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Fig. 1: Given a single blurry image and its corresponding event stream, BeNeRF can
synthesize high-quality novel images along the camera trajectory, recovering a sharp
and coherent video from the single blurry image.

Abstract. Implicit scene representation has attracted a lot of attention
in recent research of computer vision and graphics. Most prior methods
focus on how to reconstruct 3D scene representation from a set of im-
ages. In this work, we demonstrate the possibility to recover the neural
radiance fields (NeRF) from a single blurry image and its correspond-
ing event stream. To eliminate motion blur, we introduce event stream to
regularize the learning process of NeRF by accumulating it into an image.
We model the camera motion with a cubic B-Spline in SE(3) space. Both
the blurry image and the brightness change within a time interval, can
then be synthesized from the NeRF given the 6-DoF poses interpolated
from the cubic B-Spline. Our method can jointly learn both the implicit
scene representation and the camera motion by minimizing the differ-
ences between the synthesized data and the real measurements without
any prior knowledge of camera poses. We evaluate the proposed method
with both synthetic and real datasets. The experimental results demon-
strate that we are able to render view-consistent latent sharp images
from the learned NeRF and bring a blurry image alive in high quality.
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1 Introduction

Neural Radiance Fields (NeRF) [28] has drawn much attention due to its ex-
traordinary ability in representing 3D scenes and synthesizing novel views. Given
multi-view sharp RGB images and calibrated camera poses from COLMAP [40],
NeRF takes corresponding 3D spatial location and 2D view direction as input,
and optimizes a multi-layer perception (MLP) to represent the 3D scene. More
recent advanced methods also exploit explicit octree [52], multi-resolution hash
encoding [30] etc., to represent the 3D scene to improve both the training and
rendering efficiency.

Prior methods usually rely on multi-view images to learn the 3D represen-
tation. Several pioneering works recently attempt to exploit a single image to
learn the underlying neural radiance fields [3, 36, 38, 53]. They usually rely on a
large dataset to pre-train the networks to learn priors to address the ill-posed
problem. A blurry image further aggravates the problem due to the image qual-
ity degradation. Although motion blur is usually not preferred by most vision
algorithms, they actually encode additional camera motion trajectory and more
structural information compared to a sharp image. In this paper, we explore the
possibility of recovering the neural radiance fields and camera motion trajectory
from a single blurry image. Instead of learning priors from a large dataset as
in previous works, we exploit the usage of an additional event stream to better
constrain the problem.

Event stream can be acquired by an event camera [23] which captures pixel in-
tensity changes caused by the relative motion between the static scene and cam-
era. Unlike standard frame-based cameras, event camera captures asynchronous
events with very low latency, leading to extremely high temporal resolution [8].
This characteristic compensates with the image formation process of a blurry
image (i.e. integral of photon measurements across time). Several prior works
thus take advantage of both modalities for high quality single image deblur-
ring [33,44,47]. However, these methods are unable to recover the camera motion
trajectory and extract structural details from a single blurry image, thereby lim-
iting their applicability in 3D computer vision tasks. Some NeRF-based methods
that incorporate event stream [10, 16, 25, 34, 39] demonstrate the capability to
achieve image deblurring and accurate reconstruction of neural radiance fields.
Nonetheless, these methods necessitate input images from multiple viewpoints
alongside event data. In contrast, we explore the usage of only a single blurry
image for the NeRF recovery with unknown camera motions in this work.

We represent the continuous camera motion with a cubic B-Spline in SE(3)
space and define it as the trajectory of both frame-based camera and event
camera. Given the neural 3D representation and interpolated poses from the
cubic B-Spline, we can synthesize both the blurry image and the brightness
change within a time interval via the physical image formation process. The
NeRF and motion trajectory can then be jointly optimized by minimizing the
difference between the synthesized data and the real measurements. To evaluate
the performance of our method, we conduct experiments with both synthetic and
real datasets. The experimental results demonstrate that our method is able to
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recover the neural radiance fields from a blurry image and its corresponding
event stream without knowing prior knowledge of poses. We are thus able to
render view-consistent latent sharp images encoded in a single blurred image
from learned NeRF, effectively enhancing the quality of the blurry image. The
experimental results further demonstrate that our method is even able to reach
same performance as E2NeRF [34], which targets for the same problem, but with
multi-view images and longer event data. In summary, our key contributions are
as follows:

– We propose a NeRF-based method that can recover the neural 3D repre-
sentation from a single blurry image and its corresponding event stream,
without knowing any ground truth poses;

– Our method is able to estimate the complex continuous trajectory of camera
motion during the imaging process from a single blurry image, providing
multi-view geometric information;

– We experimentally validate that our approach is able to recover high quality
latent sharp images and high frame-rate video from a single blurry image,
without any generalization issue. Furthermore, we are able to reach same
level of performance as E2NeRF [34], which requires multi-view images and
longer event data.

2 Related Work

We roughly categorize our related works into three main areas: neural implicit
scene representation, single image deblurring and event-enhanced image deblur-
ring.
Neural Implicit Scene Representation. NeRF has attracted lots of atten-
tion due to its powerful ability of implicit 3D scene representation and novel view
synthesis [28]. Many following works have been proposed to improve NeRF’s per-
formance or extend NeRF to other fields. [2, 24, 49] jointly trained NeRF with
inaccurate camera poses. [6,22,26,27,32,53] improved the performance of NeRF
with degraded images, including noisy or few images etc. Recently, several event
based NeRF [10,17,34,39] have also been proposed.

We will mainly focus on the methods that are most related to ours. BAD-
NeRF [48] aims to recover true underlying 3D scene representation from multi-
view blurry inputs and inaccurate camera poses estimated from COLMAP [40].
However, BAD-NeRF and its variants [20,58] struggle to address situations where
the input is limited to a single image, primarily due to the severe illness of the
problem. Event-Enhanced NeRF (E2NeRF) [34] aims to recover the 3D scene
representation from multiple blurry images and event streams. To train NeRF
without optimizing the camera poses, E2NeRF manually segments the event
stream using preset parameters, aiming to recover sharp images individually
through EDI [33]. However, in cases of serve camera motion, the recovered images
from event stream may still be blurry, leading to inaccurate pose estimation
in COLMAP [40]. This two-stage approach introduces errors (i.e. either from
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EDI [33] or COLMAP [40]) and fails to accurately model the continuous camera
trajectory. In contrast, we are able to train both the NeRF and the camera
motion trajectory jointly from a single blurry image and its corresponding event
stream, which is harder than prior methods.
Single Image Deblurring. A blurred image can be formulated as the con-
volution result of a sharp image and a kernel. Therefore, classical approaches
[11,14,21,42,51] generally regard the deblurring problem as a joint optimization
of the blur kernel and the latent virtual sharp images. With the development of
deep learning, many learning based end-to-end debluring method have been pro-
posed [13, 18, 19, 31, 43, 46, 54]. These methods usually demonstrate better qual-
itative and quantitative deblurring results. However, learning based deblurring
methods are usually trained on a large dataset which contains paired blurry-
sharp images. They would thus usually have limited generalization performance
to domain-shifted images. Since NeRF is a test-time optimization approach, our
method does not have the generalization performance issue.
Event Enhanced Image Deblurring. Since event camera is able to capture
high dynamic temporal information [8], prior methods usually exploit event mea-
surements to enhance the image deblurring performance [12,33,44,45,47,50,57].
EDI [33] is a simple and effective model, which is able to generate a sharp video
under various types of blur by solving a single variable non-convex optimization
problem. Different from EDI [33], [44, 45, 47] design end-to-end neural networks
for event enhanced image deblurring/frame interpolation. The critical distinc-
tion lies in our method’s capacity to extract potential camera motion trajectories
from the event stream, thereby enhancing subsequent 3D vision tasks with ad-
ditional geometric insights.

3 Methodology

Given a single blurry image and its corresponding event stream, our method re-
covers the underlying 3D scene representation and the camera motion trajectory
jointly. The details of our method are shown in Fig. 2. In particular, we repre-
sent the 3D scene with neural radiance fields and the camera motion trajectory
with a cubic B-Spline in SE(3) space. Both the blurry image and accumulated
events within a time interval can thus be synthesized from the 3D scene repre-
sentation providing the camera poses. The camera trajectory, NeRF, are then
optimized by minimizing the difference between the synthesized data and the
real measurements. The details are as follows.

3.1 Neural Implicit Representation

We adopt Multi-layer Perceptron (MLP) to represent the 3D scene as the orig-
inal NeRF [28]. More advanced representations, such as multi-resolution hash
encoding [30], can also be exploited to further improve its performance. In
particular, the scene model is represented by a learnable mapping function
Fθ : (x,d) → (c, σ), which requires a Cartesian coordinates x ∈ R3 and a
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Fig. 2: The pipeline of our method. Given a motion blurry image and its corre-
sponding event stream, we aim to recover both the implicit sharp scene representation
and its camera motion trajectory within exposure time. We exploit a continuous time
representation for the motion trajectory, and maximize the coherence between both
the real measurements and synthesized data for the recovery.

viewing direction d ∈ S2 as input, and outputs the corresponding volume den-
sity σ ∈ R and color c ∈ R3. Both the 3D point x and viewing direction d are
defined in the world coordinate frame. They are a function of the pixel coor-
dinate, camera pose and the corresponding intrinsic parameters. To query the
intensity of a pixel, we can apply volume rendering by sampling 3D points along
the ray, which originates from the camera center and passes through the pixel.
The volume rendering can be formally defined as follows:

I(x) =

n∑
i=1

Ti(1− exp(−σiδi))ci, (1)

where n is the number of sampled points along the ray, ci and σi are the predicted
color and volume density of the ith sampled 3D point via Fθ, δi is the distance
between the ith and (i + 1)th sampled point, Ti is the transmittance which
represents the probability that the ray does not hit any particle until the ith

sampled point. Ti can be computed via:

Ti = exp(−
i−1∑
k=1

σkδk). (2)

3.2 Camera Motion Trajectory Modeling

We use a differentiable cubic B-Spline in SE(3) space to better model the camera
motion trajectory. The spline is represented by a set of learnable control knots
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Tw
ci ∈ SE(3) for i = 0, 1, ..., n. Tw

ci represents the ith control knot, which is
defined as a transformation matrix from the camera coordinate frame to world
frame. For brevity, we denote Tw

ci with T i for subsequent derivations. We assume
the control knots are sampled with a uniform time interval ∆t and the trajectory
starts from t0. Spline with a smaller ∆t can represent a smoother motion, with
an expense of more control knots to optimize. Since four consecutive control
knots determine the value of the spline curve at a particular timestamp, we can
thus compute the starting index of the four control knots for time t by:

k = ⌊ t− t0
∆t

⌋, (3)

where ⌊∗⌋ is the floor operator. Then we can obtain the four control knots respon-
sible for time t as T k, T k+1, T k+2 and T k+3. We can further define u = t−t0

∆t −k,
where u ∈ [0, 1) to transform t into a uniform time representation. Using this
time representation and based on the matrix representation for the De Boor-Cox
formula [35], we can write the matrix representation of a cumulative basis B(u)
as

B(u) = M


1
u
u2

u3

 , M =
1

6


6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

 . (4)

The pose at time t can be computed as:

T (u) = T k ·
2∏

j=0

exp(B(u)j+1 ·Ωk+j), (5)

where B(u)j+1 denotes the (j+1)th element of the vector B(u), Ωk+j = log(T−1
k+j ·

T k+j+1)).
Since we only consider the continuous camera motion corresponding to a

single blurry image, the time interval is thus usually short. We found that four
control knots would be sufficient to deliver satisfying results. Therefore, we use
the minimal configuration for the following experiments and they are initialized
randomly around the identity pose.

3.3 Blurry Image Formation Model

A motion blurred image B(x) ∈ RW×H×3 is physically formed by collecting
photons during the exposure time and it can be mathematically modeled as:

B(x) ≈ 1

n

n−1∑
i=0

Ii(x), (6)

where both W and H are the width and height of the image respectively, n is the
number of sampled images, x ∈ R2 represents the pixel location, Ii(x) ∈ RW×H×3

is the ith virtual sharp image sampled within the exposure time. The virtual
sharp images can be rendered from the neural 3D scene representation along the
previous defined camera trajectory. It can be seen that B(x) is differentiable
with respect to the parameters of NeRF and the motion trajectory.
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3.4 Event Data Formation Model

An event camera records changes of the brightness as a stream of events asyn-
chronously. Every time a pixel brightness change reaches a contrast threshold
(i.e. |L(x, ti+δt)−L(x, ti)| ≥ C), the camera will trigger an event ei = (x, ti, pi),
where pi ∈ (−1,+1) is the polarity of the event, L(x, ti) = log(I(x, ti)) is the
brightness logarithm of pixel x at timestamp ti, C is the contrast threshold.

To relate NeRF representation with the event stream, we accumulate the real
measured events within a time interval ∆t to an image E(x). The accumulation
is defined as:

E(x) = C{ei(x, ti, pi)}tk<ti<tk+∆t, (7)

where e(x, ti, pi) is the ith event within the defined time interval corresponding to
pixel x. For real event cameras, the contrast threshold C changes over time and
varies pixel by pixel. We therefore normalize the accumulated event as in [9,17]
to eliminate the effect of unknown C:

En(x) =
E(x)

∥E(x)∥2
, (8)

Given the interpolated start pose and end pose corresponding to the time interval
∆t from the spline, we are able to render two gray-scale images (i.e. Istart and
Iend) from NeRF. The synthesized accumulated event image Ê can then be
computed as:

Ê(x) = log(Iend(x))− log(Istart(x)), (9)

where Ê(x) depends on the parameters of both the cubic spline and NeRF, and
is differentiable with respect to them. We can also normalize Ê(x) to Ên(x)
similarly as in Eq. (8) for loss computation.

3.5 Loss Functions

We minimize the sum of a photo-metric loss Lp and an event loss Le:

Ltotal = Lp + βLe, (10)

where Lp represents the loss for the frame-based camera, Le represents the loss
for the accumulated events within a randomly sampled time interval, and β is a
hyper-parameter. Both losses are defined as follows:

Lp =
∥∥∥B(x)− B̂(x)

∥∥∥2 , (11)

Le =
∥∥∥En(x)− Ên(x)

∥∥∥2 , (12)

where B̂(x) is the real captured blurry image.
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4 Experiments

4.1 Experimental Setup

Synthetic datasets. We generate synthetic datasets for both quantitative
and qualitative evaluations via Unreal Engine [1] and Blender [7]. To have a
more realistic synthesis, we interpolate the real camera motion trajectories from
ETH3D [41] to render high frame-rate images. In total, we generate three se-
quences (i.e. livingroom, whiteroom and pinkcastle) via Unreal Engine and two
sequences (i.e. tanabata and outdoorpool) via Blender. For thorough evaluations,
we synthesized twenty blurry images and corresponding event streams for each
sequence. The event streams are generated via ESIM [37] from high frame-rate
video. Furthermore, we additionally employed the synthetic dataset proposed
by E2NeRF to compare our method with NeRF-based image-deblur methods
which require multi-view training data. This dataset includes synthesized blurry
images paired with their respective event streams, which expands upon the six
scenes (i.e. chair, ficus, hotdog, lego, materials and mic).

Real-world datasets. We utilized the real-world datasets proposed by E2NeRF,
captured using the DAVIS346 color event camera in real-world scenarios. The
dataset encompass five challenging scenes (i.e. letter, lego, camera, plant and
toys). The exposure time for RGB frames was set to 100ms, resulting in oc-
currences of complex camera motion and severe motion blur within the time
interval.

Baseline methods and evaluation metrics. To evaluate the performance of
our method in terms of image deblurring, we compare it against state-of-the-art
deep learning-based single image deblur methods, i.e. SRN-Deblur [46], HINet
[5], DeblurGANv2 [19], MPRNet [55], NAFNet [4] and Restormer [54], as well as
event-enhanced single image-based deblur methods, i.e. EDI [33], eSLNet [47].
We also compared our method with NeRF-based image deblur method using
multi-view information. The quality of the rendered image is evaluated with
the commonly used PSNR, SSIM and LPIPS [56] metrics. Since the lack of
sharp reference images in real-world datasets, we conducted quantitative analysis
experiments on five real scenes using the no-reference image quality assessment
metrics BRISQUE [29].

Implementation details. We implement our method with PyTorch. The im-
plicit representation of the scene from MLP (i.e. Fθ) is built from NeRF [28]
without any modification. We randomly initialize trajectory control knots for
cameras within a range of (0, 0.01). We use two separate Adam optimizers [15]
for the scene model (i.e. Fθ) and camera motion (i.e. Pi). The learning rate for
the scene model and poses decay from 5 × 10−4 with a rate of 0.1 exponen-
tially. In each training step, 1024 pixels for brightness and 1024 pixels for color
are sampled. The weight of the event loss β is selected to be 0.1 for synthetic
datasets and 2 for real-world datasets, respectively. We train our model for 80K
iterations for each image and its corresponding event stream.



BeNeRF 9

Table 1: Ablation studies on the number of virtual sharp images. The results
demonstrate that the image quality gradually saturates as the number of virtual sharp
images increases. By compromising the image quality and computational efficiency, we
select n = 19 for all our experiments.

Livingroom Tanabata
n PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
7 36.16 .9291 .0711 29.28 .8533 .0712
11 36.84 .9353 .0659 30.77 .8788 .0622
15 37.03 .9368 .0635 31.90 .8979 .0529
19 37.11 .9370 .0632 32.14 .9015 .0515
23 37.11 .9375 .0629 32.35 .9042 .0506

Table 2: Ablation studies on event accumulation time lengths. The experi-
mental results demonstrate that the image quality can be affected by the time length.
For all experiments, we select α = 0.1 for event data accumulation.

Livingroom Tanabata
α PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

0.05 36.66 .9325 .0724 31.86 .8977 .0538
0.10 37.11 .9370 .0632 32.14 .9015 .0515
0.15 37.21 .9376 .0601 32.19 .9019 .0509
0.20 37.16 .9369 .0596 32.20 .9016 .0499
0.25 37.11 .9358 .0589 32.21 .9015 .0496

4.2 Ablation Study

We evaluate the performance of our method under various configurations. To
quantify the differences, we exploit two synthetic datasets (i.e. Livingroom and
Tanabata) for the experiments.
Effect of the number of virtual sharp images. We evaluate the effect of
different numbers of the interpolated virtual images as mentioned in Eq. (6).
The experimental results are presented in Table 1. It demonstrates that more
virtual images deliver better image quality, while requiring more computational
resources. By compromising the image quality and computation requirement, we
choose n = 19 for our experiments.
Effect of time lengths for event accumulation. We study the effect of
different time lengths ∆t for event accumulation as in Eq. (7). The timestamps
of the event stream are normalized to a range of (0, 1) by its total time length.
We choose different values from 0.05 to 0.25 for the ablation study. The ex-
perimental results are presented in Table 2, showing that the performance on
Tanabata dataset gradually saturates as α increases until to 0.25, whereas on
Livingroom dataset, performance initially improves with increasing α but subse-
quently declines. This may depend on the noise level in event stream of different
time lengths. In all experiments, we select α = 0.1.
Effect of trajectory representations. We explore the difference between
linear interpolation and cubic B-Spline to represent the motion trajectory. The
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Table 3: Ablation studies on trajectory representations. The results demon-
strate that cubic B-spline can deliver better performance than linear interpolation.

Livingroom Tanabata
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

linear interpolation 34.16 .9035 .1133 27.42 .8164 .1117
cubic B-Spline 37.11 .9370 .0632 32.14 .9015 .0515

Table 4: Quantitative comparisons on single image deblurring with syn-
thetic datasets. The results demonstrate that our method performs better than prior
learning-based methods in terms of image quality. For HINet and NAFNet, we tests
pre-trained weights from both GoPro and REDS datasets(*). Due to page limits, the
results of the SSIM metric can be found in the supplementary materials.

PSNR ↑
Livingroom Whiteroom Pinkcastle Tanabata Outdoorpool Average

DeblurGANv2 [19] 29.26 27.64 23.16 20.09 26.89 25.41
SRN-deblur [46] 30.86 27.59 23.12 19.89 27.79 25.85
MPRNet [55] 28.57 26.49 21.60 18.20 27.02 24.38

HINet [5] 28.56 26.27 21.91 18.59 26.70 24.41
HINet* [5] 27.55 22.89 20.25 18.15 27.14 23.20
NAFNet [4] 29.92 28.16 22.41 18.96 26.75 25.24
NAFNet* [4] 28.18 23.67 20.85 18.38 27.52 23.72

Restormer [54] 29.48 27.39 22.22 18.82 27.35 25.05

BeNeRF 37.11 32.95 29.68 32.14 36.38 33.65

LPIPS ↓
Livingroom Whiteroom Pinkcastle Tanabata Outdoorpool Average

DeblurGANv2 [19] .2087 .1989 .2608 .3934 .3100 .2744
SRN-deblur [46] .2529 .2503 .3245 .4260 .3594 .3226
MPRNet [55] .2621 .2564 .3586 .4173 .3679 .3325

HINet [5] .2468 .2620 .3500 .4024 .3355 .3193
HINet* [5] .3327 .3602 .3789 .5265 .4397 .4076
NAFNet [4] .2268 .1991 .3058 .3908 .3280 .2901
NAFNet* [4] .3182 .3566 .3943 .5271 .4257 .4044

Restormer [54] .2391 .2493 .3373 .4248 .3664 .3234
BeNeRF .0632 .0788 .0761 .0515 .0677 .0675

experimental results shown in Table 3 demonstrate that cubic B-Spline deliver
better performance on complex motions than that of the linear interpolation.
We exploit cubic B-Spline for the experiments.

4.3 Quantitative evaluations

To evaluate the performance of our method, we compare it against single-image
deblurring methods, event-enhanced single-image deblurring methods, and NeRF-
based image deblurring methods requiring multi-view information on both syn-
thetic datasets and real datasets. The experimental results are presented in Ta-
ble 4, Table 5, Table 6 and Table 7.

In particular, we compare against SRN-Deblur [46], DeblurGANv2 [19], MPR-
Net [55], HINet [5], NAFNet [4], Restormer [54] in terms of single image deblur-
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Table 5: Quantitative comparisons on event-enhanced single image deblur-
ring with synthetic datasets. The results demonstrate that our method performs
better than both EDI and eSLNet. Due to page limits, the results of the SSIM metric
can be found in the supplementary materials.

PSNR ↑
Livingroom Whiteroom Pinkcastle Tanabata Outdoorpool Average

eSLNet [47] 14.22 10.81 10.49 8.86 11.80 11.24
EDI [33] 32.61 30.33 27.24 24.87 31.64 29.34
BeNeRF 37.11 32.95 29.68 32.14 36.38 33.65

LPIPS ↓
Livingroom Whiteroom Pinkcastle Tanabata Outdoorpool Average

eSLNet [47] .3981 .4236 .4902 .5067 .4676 .4572
EDI [33] .0904 .1020 .0779 .1039 .1409 .1030
BeNeRF .0632 .0788 .0761 .0515 .0677 .0675

ring. The experimental results shown in Table 4 demonstrates that our method
significantly outperforms prior state-of-the-art methods. It shows that prior
learning-based methods have limited generalization performance on domain-
shifted images, especially with large motion blurs.

Table 6: Quantitative comparisons on NeRF-based image deblurring with
synthetic datasets from E2NeRF. The results indicate that our method outper-
forms both NeRF and Deblur-NeRF, and exhibits performance comparable to E2NeRF
in terms of the PSNR metric. Moreover, our method even surpasses E2NeRF with the
LPIPS metric. Due to page limits, the results of the SSIM metric can be found in the
supplementary materials.

PSNR ↑
Chair Ficus Hotdog Lego Materials Mic Average

NeRF [28] 24.29 22.98 27.75 21.95 19.99 20.50 22.91
Deblur-NeRF [26] 25.87 22.86 24.62 24.47 20.54 11.92 21.71

E2NeRF [34] 31.28 30.00 34.34 28.11 27.27 27.60 29.77
BeNeRF 31.17 30.81 34.31 28.09 27.44 26.13 29.66

LPIPS ↓
Chair Ficus Hotdog Lego Materials Mic Average

NeRF [28] .1254 .1037 .1158 .2103 .1512 .1579 .1441
Deblur-NeRF [26] .2185 .1541 .2138 .2053 .2562 .3706 .2364

E2NeRF [34] .0608 .0362 .0660 .1078 .0919 .0724 .0725
BeNeRF .0500 .0299 .0539 .0745 .0708 .0738 .0588

We also compare against prior event-enhanced single image deblurring meth-
ods, such as EDI [33] and eSLNet [47]. The results in Table 5 demonstrates that
our method has superior performance when compared to them. eSLNet demon-
strates poor generalization performance, since we are unable to fine-tune it on our
evaluation datasets. It demonstrate the benefit on incorporating event streams
to enhance single image deblurring task under the framework of NeRF.
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Furthermore, we conducted detailed comparisons with NeRF-based image
deblurring methods that require multi-view information on the synthetic dataset
proposed by E2NeRF. We compared against NeRF [28], Deblur-NeRF [26] and
E2NeRF [34]. The experimental results in Table 6 demonstrate that despite
utilizing only a single blurred image and event stream of a small time interval, our
method achieves performance comparable to E2NeRF [34], which utilizes multi-
view images and a longer event stream, in terms of PSNR metric. Moreover, our
method even surpasses E2NeRF [34] in terms of the LPIPS metric.

Finally, we select the best-performing algorithms on the synthetic dataset,
excluding our method, from single-image deblurring methods, event-enhanced
single-image deblurring methods, and NeRF-based image deblurring methods,
which are SRN-deblur [46], EDI [33], and E2NeRF [34], respectively. We compare
against with these methods on the real dataset and provide the BRISQUE [29]
metric. The results in Table 7 indicate a significant improvement of our method
over the aforementioned methods. This is attributed to our method’s incorpo-
ration of a physical model for the imaging process of blurry images, enabling
better performance on real-world datasets.

Table 7: Quantitative comparisons on real-world datasets from E2NeRF.
We exploit the used real-world dataset proposed by E2NeRF [34] for the evaluations,
which is collected via a DAVIS event camera. The results indicates that our method
outperforms EDI, SRN-Deblur and even E2NeRF on the real-world datasets. Note that
E2NeRF [34] requires multi-view images while ours only need a single image. Since
E2NeRF does not provide the trained model and the code for the metric computation,
we re-trained E2NeRF for this experiment and compute the metric with the MATLAB
implementation of the BRISQUE metric for fair comparisons.

BRISQUE ↓
Camera Lego Letter Plant Toys Average

EDI [33] 29.74 29.35 28.74 31.09 37.09 31.20
SRN-Deblur [46] 32.20 34.91 40.82 37.45 46.10 38.30

E2NeRF [34] 33.40 33.85 37.41 32.02 43.00 35.94
BeNeRF 19.47 25.86 27.37 21.46 25.20 23.87

4.4 Qualitative evaluations

The qualitative evaluation results are shown in Fig. 3 and Fig. 4 for both syn-
thetic and real datasets respectively. The experimental results demonstrate that
our method deliver better performance than prior methods even when the image
is severely blurred. In particular, Fig. 3 shows that prior learning-based meth-
ods struggle to generalize to domain-shifted images. Notably, EDI [33] performs
well on synthetic datasets due to the high quality of event data. Fig. 4 shows
that our method outperforms all prior methods (even trained with multi-view
images) on real noisy dataset, which demonstrates the advantage of our method
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Fig. 3: Qualitative results of different methods with synthetic datasets. It
demonstrates that our method delivers better performance compared to prior ap-
proaches. The learning based methods fail to generalize on severely blurry images.

and the necessity to jointly optimize the camera motion and the implicit 3D
representation.

5 Conclusion

In conclusion, we present a novel method to jointly recover the underlying 3D
scene representation and camera motion trajectory from a single blurry image
and its corresponding event stream. Extensive experimental evaluations with
both synthetic and real datasets demonstrate the superior performance of our
method over prior works, even for those requiring multi-view images and longer
event streams.
Acknowledgements. This work was supported in part by NSFC under Grant
62202389, in part by a grant from the Westlake University-Muyuan Joint Re-
search Institute, and in part by the Westlake Education Foundation.
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Input Image EDI [33] SRN [46] E2NeRF [34] Ours

Fig. 4: Qualitative results of different methods on the real datasets. The
experimental results demonstrate that our method delivers superior performance on
the real DAVIS datasets from E2NeRF. We are even achieve better performance than
prior methods requiring multi-view images and longer event stream.
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