncertain ones (e.g . with high entropy [24,52,69]) are often removed in
student learning. However, such uncertainty measures are developed for purely
categorical tasks and do not consider any spatial ordering between classes, as is
needed for localization methods that produce heat maps: A two-mode heat map
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with 1 m between two modes will have the same entropy as a two-mode heat
map with 10 m between modes, but the latter has more localization uncertainty.

3 Methodology

The most desirable real-world setup is to adapt a pre-trained model to the tar-
get area without requiring access to (perhaps licensed or high-volume) source-
domain data. Our scope is thus source-free UDA. We first formalize the fine-
grained cross-view localization task. Then, we introduce our proposed approach.

3.1 Task Definition

Given a ground-level image G and an aerial image A that covers the local sur-
roundings of G, the task of fine-grained cross-view localization is to determine
the image coordinates ŷ = (û, v̂) of the ground camera within aerial image A,
where û ∈ [0, 1] and v̂ ∈ [0, 1]. Recent methods [10,22,39,56,59] achieve this task
by training a deep model M(G,A) which predicts a heat map H to capture the
underlying localization confidence over spatial locations, and the most confident
location can be used as predicted location y,

H = M(G,A), y = argmax
u,v

(H(u, v)). (1)

To optimize the model’s parameters θα with respect to a model specific loss
functions LM, an annotated dataset of a set of Nα ground-aerial image pairs,
Iα = {{G1, A1}, ..., {GNα

, ANα
}}, and their corresponding fine ground truth

Yα = {ŷ1, ..., ŷNα
} is used,

θα = argmin
θ

E{G,A}∈Iα,ŷ∈Yα
[LM(M(G,A | θ), ŷ)] . (2)

The training image set Iα consists of samples drawn from a true distribution
Dα representing a specific geographic area α, i.e. Iα

i.i.d.∼ Dα. When the model
is deployed, the test image set Itest can either come from the same area α, or
a new environment β. As motivated before, we focus on the cross-area setting,
namely Itest is from the target area β, i.e. Itest

i.i.d.∼ Dβ . Because of the domain
gap, Dβ ̸= Dα, directly deploying the trained model Mα := M(· | θα) on test
set Itest as in current practice is sub-optimal.

It is important to note that standard fine-grained cross-view localization [10,
22,39,56] assumes the pairing between ground and aerial images is known during
inference, as collecting ground-level images with rough location estimates in the
target area is often easy. Therefore, we propose to consider the easily available
pairing information for weakly-supervised learning by collecting another set of
images Iβ = {{G1, A1}, ..., {GNβ

, ANβ
}} from the target area β, Iβ

i.i.d.∼ Dβ ,
without corresponding fine ground truth Yβ . As noted before, the orientation of
the ground camera is assumed known.
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Our objective is then to adapt a fine-grained cross-view localization model
Mα to the target area β by leveraging the image set Iβ without fine ground
truth locations such that the model performance on Itest can be improved.

3.2 UDA for Cross-View Localization

So far, no prior work addressed the task of adapting fine-grained cross-view
localization to new areas without fine ground truth. To decide on a suitable
UDA approach, we first note that heat maps of state-of-the-art models reflect
more uncertainty for cross-area samples than for same-area samples [22, 39, 56].
The higher uncertainty results in more small positional errors, but also more
modes in the heat map, yielding more outliers with large positional errors.

We therefore consider UDA techniques that can help reduce the uncertainty.
One option is entropy minimization [15], i.e. to directly deploy the trained model
Mα on the image set Iβ and encourage the final output heat map H to be more
certain by minimizing its entropy. However minimizing the entropy does not
necessarily encourage the model to converge towards the correct location for
{G,A} ∈ Iβ , as the model may just as well become more confident about the
outliers. Our experiments shall validate entropy minimization’s shortcomings.

We instead propose to pursue knowledge self-distillation [62] for our task.
The trained model Mα from the source area α can be used as the teacher model
to generate pseudo ground truth X for image set Iβ to train a student model Mβ .
Here, we consider X as a target heat map with the same spatial resolution as
the aerial image A. The student model has the same architecture as the teacher
model and is initialized using the teacher model’s weights θα. Encouraging the
outputs of the student model to mimic X can improve the accuracy of the student
model on images from β if we control the generation of pseudo ground truth to
suppress unwanted modes and select reliable samples.

Finally, we point out that the recent state-of-the-art methods [39, 56] have
K coarse-to-fine heat map outputs, i.e. H = M(G,A) and H = {H1, ...,HK}.
The spatial resolution of the next level heat map is higher than that of the
previous level, i.e. res(Hk+1) > res(Hk), where k is the index for the level and
res() returns the spatial resolution. The final predicted location then becomes
y = argmaxu,v(HK(u, v)). For other applications with coarse-to-fine models,
encouraging shallower layers’ activation to mimic deeper layers’ activation can
bootstrap model performance [62]. Similarly, knowledge self-distillation for cross-
view localization may also exploit such coarse-to-fine maps.

3.3 Proposed Approach

Usually, the deeper layers in the model have access to more information than
the shallower layers, e.g . the fine-grained scene layout information passed by the
skipped connections, as in UNet [34]. Hence, the output from deeper layers can
be more precise than that from shallower layers. We therefore propose to follow
the “Best Teacher Distillation” paradigm [62] and generate pseudo ground truth
X from only the highest-resolution heat map predicted by the teacher model.
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Fig. 2: Overview of our approach. We first employ a teacher model trained on data
from another area to generate pseudo GT, Pβ , on target-area images (in blue). The
pseudo GT is then used to train an auxiliary student model Mo. After that, we compare
the predictions from the teacher model and those from the auxiliary student model to
filter out unreliable teacher predictions (the middle grey box). The remaining samples
with their pseudo GT, Pβ̃ , are used to train our final student model Mβ (in green).

A naive approach is, for any {G,A} ∈ Iβ , using simply X := Hα
K from

teacher output3 {Hα
1 , · · · , Hα

K} = Mα(G,A). Then, this high-resolution pseudo
ground truth X is down-sampled to create a set of pseudo ground truth heat
maps P = {P1, ..., PK} to supervise the student model at all levels,

Pk = downsamplek(X) s.t. res(Pk) = res(Hk). (3)

The set Pβ = {P1, ...,PNβ
} is the complete pseudo ground truth for image set

Iβ in the target area for training the student model, where Nβ is the number of
the ground-aerial image pairs in Iβ .

However, since the pseudo ground truth X contains errors, directly following
this naive approach might propagate the errors to the student model Mβ . Thus,
we present several strategies to reduce the teacher’s uncertainty, and deal with
noise and large outliers in X. Our proposed designs are highlighted in bold in
the overview of our weakly-supervised learning approach in Figure 2.

Coarse-only Supervision: Standard Best Teacher Distillation [62] suggests
supervising heat maps at all levels of the student model using the pseudo ground
truth. However, the spatial accuracy of X is limited, and using X to supervise
the high-resolution outputs of the student model might propagate this noise.
We note that the down-sampling in Equation 3 suppresses such positional noise
at the lower resolution Pk. Thus using only the lower level Pk might lead to a
better student model. We therefore consider to only compute the loss on student
model’s outputs Hβ = Mβ(G,A) up to a certain level K ′ ≤ K,

L(Hβ ,P) =
1

K ′

K′∑
k=1

Lk(H
β
k , Pk). (4)

3 Note that we use superscript α to indicate output from model Mα.
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Here, K ′ is a hyperparameter. Lk(H
β
k , Pk) is a weighted sum of infoNCE losses [31],

similar to the training in [56,59], except we use pseudo ground truth Pk as weight,

Lk(H
β
k , Pk) =

1∑
Pk

∑
m,n

Pm,n
k · LinfoNCE(H

β
k | (m,n)). (5)

LinfoNCE(H
β
k | (m,n)) is an infoNCE loss interpreting Hβ

k as similarity scores,
location (m,n) as the positive class, and all other locations as negative classes.

Mode-based Pseudo Ground Truth: Rather than using Hα
K directly as

pseudo ground truth X, we propose to create a “clean” pseudo ground truth X
that only represents its mode yα = argmax(Hα

K). We thus provide the student
with a training objective that represents less uncertainty for the target domain
input than its teacher. Still, it is common when training fine-grained cross-view
localization models, to apply Gaussian label smoothing [10,59] even with reliable
ground truth to aid the learning objective and increase robustness to remain-
ing errors in the annotation [29]. We similarly apply Gaussian label smoothing
centered at yα,

X(u, v) = N ((u, v) | yα, I2σ2), res(X) = res(A). (6)

The standard deviation σ is a hyperparameter and I2 is a 2D identity matrix.
Outlier Filtering: Recent deep learning advances [32] highlighted the im-

portance of using curated data. Motivated by this principle, we prefer having
fewer but more reliable samples of the target domain, over having more samples
but with potentially large errors in the pseudo ground truth. The Mode-based
Pseudo Ground Truth could force a sample’s ground truth to commit to a wrong
(outlier) location, therefore we seek to filter out such samples.

We here make another observation: samples where the predicted locations
yα of a teacher and yβ of a student greatly differ, the teacher’s predictions
were more likely to be outliers compared to samples where the teacher and
student’s predicted locations are more consistent, as we will demonstrate in our
experiments. Thus, we propose to first train another auxiliary student model Mo

on all target domain data, and compare its predictions to the teacher’s to identify
stable ones with little change in the predicted location. Then, we only use those
reliable non-outlier samples to train the final student model Mβ . Concretely, we
first optimize the auxiliary student model Mo on all Iβ with Pβ using,

θo = argmin
θ

E{G,A}∈Iβ ,P∈Pβ
[L(M(G,A | θ),P)] . (7)

Then, we calculate the L2-distance dα,o = ∥yα − yo∥2 between the image co-
ordinates predicted by Mα and Mo to find the potential unreliable P. The
resulting distance set D = {dα,o1 , ..., dα,oNβ

} is used to keep the top-T% samples in
Iβ that have the smallest T% distance dα,o. Denoting the filtered image set as
Iβ̃ and corresponding pseudo ground truth as Pβ̃ , the final student model Mβ

is optimized using Equation 7 by substituting Iβ with Iβ̃ and Pβ with Pβ̃ .
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4 Experiments

We first introduce the two used datasets and our evaluation metrics. Then,
we discuss two state-of-the-art methods [39, 56], based on which the proposed
weakly-supervised learning is evaluated, followed by implementation details. Af-
ter this, we provide the test results and a detailed ablation study.

4.1 Datasets

We focus on the cross-area split of VIGOR [71] and KITTI [12] datasets.
VIGOR dataset contains ground-level panoramic images and their corre-

sponding aerial images collected in four US cities. In its cross-area split, the
training set contains images from two cities, and the test set is collected from
two other cities. We use the training set to train the teacher model and focus on
the cross-area setting in our experiments. To compare direct generalization and
our proposed weakly-supervised learning, we conduct a 70%, 10%, and 20% split
on the original cross-area test set to create our weakly-supervised training set
(no ground truth locations), validation set, and test set. We use the validation
set for finding the stopping epoch during training, as well as for conducting the
ablation study. Our test set is used for benchmarking our method. We use the
improved VIGOR labels provided by [22].

KITTI dataset contains ground-level images with a limited field of view. We
use the aerial images provided by [37] and adopt their cross-area setting, where
the training and test images are from different areas. Similar to our settings
on the VIGOR dataset, we use the training set to train the teacher model and
then split the original cross-area test set into 70%, 10%, and 20% for weakly-
supervised training of the student model, validation, and testing.

4.2 Evaluation Metrics

We measure the displacement error ϵ in meters between the predicted location
and the ground truth location, i.e. ϵ = s∥y − ŷ∥2, where s is the scaling factor
from image coordinates to real-world Euclidean coordinates. Then, mean and
median displacement errors over all samples are reported as our evaluation met-
rics. On the KITTI dataset, we further decompose the displacement errors into
errors in the longitudinal direction (along the camera’s viewing direction, typ-
ically along the road), and errors in the lateral direction (perpendicular to the
viewing direction), following the common evaluation protocol [22,37,56].

4.3 Backbone State-of-the-Art Methods

Two state-of-the-arts, Convolutional Cross-View Pose Estimation (CCVPE) [56]
and Geometry-Guided Cross-View Transformer (GGCVT) [39] are used to test
our proposed weakly-supervised learning approach. Both methods were proposed
for fine-grained cross-view localization and orientation estimation, and have a
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coarse-to-fine architecture. CCVPE has two separate branches for localization
and orientation prediction. GGCVT uses an orientation estimation block before
its location estimator. In this work, we use them for localization only. CCVPE
has seven levels of heat map outputs, in which the first six heat maps are 3D, with
the first two dimensions for localization and the third dimension for orientation.
The last heat map is 2D. GGCVT has three levels of 2D heat map outputs.

4.4 Implementation Details

We use the official code of CCVPE [56] and GGCVT [39] for model implemen-
tations. Auxiliary and final student models are trained following our proposed
approach. For CCVPE’s 3D heat map output, we simply lift the pseudo ground
truth heat map Pk to 3D using the known orientation as done in [56].

The hyperparameters K ′, T , and σ are tuned on the VIGOR validation set.
For CCVPE, we find that including the first two levels of losses, i.e. K ′ = 2, and
T% = 80% gives the lowest mean localization error. For GGCVT, we use all three
levels of losses, i.e. K ′ = 3, and T% = 70%. We tested σ = 1, 4, 8, 12, 20 pixels,
and one-hot pseudo ground truth. Because of σ = 4 gave the best validation
result, it is used for both methods. The same setting is directly applied to KITTI.

4.5 Results

We compare the trained student models to teacher models (baselines) on the
cross-area test set of VIGOR and KITTI datasets. Previous state-of-the-art was
set by directly deploying CCVPE and GGCVT teacher models to the target area.
On the VIGOR dataset, Table 1 top, the performance of student models trained
using proposed weakly-supervised learning surpasses baselines by a large margin.
For CCVPE, our approach reduces the mean and median error by 20% and 15%
when the orientation of test ground images is unknown. GGCVT only released its
code and models for orientation-aligned setting for the VIGOR dataset. Thus, we
follow the same setting. In this case, our approach reduces 16% and 5% mean and
median error for GGCVT. Without extra hyperparameter tuning, we directly
use our proposed approach to train models on KITTI, and it again improves the
overall localization performance for both models, see Table 1 bottom.

We also study the gap between each student model to an Oracle, i.e. the same
method using supervised finetuning on fine ground truth at the target area. Even
though the Oracles still achieve lower errors (CCVPE: Oracle 2.31 m vs. student
3.85 m; GGCVT: Oracle 2.91 m vs. student 4.34 m), we emphasize again that in
practice such reliable fine ground truth is generally not available. Importantly,
we also find that when the ground truth does contain errors, using supervised
finetuning leads to large test errors, see additional results in our Supplementary
Material. Instead, our weakly-supervised learning approach scales well because
it boosts performance at a low cost: First, there are no extra requirements on
the accuracy of localization prior in the target area over previous fine-grained
cross-view localization works [10, 22, 39, 51, 56, 59], as only ground-aerial image
pairs are needed. Second, since student models are initialized from their teacher,
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the training time is short. For example, on VIGOR, using a single V100 GPU
our weakly-supervised learning for CCVPE only adds ∼ 6 hours of training time
(including pseudo ground truth generation and outlier filtering) on top of the
direct generalization, which has training time of ∼ 16 hours.

Table 1: Test results on VIGOR and KITTI. Best in bold. Baselines are teacher
models (previous state-of-the-art). “Student” denotes models trained using our weakly-
supervised learning without ground truth labels. On VIGOR, we provide test results for
both known and unknown orientation cases. On KITTI, we test with known orientation.

VIGOR, cross-area test Known orientation Unknown orientation
Mean (m) Median (m) Mean (m) Median (m)

CCVPE [56] 4.38 1.76 5.35 1.97
CCVPE student (ours) 3.85 (↓ 12%) 1.57 (↓ 11%) 4.27 (↓ 20%) 1.67 (↓ 15%)
GGCVT [39] 5.19 1.39 - -
GGCVT student (ours) 4.34 (↓ 16%) 1.32 (↓ 5%) - -

KITTI, cross-area test Longitudinal error Lateral error
Mean (m) Median (m) Mean (m) Median (m)

CCVPE [56] 6.55 2.55 1.82 0.98
CCVPE student (ours) 6.18 (↓ 6%) 2.35 (↓ 8%) 1.76 (↓ 3%) 0.98 (↓ 0%)
GGCVT [39] 9.27 4.66 2.19 0.85
GGCVT student (ours) 8.56 (↓ 8%) 4.35 (↓ 7%) 1.90 (↓ 13%) 0.79 (↓ 7%)

Next, we visualize samples where the student model improves over the teacher
model. A typical case is shown in Figure 3 top, in which the teacher model
has a multi-modal prediction, and the peak is located in a wrong mode. The
student model learned to weigh the modes better after adapting to the target
environment. As shown in Figure 3 bottom, sometimes, even though the teacher
model’s heat map does not capture the correct location, the student model can
still identify it. In this case, the student model might learned discriminative
features from other samples in this area to localize the ground camera. This
demonstrates the effectiveness of adapting the student model to the target area
by our knowledge distillation process.

4.6 Analysis of Prediction Errors after KD

Following the visual examples, we now analyze the overall statistical relation
between the model prediction errors and the change in predicted locations after
knowledge distillation. Figure 4 plots this relation for CCVPE. The results for
GGCVT are included in our Supplementary Material.

First, we confirm that potential outliers can indeed be identified by the
amount of difference between the predicted locations of a teacher and its auxil-
iary student model in Figure 4a left. We see there is a large portion of samples
located around the diagonal line, i.e. ϵα = s ·dα,o. Most samples in Iβ with large
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GT
Teacher

GT
Student

GT
Teacher

GT
Student

Fig. 3: CCVPE teacher and student model’s predictions on VIGOR test set. The red
color denotes the localization probability (a darker color means a higher probability).

change dα,o in predicted location indeed obtained a large error ϵα for the teacher
model’s prediction. Next, Figure 4a right shows how the difference in location
correlates with the prediction error of the auxiliary student. There are more sam-
ples being scattered at the bottom of the plot, implying many wrong predictions
of the teacher model have already been corrected. Still, our ablation study will
demonstrate that using the auxiliary student model directly as a new teacher for
a final student model does not work as well as using it for outlier detection. Note
that the (less prominent) diagonal line now indicates errors introduced by the
auxiliary student model. Lastly, we validate that the final student model reduces
the localization error compared to the teacher model on the target test set Itest
in Figure 4b. Comparing the left plot to the right plot, we observe a similar
trend as for the auxiliary student model before, namely that many samples with
high teacher error in the left plot now obtain low student error in the right plot.

4.7 Entropy Minimization

We also tested entropy minimization (EM) [15] for the CCVPE model on the
VIGOR dataset as an alternative domain adaptation technique. We tuned the
strength of EM on predicted heat maps of training samples from the target
area but found that stronger EM always leads to higher localization errors. The
best performance appears when no EM is applied. Therefore, simply exposing
the model to the images from the target area and enforcing the confidence of
outputs is not sufficient for improving cross-view localization across areas. We
also observe that EM makes all heat maps sharper than direct generalization,
but does not help the model resolve wrong modes. Our proposed knowledge
self-distillation instead reduces uncertainty by filtering out unreliable samples.
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s · dα,o

ϵα

s · dα,o

ϵo

(a) Teacher model (left) vs. Auxiliary student
model (right) on Iβ .

s · dα,β

ϵα

s · dα,β

ϵβ

(b) Teacher model (left) vs. Final student model
(right) on Itest.

Fig. 4: CCVPE model, relation between error ϵ and change d in predicted locations
from teacher and student models on VIGOR. ϵα / ϵo / ϵβ : errors (m) of teacher model’s
/ auxiliary student model’s / final student model’s predictions. s · dα,o / s · dα,β : the
difference (m) between predicted locations of teacher and auxiliary / final student.
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Fig. 5: Ablation study on the proposed mode-based
pseudo ground truth, outlier filtering, and different lev-
els for coarse-only supervision in our teacher-student KD
using CCVPE.
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Fig. 6: Effect of T in the
proposed outlier filtering.
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tering.

4.8 Ablation Study

An extensive ablation study is conducted to validate the effectiveness of our
proposed designs. We denote the following: Teacher (baseline): directly deploy
the teacher model Mα in the target area. St-M-OF: student model trained using
teacher’s heat maps, no mode-based pseudo ground truth, no outlier filtering.
St+M-OF: student model trained using mode-based pseudo ground truth, no
outlier filtering. St+M+OF (proposed): student model trained using mode-
based pseudo ground truth with outlier filtering, i.e. the model Mβ .

The performance of these ablation variants when supervising different levels
of student predictions of the CCVPE is shown in Figure 5. It can be seen that
the proposed mode-based pseudo ground truth (+M) and outlier filtering (+OF)
both improve the performance and the final version, St+M+OF, achieves the
best results, no matter how many prediction levels of the student model are su-
pervised. For CCVPE student models, supervising the first K ′ = 2 and K ′ = 4
levels have similar localization performance overall. Since K ′ = 2 gives the low-
est mean error, we use it in our final setting. We also tuned K ′ for GGCVT
and found that supervising all three levels, i.e. K ′ = 3 gives the best results.
The effectiveness of the proposed mode-based pseudo ground truth (+M) and
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Table 2: Ablation study for GGCVT. Best in bold.

Error (m) Teacher St-M-OF St+M-OF St+M+A St+M+OF
Mean 5.16 5.34 4.67 4.54 4.28

Median 1.40 1.48 1.32 1.55 1.28

outlier filtering (+OF) on GGCVT is verified in Table 2. When not using any
of the proposed designs, i.e. GGCVT student model follows Best Teacher Dis-
tillation [62], the student’s performance (5.34 m) is worse than the Teacher’s
(5.16 m). This highlights the importance of reducing uncertainty and removing
outliers in teacher’s predictions. Additionally, we also tried directly using the
predictions of the auxiliary student as pseudo ground truth to train the final
student model (similar to iterative knowledge self-distillation [11]), denoted as
St+M+A in Table 2. However, it does not perform better than using the auxil-
iary student model for outlier filtering.

Figure 6 shows the ablation study results on different percentage values T%
in our outlier detection. The best CCVPE and GGCVT student models appear
at T% = 80% and T% = 70%. In general, there is a trade-off between the
quality and quantity of data. When too little data is kept, there is a risk of
model overfitting. Filtering out some detected outliers (20% ∼ 30%) improves
the quality of the data and can result in better model performance. This suggests
that, in practice, blindly increasing the data amount without guaranteeing its
quality might negatively influence models’ performance.

5 Conclusion

This paper focuses on improving the localization performance of a pre-trained
fine-grained cross-view localization model in a new target area without any
fine ground truth. We have proposed a knowledge self-distillation-based weakly-
supervised learning approach that only requires ground-aerial image pairs from
the target area. Extensive experiments were conducted to study how to generate
appropriate pseudo ground truth for student model training. We found that se-
lecting the predominant mode in the teacher model’s predictions is better than
directly using the output heat maps. Furthermore, supervising coarse-level pre-
dictions of a student model using the down-sampled teacher’s high-resolution
predictions can suppress the positional noise and might lead to a slight boost in
the student model’s performance. We demonstrated that unreliable target do-
main samples can be filtered out by comparing predicted locations from teacher
and student models, which motivates using an auxiliary student model to curate
the data. Training a final student model on the filtered data further improves the
localization accuracy. Our proposed approach has been validated on two state-
of-the-art methods on two benchmarks. It achieves a consistent and considerable
performance boost over the previous standard that directly deploys the trained
model in the new target area.
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