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Abstract. Existing motion forecasting models, while making progress,
struggle to bridge the gap between the source and target domains. Re-
cent solutions often rely on an unrealistic assumption that the target
domain remains stationary. Due to the ever-changing environment, how-
ever, the real-world test distribution may experience ongoing/continual
shifts over time, leading to catastrophic forgetting and error accumula-
tion when adapting to evolving domains. To solve these challenges, this
work introduces HoCoTTA, a framework for homeostatic continual test-
time adaptation. It aligns with the knowledge distillation and parameter
isolation paradigm, enabling the identification of domain-invariant and
domain-specific knowledge, where the former is shared (to be retained)
in continual TTA across domains, while the latter needs to be updated.
Specifically, we propose a multi-domain homeostasis assessment to esti-
mate the uncertainty of the current model parameter when faced with
novel-domain samples. Then, the Fisher information matrix is computed
to measure the parameter sensitivity, with larger indicating the domain-
sensitive parameter, and vice versa. Moreover, we propose an isolated
parameter optimization strategy to update those domain-specific param-
eters to adapt to the new-domain, while preserving the invariant ones.
In our experimental result, HoCoTTA outperforms the state-of-the-art
approaches on several benchmarks, especially excelling in addressing con-
tinuous domain drifts, achieving a large improvement.

Keywords: Deterministic Human Motion Forecasting · Domain Gener-
alization · Test-time Domain Adaptation · Parameter Isolation Update

1 Introduction

Given a series of historical poses, human motion forecasting aims to forecast the
future pose as close as possible to the actual one, which has great potential in
autonomous driving and human-robot cooperation [14,35,43,50,54,60].
⋆ Corresponding author
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Fig. 1: In contrast to the standard TTA, which updates the full model at test-time, our
HoCoTTA is able to identify the domain-invariant and domain-sensitive parameter, and
retain the former while adapting the latter to the new domain. It therefore alleviates
the catastrophic forgetting and adapt to the continually-changing target distributions,
achieving a closer prediction result (green-red skeleton) to the ground truth (blue
skeleton) against the state-of-the-art baseline [12].

Recently, this compelling topic has gained increased attention, emerging as a
promising research direction [2,4,10,23,30,47,71]. Deep end-to-end networks have
been sought-after to tackle this issue, which typically default to the training and
test data are under the same distribution [25, 57, 64]. However, this assumption
is often violated in real-world setups due to a large distribution gap between the
source and target domains, such as the presence of novel motion patterns during
testing.

Researchers attempt to use test-time adaptation (TTA) to address this is-
sue [9, 11, 12, 26, 59, 66, 74], which considers the target domain to be stationary,
and is expected to update the source-trained model for adaptation at test-time.
Despite encouraging results, they usually face a dynamically-evolving environ-
ment over time, where the distribution of target motion sequences is not static
but continuously changing. Stated in a different way, for sequentially arriving mo-
tion samples in the real deployment scenario, the continuous distribution shifts
are inevitable. We notice that the existing approaches [11, 12] are sub-optimal
in adapting to the continually-changing target distributions, leading to a large
prediction error, which restricts their practical applications.

To address this issue, this work proposes a novel homeostatic continual
test-time adaptation (HoCoTTA) framework, which is able to adapt to the
continually-changing target distributions, and alleviate the catastrophic for-
getting and error accumulation. Following the knowledge distillation paradigm
[12,33,40,69], our HoCoTTA involves a teacher θT and a student network θS with
identical architectures, selectively derived from existing or newly-designed mo-
tion forecasting networks. In contrast to the student, the teacher is preceded by a
multi-domain augmenter Aϕ, which is trained to generate novel-domain augmen-
tations for each sample X(0). Then, both augmented and original samples are fed
into the teacher to produce the corresponding intermediate predictions in paral-
lel. Comparing these predictions with the original one, the uncertainty matrix is
computed to gauge the model’s confidence level in its predictions under distribu-
tion shifts. Furthermore, the Fisher information matrix [39, 62] is computed to
measure the parameter sensitivity, with larger indicating the domain-sensitive
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parameter, and vice versa. We therefore leverage the τ -quantile to isolate the
domain-sensitive and domain-invariant parameters. Then, we propose an isolated
parameter optimization strategy to update those domain-specific parameters to
adapt to the new-domain, while preserving the invariant ones, as shown in Fig.1.
This strategy helps alleviate excessive forgetting of previously-learned informa-
tion, and avoid the errors accumulation, when adapting to continuously changing
target distributions. Therefore, the better prediction results are achieved.

Our main contributions are summarized as follows: 1) We propose the home-
ostatic continual test-time adaptation (HoCoTTA) framework to address the
realism of the non-stationary target distribution in test motion sequences. 2)
We propose to access the model’s uncertainty, allowing the isolation of the
domain-sensitive and domain-invariant parameters, which is able to alleviate
the catastrophic forgetting. 3) Experiments on several benchmarks show that
our HoCoTTA outperforms the state-of-the-art approaches, especially excelling
in addressing continuous domain drifts, achieving a significant improvement.

2 Related Work

Human Motion Forecasting. Recent progresses have revealed the huge poten-
tial of deep learning-based approaches for deterministic motion prediction, estab-
lishing them as the prevailing technique [4,14,45,56,76]. Earlier works typically
rely on the variants of RNNs to formulate this task as a sequence regression prob-
lem, aiming to mapping the past observed sequence to the future ones [17,21,50].
Despite capturing temporal correlation, RNNs suffer from the static predicted
pose, and significant discontinuity. Forward networks are therefore introduced
to address this issue, especially graph convolution networks with a higher inter-
pretability, which are able to capture the semantic connectivity of 3D human
skeletons, and gradually becoming the current dominant [13,14,34,35,48,71].

Despite great progress most approaches assume the source and target do-
mains are identical, which is a harsh condition in practical applications, where
the target domain often differs from the source one. To address it, recent TTA
works [11, 12] are proposed, and adapt the pre-trained model to unseen target
domains at test-time. However, these methods still rely on an unrealistic assump-
tion that the target domain remains stationary. In contrast, this work embraces
a more realistic scenario, in which the target distributions is not only different
from the source one, but also undergoes continuous changes over time.

Unsupervised Domain Adaptation (UDA) is a widely-recognized method
in computer vision aimed at training models capable of generalizing to unseen
domains [15, 19, 29, 73]. In the UDA context, diverse augmentation strategies
are employed on both source and target domain data to mitigate the distribu-
tion gap, encompassing color/light shifts, rotations, and cropping [16,36,67], all
designed to transfer the domain-invariant knowledge gained from these augmen-
tations to aid the better adaptation to the target domain [51, 52]. In contrast
to conventional UDA, our approach assesses the prediction uncertainty resulting
from multiple augmentations in the new domains, allowing us to identify and
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update domain-sensitive parameters. Moreover, we also consider data privacy,
ensuring that source domain data is not required during test-time adaptation.

Test-time Adaptation (TTA) is an alternative, situated within the source-
free domain adaptation paradigm [27, 31, 41, 42, 72, 74, 75]. It permits the fine-
tuning of pre-trained models during inference, adapting them to specific test
samples and facilitating more customized final decisions. TENT [68] commences
with a source pre-trained model and exclusively updates the BN parameters,
which is accomplished by minimizing the entropy in test predictions. AdaCon-
trast [8] introduces weak and strong augmentation to enable the contrastive
learning that refines the pseudo labeling of the target domain. [65] proposes an
adversarial augmentation module to further enhance the knowledge distillation.
We note that, whereas, the standard TTA needs to access to the full test data,
which is often unrealistic for online applications of human motion forecasting.

Continual TTA. Typical TTAs often overlook the changing target distri-
butions over time, leading to the proposal of continual test-time adaptation
(CTTA) to address this issue [6, 18, 18, 20, 58, 61, 69]. In particular, [69] intro-
duces the CoTTA model, a teacher-student framework, and incorporates a ran-
dom restoration strategy to mitigate the catastrophic forgetting. Adhering to the
teacher-student paradigm, [6] proposes a probabilistic version of CTTA (called
PETAL), which regularizes the model update at inference time to prevent model
drift. [58] tracks the progress of continual learning [5,44], and proposes a pruning-
based approach to investigate the domain-specific capacity. Our method follows
the above progress and breaks it further, and proposes to accurately identify the
domain-sensitive and domain-invariant parameters, and update them separately,
which is able to alleviate the catastrophic forgetting of past domains and error
accumulation in continual adaptation.

3 Proposed Approach

3.1 Problem Formulation

Suppose X1:T = [x1,x2, ...,xT ] ∈ X is the past observed poses of a person,
and human motion forecasting aims to generate the future sequence Y 1:∆T =
[y1,y2, ...,y∆T ] ∈ Y, with each frame being the 3D coordinates of N joints.
Most existing models [14, 45, 50, 76] are trained on the source domain S =

{(X,Y )(i)}|S|
i=1, w.r.t. training data size |S|, and apply it to the target domain

T , under the assumption of S = T . Recent advances [11, 12] in motion predic-
tion challenge this assumption, suggesting that the target domain differs from
the source one: S ̸= T , though still assuming an idealized setting: the target
domains are static, i.e., T1 = T2 = ... = Tn.

Considering environmental changes and individual behavioral patterns, our
work introduces a novel and more realistic scenario, in which target domains
and source one is not same: S ≠ T1:n, and target domains are subject to ongoing
change: T1 ̸= T2 ̸= ... ̸= Tn, n > 1. Moreover, we propose a homeostatic continual
test-time adaptation (HoCoTTA) to solve it.
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Fig. 2: Homeostatic continual test-time adaptation (HoCoTTA). It is first trained on
the source data to achieve a base model, and then adapted to n target domains. The
network is composed of a teacher θT and a student θS , with identical architectures. The
teacher is preceded by a trained novel-domain augmenter Aϕ, which is able to generate
diverse augmentations and estimate the model’s uncertainty for new-domains. Then,
Fisher information matrix is computed to measure the parameter sensitivity, where
the larger indicates the domain-sensitive parameter, and vice versa. We leverage the
τ -quantile to separately isolate and update the domain-sensitive and domain-invariant
parameters. It alleviate the catastrophic forgetting and error accumulation in adapting
to continually-changing target samples, and therefore brings the better prediction.

Our HoCoTTA aligns with the well-known knowledge distillation paradigm,
incorporating a teacher θT and a student network θS , with identical networks.
In contrast to the existing methods [11,12,45,48,70], it offers several advantages:
1) The teacher network is equipped with a novel-domain augmenter, providing
the capability to identify the model’s sensitivity and homeostasis concerning new
domains. 2) Then, the Fisher information matrix is estimated to isolate domain-
sensitive and domain-invariant parameters in the student network. 3) In the
subsequent test-time adaptation, the domain-sensitive parameters are updated,
while the domain-invariant ones are preserved, to alleviate the catastrophic for-
getting and error accumulation, as shown in Fig.2.

3.2 Multi-Domain Homeostasis Assessment

The teacher θT is front-loaded with a multi-domain augmenter Aϕ, and mul-
tiple novel-domain samples are fed into it to generate the corresponding inter-
mediate predictions. Then, using uncertainty estimation, the model’s steady-
state/homeostasis for the new domain data is assessed.

Multi-domain augmenter. Recent advances show that the augmentation
is an effective strategy to improve the cross-domain generalization ability [12,
52,69]. Motivated by them, our multi-domain augmenter Aϕ is proposed, which
falls into the adversarial learning paradigm, w.r.t. the trainable parameter ϕ.

Specifically, Aϕ is trained to augment H new-domain samples: X̃h = Aϕ(X),
aiming for as much diversity as possible. Here, X̃h is an augmented sample from
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the set {X̃h}Hh=1, and X is the original one. We denote cos_sim as the cosine
similarity. The training objective has two terms, where the variability loss Lvar

encourages the diversity among the H augmentations, defined as:

max
Aϕ

Lvar(X̃i,X̃j)=
1

H(H−1)

H∑
i=1

∑
j ̸=i

cos_sim
(
X̃i, X̃j

)
. (1)

Then, the content consistency loss Lcon ensures the similarity of motion contexts
between the original and augmented samples:

min
Aϕ

Lcon =
1

H

∑H

h=1

∥∥∥X̃h −X
∥∥∥
2
. (2)

These objectives collectively guide the training of Aϕ to produce diverse aug-
mentations while maintaining content consistency with the original samples.

Intuitively, Aϕ can be conceptualized as a diverse motion generation model.
For simplicity, it is implemented as the similar architecture in [47], expect for
min-max adversarial training and a more streamlined architecture (9 GCN lay-
ers). Once Aϕ is trained, it is used to generate H augmented samples {X̃h}Hh=1,
and then fed into the teacher θT to generate the corresponding intermediate
predictions {Ỹ h}Hh=1. In this work, the hyperparameter H is set as 24.

Homeostasis assessment, also called uncertainty estimation [38, 53, 55],
is widely-used to quantify the model’s confidence level in its predictions under
distribution shifts. While the confidence score is a common measure to assess
prediction reliability, it tends to fluctuate irregularly and becomes unreliable in
continual changing environment. To overcome this issue, we draw inspiration
from the homeostasis mechanism in biological systems [38], which can determine
the sensitivity of the model and then assess the model’s stability in handling
new domains.

Concretely, given the intermediate predictions {Ỹ h}Hh=1 and the original one
{Ỹ } obtained from Aϕ, we compute the difference between {Ỹ h}Hh=1 and Ỹ to
form H sets of probability distribution matrix, and take the average of them as
the uncertainty matrix U , defined as:

U = exp

(
− 1

H

H∑
h=1

∣∣∣∣∣ Ỹ h

∥Ỹ h∥2
− Ỹ

∥Ỹ ∥2

∣∣∣∣∣
)
. (3)

We note that U is an N×∆T matrix, where each element indicates the model’s
uncertainty score of the corresponding joint. The smaller the value, the lower
homeostasis the model (more sensitive to the novel domain), and vice versa,
which aids in the isolation of domain-sensitive parameters.

3.3 Domain Parameter Isolation

In dynamic environments, where target domain data continually changes and
exhibits different distribution shifts over times, effective domain transfer becomes
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crucial. To reduce error accumulation and catastrophic forgetting, it is necessary
to isolate the different knowledge, and manage or utilize them separately.

For this purpose, the data-driven domain parameter isolation is proposed.
Fisher information matrix (FIM) has proven to be an effective tool for measuring
the importance of the model parameter. Building on recent advancements [6,39],
FIM is therefore used to identify which parameters in the teacher model are
sensitive to the new domains, and which ones are more homeostatic. Then, the
results of parameter isolation is transferred to the student network, and allows
for a separated optimization strategy in continual TTA phase.

For the sake the simplicity, we use the same symbol θT ∈ RP to represent the
flattened parameter of the teacher model, as well as θS ∈ RP for the student,
where P is the parameter dimension. The FIM F (θ) is typically defined as the
expectation of the second derivative of the log-likelihood function, given by:

F (θ) = E [∇θT
log p(U |θT )∇θT

log p(U |θT )
⊺] , (4)

where F (θ) is a P × P matrix, and p(U |θT ) is the probability density function
of U . We note that, F (θ) is a positive semi-definite matrix, and its diagonal
elements represents the importance of each parameter, while the off-diagonal
elements denote the correlation between parameters.

For the lower calculation and higher interpretability, we assume the param-
eters are independent, and utilize the diagonal elements of F (θ) to form an
approximation I(θ):

I(θ) = Diag ((∇θT
L(U)) (∇θT

L(U))
⊺
) . (5)

We note that I(θ) ∈ RP has the identical dimension with θT and θS . L is simply
implemented as the L2 norm.

Because U estimates the uncertainty against the H novel domains, the ele-
ments of I(θ) indicate the sensitivity of the model parameter, where some are
sensitive to the new domains, and the rest is more homeostatic. To achieve it,
we use a binary mask m ∈ {0, 1}P to isolate the parameters:

m ∼ Bernoulli(α), (6)

where α is the probability of 1. Here, based on I(θ) of FIM, each element mp

of m is set using the following rule:

mp =

{
1, if I(θ)p > τ -quantile
0, otherwise , p = 1., , , .P, (7)

where τ -quantile is a threshold, and we set τ = 0.2 in all experiments. We note
that, the above rule means that the top τ -quantile parameters, w.r.t. m⊗θ, with
the largest values in I(θ) are selected as the domain-sensitive ones (need to be
update for current domain), and the rest, (1−m)⊗ θ, as the domain-invariant
ones (need to be retained).
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3.4 Homeostatic Test-time Adaptation

In continual TTA, we propose to isolate the full model into two parts: domain-
sensitive and domain-invariant parameters. To manage and update them sepa-
rately, we propose a novel homeostatic test-time parameter optimization strat-
egy, which is implemented as the following two steps:

Isolated parameter optimization. Since m indicates those domain-sensitive
weights in teacher model θT as well as those stable ones, we further transfer it to
the student network θS , and isolate the parameters as well. For a sample X(0)

from unseen domains, it is fed into both non-optimized student and teacher net-
works, to attain Ỹ

(0)

S = θS(X
(0)) and Ỹ

(0)

T = θT (X
(0)), where Ỹ

(0)

T is regard
as the pseudo ground truth. Then, we update the domain-sensitive parameters
θS ⊗m to attain the adapted parameter of the student network, with a single
gradient decent step:

θ̊
(0)

S ← θ
(0)
S − η∇

θ
(0)
S

Lpred(Ỹ
(0)

S , Ỹ
(0)

T )⊗m, (8)

where η = 0.001 is the learning rate. Here, motivated by [48], the loss function
Lpred is defined as the weighted sum of L2 distance and bone length loss:

λ1∥Ỹ
(0)

S − Ỹ
(0)

T ∥2 + λ2Lbone(Ỹ
(0)

S , Ỹ
(0)

T ), (9)

where Lbone is to compute the difference of bone length between two sequences,
and λ1 = 0.9, λ2 = 0.1. Then, a forward pass is performed to predict the
future motion Y̊

(0)

S = θ̊
(0)

S (X(0)) using the adapted student model. After the
isolated parameter optimization, the domain-invariant parameters θS ⊗ (1−m)
are preserved, and the domain-sensitive ones θS ⊗m are updated.

Exponential moving average. Next, the exponential moving average (EMA)
is proposed to update the teacher network θT , with a momentum factor α = 0.99:

θ̊
(0)

T ← αθ
(0)
T + (1− α)̊θ

(0)

S , (10)

where θ̊
(0)

S is the adapted student network. Moreover, for the next sample X(1),

the model adaptation begins with θ̊
(0)

S → θ
(1)
S and θ̊

(0)

T → θ
(1)
T as the initial

parameters, and the above process is repeated. The overall procedure of our
HoCoTTA is summarized in Algorithm 1.

4 Experiments

4.1 Benchmark Datasets

(1) Human3.6M [28] is a well-known dataset, containing ≈ 3.6M frames of
15 action categories performed by 7 human subjects. (2) CMU Mocap [1].
Following [13, 32, 48], 8 daily action categories from CMU Mocap are selected.
(3) GRAB [63] is a newly-introduced benchmark, including ≈1.6M poses of 29
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Algorithm 1 Homeostatic Continual Test-time Adaptation

Require: multi-domain augmenter Aϕ; teacher network θ
(i)
T , student network

θ
(i)
S ; learning rate η, binary mask m, momentum factor α, τ -quantile;

Input: n samples from unseen domains {X(i)}ni=1;

Output: final predictions {Y̊
(i)

S }ni=1;
1: for each i do
▷ multi-domain homeostasis assessment
2: augment H novel-domains {X̃h}Hh=1 = Aϕ(X

(i));
3: {Ỹ h}Hh=1 = θ

(i)
T ({X̃h}Hh=1), Ỹ = θ

(i)
T (X(i));

4: compute uncertainty matrix U using Eq. (3);
5: compute fisher information matrix I(θ) using Eq. (5);
▷ domain parameter isolation

6: mp ←
{
1, if I(θ)p > τ -quantile
0, otherwise ;

▷ homeostatic test-time adaptation
7: update the student: θ̊(i)

S ← θ
(i)
S ⊗m using Eq. (9);

8: update the teacher model: θ̊(i)
T ← θ

(i)
T using Eq. (10);

9: Y̊
(i)

S ← θ̊
(i)

S (X(i)); ▷ make the final prediction

10: θ
(i+1)
S = θ̊

(i)

S , θ(i+1)
T = θ̊

(i)

T ;
11: end for

actions from 10 human subjects. Compared with Human3.6M, GRAB are more
diverse and involve interaction with the physical world, which is, therefore, more
challenging. Each pose of all 3 datasets is specified by 3D coordinates of 17 joints,
and normalized to [−1, 1]. All methods are implemented to predict the next 1
second frames, with the observed length of 1 second.

4.2 Baselines, Experimental Setups and Evaluation Metrics

Our HoCoTTA is compared with 7 recent approaches, categorized in 5 groups:
Baselines. 1) RNN-based: Resi. sup. [49] transforms the motion predic-

tion into a sequence-to-sequence generation task; 2) GCN-based: LTD [48],
MSRGCN [14], PGBIG [46], and SPGSN [34] are the representative GCN-based
baseline approaches, emerged in recent years; 3) MLP-based: siMLPe [22] pro-
pose a variant of multilayer perceptron, achieving encouraging results; 4) TTA-
based: H/P-TTP [12] emerges in last year and use TTA to resolve the domain
gap, which achieves the state-of-the-art performance.

Experimental setups. Recent progresses have proven that the performance
of siMLPe [22] is superior than others under the typical experimental setting of
human motion prediction, and it is open-source, which is therefore chosen as the
backbone of both teacher and student networks in our HoCoTTA. Therefore, we
design the following 3 experimental setups:

1) Setup-1 (generative predictive ability:) follows the standard data
splitting that is consistent with the standard motion prediction task [13,45,48].
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Metric Methods Human3.6M [28] CMU Mocap [1] GRAB [63]
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 200 400 600 1000

M
P
JP

E
[m

m
]

Resi. sup. [49] 34.7 62.0 101.1 115.5 165.0 24.7 44.2 76.3 88.7 139.3 56.1 90.2 163.8 289.4
LTD [48] 12.7 26.1 52.3 63.5 114.3 9.9 18.0 33.6 41.0 81.9 38.3 68.7 101.6 197.3

MSRGCN [14] 12.1 25.6 51.6 62.9 114.2 8.7 15.8 30.6 38.1 79.0 32.2 60.2 96.3 178.6
PGBIG [46] 10.3 22.7 47.4 58.5 110.3 8.2 15.4 30.1 37.3 76.7 30.1 53.9 92.2 157.2
SPGSN [34] 10.4 22.3 47.1 58.3 109.6 8.3 14.8 28.6 37.0 77.8 27.4 50.6 91.3 144.5
siMLPe† [22] 9.6 21.7 46.3 57.3 109.4 8.3 14.6 27.8 37.2 76.6 27.1 51.5 88.4 137.5

H/P-TTP† [12] 9.8 21.1 47.2 55.6 103.7 8.0 13.1 28.5 35.3 74.4 26.5 47.4 85.5 138.0
HoCoTTA‡ 9.2 20.5 46.0 52.8 98.4 7.8 12.724.235.0 71.1 24.145.2 81.0 131.8

P
-M

P
JP

E
[m

m
] Resi. sup. [49] 23.4 45.1 78.5 96.6 111.0 14.1 26.2 39.7 56.6 86.2 27.6 43.2 110.3 144.7

LTD [48] 8.9 17.2 36.9 53.1 101.5 6.5 12.1 20.0 31.2 66.0 21.8 37.1 83.2 128.8
MSRGCN [14] 8.7 17.9 32.6 55.7 101.3 6.1 12.0 19.3 32.5 65.2 20.0 35.4 82.3 131.3
PGBIG [46] 7.2 15.3 28.3 51.2 97.2 5.7 11.3 18.6 31.4 63.8 18.3 34.2 79.8 127.5
SPGSN [34] 7.1 14.3 24.2 51.8 96.7 5.9 11.1 18.7 31.1 62.2 18.0 33.3 77.2 129.0
siMLPe† [22] 6.7 14.0 23.7 49.3 94.2 5.4 10.0 17.4 29.1 60.5 18.1 33.4 70.2 124.4

H/P-TTP† [12] 6.7 12.8 23.0 49.4 90.2 5.2 9.3 17.1 28.9 60.1 16.6 32.0 64.9 117.3
HoCoTTA‡ 6.4 11.7 21.5 46.6 84.3 5.2 9.4 15.825.3 54.8 16.531.3 62.5 112.2

P
C

K
@

15
0m

m
[%

] Resi. sup. [49] 64.8 62.3 60.0 57.5 50.3 76.4. 73.4 71.3 69.9 67.3 70.0 67.4 52.3 50.9
LTD [48] 79.9 77.3 76.4 70.4 66.0 84.2 81.5 80.3 77.2 75.2 81.8 77.3 71.3 62.9

MSRGCN [14] 85.4 83.0 82.1 75.5 70.1 86.7 82.5 81.1 78.3 76.2 84.7 79.7 75.3 65.6
PGBIG [46] 88.5 84.2 83.0 77.3 69.6 88.8 83.2 81.5 78.0 77.0 84.3 82.2 75.8 66.4
SPGSN [34] 87.8 84.7 85.2 80.1 71.2 88.4 85.1 82.0 77.9 76.4 87.1 80.4 77.0 67.8
siMLPe† [22] 88.4 86.6 85.0 83.4 72.7 90.0 88.2 85.8 83.7 77.5 86.9 82.6 82.1 69.1

H/P-TTP† [12] 91.2 89.4 86.8 85.1 74.6 91.3 89.487.684.7 79.4 88.0 82.3 81.1 70.4
HoCoTTA‡ 92.289.4 87.1 86.0 76.1 93.7 90.1 87.4 85.1 81.3 87.7 84.2 83.0 72.3

Table 1: General predictive ability comparison under the experimental setup-
1. It follows the common data spitting. We highlight the best results in bold, and
the second best in underlined. ‡ indicates our results, † is that are from the original
papers, and others are from [70]. For the baselines that do not report P-MPJPE and
PCK@150mm, we leverage the same transformation as [12] to re-statistic.

2) Setup-2 (predictive ability for unseen subjects and catoegories):
is designed to evaluate the performance for new/unknown human subjects and
categories, similar to the existing TTA-based predictive approaches [11, 12]. 3)
Setup-3 (predictive ability for novel datasets): is newly-introduced in our
work, where the source data is from Human3.6M [28] and the pre-trained model
is expected to adapt to the new dataset of GRAB [63]. We note that the setup-3
is more challenging than setup-1 and setup-2, because the target distributions,
and data acquisition conditions, are completely different from the source one,
and the distribution shift is more pronounced.

Evaluation Metrics. 1) MPJPE [7, 28, 46]: serves as the main metric
to measure the average Euclidean distance between the prediction and ground
truth. 2) P-MPJPE: Procrustes aligned MPJPE (P-MPJPE) [37] aligns the
predicted pose to the ground truth pose by a rigid transformation known as Pro-
crustes Analysis (PA), removing errors independent of poses. 3) PCK@150mm:
Percentage of Correct 3D Keypoint (PCK) [3, 24] quantifies the proportion of
predicted joints with MPJPE smaller than a predefined threshold of 150mm.

4.3 Generative Predictive Ability Evaluation

Our HoCoTTA mainly considers improving the prediction performance under
the out-of-distribution setting in the complicated deployment scenarios; how-
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Predictive Ability for
Unseen Categories

Predictive Ability for
Unseen Subjects

Time (ms) 160 400 1000 160 400 1000 200 400 1000 160 400 1000 200 400 1000
Actions Human3.6M CMU Mocap GRAB CMU Mocap GRAB

M
P

JP
E

PGBIG [46] 27.8 62.1 114.2 15.2 45.7 86.4 27.5 59.3 155.3 27.4 58.0 108.3 30.4 55.3 158.6
SPGSN [34] 26.3 63.6 115.6 14.8 43.6 88.5 34.7 56.4 150.8 27.2 58.3 107.0 31.2 56.8 159.3
siMLPe [22] 25.3 60.5 112.8 15.8 44.9 84.7 36.4 57.8 151.4 25.6 55.3 102.5 30.1 57.2 155.9

H/P-TTP [12] 24.7 53.6 102.5 13.4 41.0 77.9 31.1 51.2 140.2 24.7 56.4 102.8 28.6 52.3 135.5
HoCoTTA‡ 22.152.7 99.6 13.5 39.674.6 30.249.8136.2 22.953.198.4 27.248.0130.1

P
-M

P
JP

E PGBIG [46] 16.4 59.7 99.7 17.3 29.4 69.7 20.2 38.7 130.3 13.3 52.8 89.8 21.8 40.6 137.8
SPGSN [34] 14.2 60.7 100.4 14.7 26.9 67.8 18.9 35.8 126.4 13.8 54.2 90.5 22.9 42.7 133.9
siMLPe [22] 14.0 58.3 98.8 15.2 27.8 65.4 18.5 36.3 123.8 12.3 51.4 88.6 21.3 40.4 127.9

H/P-TTP [12] 13.8 50.4 90.3 13.1 25.8 60.0 17.1 32.5 120.1 12.6 50.1 85.5 20.2 39.1 124.1
HoCoTTA‡ 13.249.4 85.1 11.024.9 58.3 17.0 33.7 116.7 12.248.7 81.2 18.036.8118.6

P
C

K
@

15
0m

m

PGBIG [46] 77.3 72.2 67.4 72.5 71.2 68.9 77.8 73.2 66.4 75.7 71.3 65.7 77.5 71.2 63.4
SPGSN [34] 76.6 74.0 67.8 74.8 72.1 71.3 81.0 75.9 65.4 76.4 70.8 66.4 81.8 73.3 66.5
siMLPe [22] 75.3 73.1 68.9 77.7 74.2 71.0 80.2 77.5 67.8 80.1 75.2 68.5 84.0 80.0 67.7

H/P-TTP [12] 79.0 75.1 73.3 83.6 81.4 75.3 84.4 81.3 70.4 80.5 74.3 70.9 83.5 79.4 69.6
HoCoTTA‡ 83.879.2 75.1 86.482.6 77.8 86.582.4 72.5 86.082.1 76.6 86.482.7 72.1

Table 2: Predictive ability for new categories or subjects. We see that our HoCoTTA
brings the major improvement over the SoTA H/P-TTP method, indicating that the
domain shift across action categories and human subjects can be calibrated.

ever, for the sake of fairness, it still needs to be evaluated under the common
data splitting. Due to the diversity and stochasticity of human motion, even
within the same dataset/domain, the distribution of the test samples remains a
certain degree of difference from the training ones, representing a form of distri-
bution shift. Therefore, we follows the widely-used data splitting of the used 3
benchmarks to evaluate our HoCoTTA and baselines, which calls the generative
predictive ability evaluation, referring to as the experimental setup-1. Table 1
reports the average results of MPJPE, P-MPJPE and PCK@150mm of all 8
methods over the samples of each time step. From the results, we observe that
our HoCoTTA achieves the overall best performance on all 3 metrics, which
underscores the effectiveness of our proposed HoCoTTA. It also evidences that
the common data splitting indeed remains a distribution gap between source
training and target testing, which is not considered by the most standard mo-
tion prediction approaches. By contrast, our HoCoTTA effectively resolve the
out-of-distribution problem in a sequence of test samples, and thus achieves the
superior general predictive performance.

4.4 Predictive Ability for New Subjects/Categories

Consistent with the current TTA-based approaches [11,12], we proceed to evalu-
ate the predictive ability for new subjects and categories, which is referred to as
the experimental setup-2. In the real-world deployment scenarios, for the human
motion prediction task, the target data often involves new human subjects and
categories, diverging from the source training data. Compared to the setup-1, the
setup-2 is more significant. Therefore, we construct the following 2 experiments,
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Predictive Ability for Novel Datasets: Human3.6M → GRAB
Time (ms) 200 400 800 1000 200 400 800 1000 200 400 800 1000
Actions A1 passing A2 eating A3 drinking

M
P
JP

E
PGBIG [46] 40.8 76.3 111.5 143.9 34.2 73.7 117.4 168.7 37.6 44.6 91.8 150.7
SPGSN [34] 43.7 75.6 110.0 146.7 35.6 75.3 122.8 171.4 33.4 45.7 92.2 153.5
siMLPe [22] 40.2 69.7 109.2 140.5 34.5 70.4 118.5 172.1 34.7 46.8 90.4 147.9

H/P-TTP [12] 30.1 45.4 89.8 121.4 29.7 53.1 98.7 152.4 27.7 39.6 76.3 133.6
HoCoTTA‡ 26.0 37.7 70.4 116.2 27.5 47.3 90.2 147.3 24.8 36.9 72.6 128.5

P
-M

P
JP

E PGBIG [46] 27.1 35.8 68.4 89.4 25.0 41.1 82.7 107.8 22.7 37.0 73.4 104.2
SPGSN [34] 25.5 36.5 68.4 86.4 24.3 40.2 83.1 110.4 21.8 36.8 71.3 100.2
siMLPe [22] 25.6 37.8 67.9 87.5 24.0 38.4 80.3 106.4 22.2 37.1 70.2 96.7

H/P-TTP [12] 18.4 33.2 61.4 82.2 20.2 35.5 73.2 98.6 18.3 33.6 62.4 89.7
HoCoTTA‡ 17.7 30.3 59.6 78.5 18.9 34.1 70.4 95.4 19.1 32.3 62.4 85.8

P
C

K
@

15
0m

m

PGBIG [46] 62.2 57.3 54.6 51.1 60.4 52.7 52.1 50.0 59.0 53.4 50.3 47.8
SPGSN [34] 63.2 56.8 55.0 51.4 58.8 53.4 51.0 49.6 57.8 56.0 50.7 49.7
siMLPe [22] 62.3 57.7 54.3 50.3 61.2 55.3 53.3 51.6 58.3 55.7 52.4 50.4

H/P-TTP [12] 67.2 63.5 62.3 57.8 65.2 57.4 56.6 55.2 63.3 60.7 57.7 55.8
HoCoTTA‡ 69.9 65.7 63.4 60.5 67.3 59.1 58.4 56.8 65.7 61.3 59.0 58.1

Actions A4 lifting A5 on A6 squeeze

M
P
JP

E

PGBIG [46] 35.6 64.6 109.3 167.2 28.3 38.0 72.7 130.4 22.7 32.5 57.1 104.2
SPGSN [34] 37.1 60.3 115.7 158.4 28.1 38.6 71.6 126.5 23.5 30.7 55.4 101.3
siMLPe [22] 37.8 67.3 119.4 162.2 27.5 37.5 73.4 127.5 22.1 33.2 57.3 103.6

H/P-TTP [12] 31.0 44.7 91.2 138.5 24.5 34.7 60.4 102.3 18.0 29.5 50.2 96.3
HoCoTTA‡ 25.1 40.7 84.2 132.2 21.0 32.3 58.4 98.5 16.9 26.4 48.6 92.3

P
-M

P
JP

E PGBIG [46] 27.5 47.2 80.6 115.3 22.9 35.7 64.3 85.2 25.7 40.0 76.4 84.6
SPGSN [34] 28.6 46.0 79.5 113.2 23.5 38.2 67.4 87.5 23.4 38.7 72.8 80.0
siMLPe [22] 27.4 45.8 77.7 110.3 24.6 40.3 70.3 92.9 22.2 40.0 73.4 82.2

H/P-TTP [12] 21.4 37.1 68.9 100.1 18.0 33.3 64.6 80.1 17.1 32.2 63.5 73.4
HoCoTTA‡ 20.2 35.7 66.3 96.4 16.2 30.4 62.1 77.4 16.0 31.7 59.9 70.3

P
C

K
@

15
0m

m

PGBIG [46] 57.2 50.8 46.7 45.5 67.2 62.3 61.2 59.6 73.1 68.6 65.1 63.0
SPGSN [34] 57.3 51.4 47.0 45.6 66.7 62.3 59.7 58.4 72.2 67.8 64.6 62.7
siMLPe [22] 56.3 50.5 46.9 44.3 67.8 65.6 62.5 60.7 73.5 68.9 65.2 63.5

H/P-TTP [12] 60.0 55.8 49.7 47.7 72.4 70.3 67.2 65.1 80.2 75.3 71.4 67.7
HoCoTTA‡ 62.0 59.5 52.4 51.3 73.3 70.2 67.9 66.8 80.0 77.7 73.4 70.5

Table 3: Comparison of the predictive ability for novel datasets, where the
source model is trained on the Human3.6M [28], and the target is from the GRAB [63]
dataset. The average results are reported for each action category.

where the model is expected to adapt to a new subject or action category during
test-time, having been trained on the other subjects or categories. We compare
4 approaches of siMLPe [22] PGBIG [46], SPGSN [34], and H/P-TTP [12]—as
they achieve the better general prediction results than the others 3 approaches
under the experimental setup-1. The comparison results are provided in Table
2, which evaluates the average results of multiple multi-faceted adaptations for
all samples of each unseen subject or category. From the results, we observe that
the H/P-TTP and HoCoTTA achieve the better prediction, indicating that the
domain shift can be calibrated by the test-time adaptation. In addition, the pro-
posed HoCoTTA brings significant improvement over H/P-TTP, attributed to
the preservation of domain-invariant parameters during the continual test-time
adaptation phase, thereby avoiding error accumulation.

4.5 Predictive Ability for New Datasets

In this experiment, we tackle the most challenging scenario, where the target
data comes from a new dataset. Due to the distinct data acquisition conditions
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Fig. 3: Qualitative comparison: H/P-TTP [12] (top) v.s. our HoCoTTA (bottom).
The green-red skeleton denotes the ground truth, and the blue is the prediction. Impor-
tant details are highlighted in the purple box. It is clear that our HoCoTTA achieves
the closer result to the ground truth.

and environments, the distribution shift between the source and target data is
more significant than in the previous 2 experimental setups. Specifically, we train
the model on the Human3.6M [28], and then adapt it to the GRAB dataset [63],
referred to as experimental setup-3. Unlike the setup-1 and setup-2, the experi-
mental setup-3 is newly-introduced in our work, and the existing approaches are
not explicitly designed for this scenario. The GRAB dataset contains 26 action
sub-types, which are more diverse and complex than the Human3.6M dataset,
and we categorize them into 6 cases, according to the similarity of the action
types, including A1 passing, A2 eating, A3 drinking, A4 lifting, A5 on, and A6
squeeze. As shown in Table 3, the results of all 5 approaches are reported, where
the average performance of each time step across all target samples is evalu-
ated. Under the evidence of the results, we observe that the proposed approach
achieves the better performance than the other competitors. This superiority
mainly stems from that our HoCoTTA is able to isolate the domain-specific
knowledge and retain the cross-domain shared knowledge, which facilitates the
continual model adaptation to the various distribution of the new dataset.

Fig. 3 also illustrates a qualitative comparison of the wineglass-drink activity
under the experimental setup-3.

4.6 Ablation Studies

Here, we conduct the ablation studies to validate the effectiveness of the impor-
tant aspects in our HoCoTTA. All experiments are designed under the setup-3,
to consider the more challenging scene of adapting to a new dataset–GRAB [63].
Moreover, for simplicity, only the MPJPE metric is used.

We first investigate (1) the proposed isolated parameter update strat-
egy, which is the key to our HoCoTTA. From the Table 4(left), we observe that
the isolated parameter update strategy brings a major improvement in the pre-
diction performance, compared to the previous full parameter update strategy.

In continual TTA phase, the domain-sensitive parameters of student are up-
dated using the isolated parameter optimization strategy, with a learning rate
η. Then, with a momentum factor τ , the EMA strategy is used to update the
teacher network. To investigate (2) the impact of the learning rate η and
(3) momentum factor τ , we conduct the 2 ablation experiments, keeping the
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parameter update strategy 200 400 800 1000

full parameter update 25.7 39.4 75.3 127.0

isolated parameter update 23.6 36.9 70.7 119.2

η α 200 400 800 1000
0.0005 0.99 24.1 37.1 73.8 124.5

0.001
0.985 24.2 41.1 75.0 121.2
0.99 23.6 36.9 70.7 119.2
0.995 23.7 37.3 73.0 122.7

0.0015 0.99 25.5 40.6 73.2 124.5
Table 4: Effect of our isolated parameter update strategy (left), learning rate η, and
momentum factor α in the proposed HoCoTTA (right).

H τ -quantile 200 400 800 1000
16 0.2 24.7 41.1 73.4 123.4

0.15 24.0 38.2 73.1 122.1
24 0.2 23.6 36.9 70.7 119.2

0.2 25.6 37.0 73.6 123.2
32 0.2 23.2 37.4 72.0 120.3

λ1 λ2 200 400 800 1000
0.85 0.1 25.3 37.9 73.0 122.7

0.08 24.2 37.1 71.5 120.6
0.9 0.1 23.6 36.9 70.7 119.2

0.12 24.7 38.0 72.3 121.1
0.95 0.1 24.4 40.3 73.7 121.6

Table 5: Effect of our isolated parameter update strategy (left), learning rate η, and
momentum factor α in the proposed HoCoTTA (right).

other hyperparameters fixed. As reported in Table 4(right), the SoTA prediction
performance is obtained when η = 0.001 and τ = 0.99.

(4) Number of the novel-domain augmentations H has the signifi-
cance for accessing the model’s homeostasis. From Table 5, we observe the when
H = 24, the best result is achieved, and a lower value leads to the performance
degradation, and more augmentations bring no improvement.

(5) Top τ-quantile positions in FIM are treated as the domain-sensitive
parameter that needs to be isolated and updated in our continual TTA, and the
other parameters are preserved. To decide its value, we run an ablation analysis,
and the optimal value is found to be τ = 0.2, as in Table 5 (left).

In Table 5 (right), we analyze (6) the impact of the loss function weights
λ1 and λ2 in Eq. (9), finding a balanced performance when λ1 = 0.9 and λ2 = 0.1.

5 Conclusion

To sum up, this work introduces a novel framework, homeostasis continual test-
time adaptation (HoCoTTA), which tackles the challenging out-of-distribution
issue in dynamic deployment scenarios for 3D human pose forecasting. Before
making decisions, our HoCoTTA leverages the homeostasis assessment to eval-
uate the model’s uncertainty with respect to the novel domains, and is able
to estimate the domain-specific knowledge and isolate it from the cross-domain
shared knowledge. It facilitates to preserve the cross-domain shared knowledge
to eliminate the catastrophic forgetting, and avoid the error accumulation in
continual test-time adaptation. Experiments across various benchmarks show
the superior performance of our approach compared to state-of-the-art meth-
ods, particularly in the demanding scenario of adapting to a new dataset. These
findings underscore the practical significance and robustness of the proposed
HoCoTTA approach in the realistic scene.
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