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Appendix

A Algorithm of CloudFixer

We present the detailed algorithm of CloudFixer in Algorithm 1, which encom-
passes both the original input adaptation and the online model adaptation. It is
worth noting that the pre-trained diffusion model ϵθ is frozen and utilized solely
to acquire ŷ, guiding y back to the source domain.

Algorithm 1 CloudFixer

Require: Test instance x ∈ RN×3, Diffusion model ϵθ, Classifier fψ, Timestep schedule
(tmin, tmax), # of iteration S, Regularization scheduling λ(·), Learning rate scheduling
ηinput(·), ηmodel(·), # of nearest neighbor k, # of vote K
▷ Diffusion-Guided Input Adaptation
∆← 0, R← I, m← 0
while m < K do ▷ Conducted as batch processing

n← 0
while n < S do

y[m]← R(x+∆)
t, ϵ← U [tmin, tmax], N (0, I)
yt ← αty[m] + σtϵ
ŷ ← (yt − σtϵθ(yt, t))/αt
wi ← 1/

∑
j∈kNN(i) ∥xi − xj∥2, ∀i ∈ {1, . . . , N}

wi ← wi/
∑
j wj , ∀i ∈ {1, . . . , N}

Linput ← D(stopgrad(ŷ), y[m]) + λ(n)
∑
j wj∥δj∥

2
2)

(∆,R)← (∆,R)− ηinput(n)∇(∆,R)Linput ▷ AdaMax in our implementation
n← n+ 1

end while
m← m+ 1

end while
▷ Online Model Adaptation (CloudFixer-O. Optional)
o← 0,
while o < O do
Lmodel ←

∑K
m=1KL(fψ(x), fψ(y[m]))

ψ ← ψ − ηmodel(o)∇ψLmodel ▷ AdamW in our implementation
o← o+ 1

end while

B Originality and Advantages over DDA

While DDA [13] and CloudFixer both use diffusion models for input adaptation,
their core ideas and methods are distinct. DDA uses an iterative generative
process while preserving low-frequency information, whereas CloudFixer uses
a parameterized 3D geometric transformation guided by the source diffusion
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model. Consequently, DDA struggles with misalignment and structural corruption,
leading to significant performance differences, especially in BG and ROT. DDA
also requires more iterative steps and backpropagation through diffusion models,
making it over 25 times slower than CloudFixer (??). Last but not least, the
online model adaptation utilizing the consistency proposed by us is a distinctive
feature of our model, clearly distinguished by DDA.

C Limitations and Broader Impacts

Limitations One prevalent test-time corruption for 3D point clouds is occlusion,
where the input data is incomplete. When the source domain contains clean
point clouds and the target domain involves occluded point clouds, such domain
translation problem becomes a point cloud completion task. Since the pre-
trained diffusion model operates on normalized point clouds, and normalizing
severely occluded point clouds to be zero-centered with a unit standard deviation
results in a significant scale and center location shift for clean point clouds, this
presents a complex research problem. For example, in the case of an occluded
chair with only the backrest visible, the backrest’s scale may increase, shifting
downward and potentially causing misclassification as a monitor. Achieving
accurate translation for complete chairs requires substantial point movement.
However, since CloudFixer regularizes large steps, our model currently has
limitations in addressing this specific corruption type. Developing TTA methods
to effectively handle such corruption stands as a promising future research
direction.

Broader Impacts The increasing demand for computer vision, particularly in 3D
vision applications like autonomous systems and virtual reality, has stimulated
significant research into domain adaptation methods to address distribution
shifts. Test-time adaptation holds the potential to enhance the performance of 3D
perception models in autonomous systems, encompassing applications such as self-
driving cars, drones, and robotics. In this regard, the application of our method
allows for the translation of test data into a source domain format without the
need for source data in on-device settings, thereby conducting input adaptation.
This capability is poised to have a significant impact on the evolving field of
3D vision, fostering further growth in the field. We hope this research provides
valuable insights to the academic community and enhances the robustness of
point cloud recognition models in real-world scenarios.

D Reproducibility Statement

For reproducibility, we provide our implementation code in our github repository.
We supply the bash scripts scripts/train_dm.sh for training a diffusion model on
ModelNet40 and scripts/run_cloudfixer.sh for adaptation on ModelNet40-C using
CloudFixer and scripts/run_baselines.sh for adaptation on ModelNet40-C using

https://github.com/shimazing/CloudFixer/tree/main
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baselines, respectively. Our hyperparameter optimization results for TTA baselines,
which are elucidated in Appendix H can be found in cfgs/hparams. For a pair comparison
and to ensure reproducibility, we consistently set the random seed to 2 for all conducted
experiments. All hyperparameters and associated details are in our source code. Lastly,
checkpoints for ModelNet40 classifiers can be downloaded in the following links for each
architecture: Point2Vec, PointMLP, PointNeXt, and PointMAE. We refer readers to
README.md for the remaining details.

E Dataset Details

E.1 ModelNet40-C

Fig. J2 showcases 15 corruptions of ModelNet40-C [57] on which we conduct the ex-
periments. ModelNet40-C involves applying synthetic corruptions to the test set of
ModelNet40 which comprises 2468 point clouds of 40 classes. ModelNet40-C contains
broad corruption types categorized into three classes—density corruptions, noise cor-
ruptions, and transformation corruptions. For all experiments, we use severity level 5.
We refer the readers to the official repository.

E.2 PointDA-10

PointDA-10 [50] incorporates natural distribution shifts in real-world scenarios. This
dataset is originally proposed to serve as a benchmark for unsupervised domain adap-
tation by using two out of the three datasets—ModelNet [63], ShapeNet [7], and
ScanNet [10]—as the source and target domains. The benchmark is composed of 10
common classes shared across the three datasets. ModelNet and ShapeNet are syntheti-
cally generated from 3D CAD models, while ScanNet is created by scanning real-world
scenes. Their class distributions are not even but imbalanced. Examples are provided
in Fig. J3.

F Baseline Details

PL Pseudo-Labeling (PL) [28] conducts pseudo-labeling based on the model’s pre-
dictions and updates the model weights at test-time through cross-entropy loss. PL
involves two crucial test-time hyperparameters: learning rate and adaptation steps.

TENT Test ENTropy minimization (TENT) [59] is a test-time adaptation method in
which the model undergoes fine-tuning using an unsupervised loss with the objective of
reducing the prediction entropy of the model. TENT entails two important test-time
hyperparameters: learning rate and adaptation steps.

SHOT Source HypOthesis Transfer (SHOT) [31] is a fully test-time adaptation
method that employs unsupervised objectives such as entropy minimization, diversity
maximization, and self-supervised pseudo-labeling. It also updates the statistics of batch
normalization layers using the statistics of the test batch. SHOT incorporates three
critical test-time hyperparameters: learning rate, adaptation steps, and the pseudo-
labeling loss weight, to adjust the relative weight of the loss induced by self-supervised
pseudo-labeling.

https://github.com/kabouzeid/point2vec/tree/17f8ad80b78017f9fc74986a5b20f453abfca9b5
https://github.com/ma-xu/pointMLP-pytorch/tree/main
https://github.com/guochengqian/PointNeXt/tree/master
https://github.com/jmiemirza/MATE
https://github.com/jiachens/ModelNet40-C
https://github.com/jiachens/ModelNet40-C
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SAR Sharpness-Aware and Reliable entropy minimization (SAR) [44] utilizes entropy
minimization, but it excludes instances with high prediction entropy to prevent model
collapse and incorporates the Sharpness-Aware Minimization (SAM) [12], fostering the
model’s adaptation to flat minima. SAR has four essential test-time hyperparameters:
learning rate, adaptation steps, an entropy threshold to exclude adaptation from high
entropy samples, and an epsilon threshold employed in the calculation of sharpness in
SAM [12].

DUA Dynamic Unsupervised Adaptation (DUA) [41] is a test-time adaptation method
that focuses on calibrating batch normalization statistics. At the onset of test time,
all batch normalization layers are set to a trained state. For each incoming test batch,
the model undergoes multiple forward passes, iteratively updating batch normalization
statistics as moving averages. DUA utilizes two test-time hyperparameters: adaptation
steps and a decay factor, which dictates the rate at which the moving average progresses.

LAME Laplacian Adjusted Maximum-likelihood Estimation (LAME) [5] operates by
updating the model’s prediction output rather than the model parameters. It conducts
on a batch of given test data, adjusting the probabilities of similar samples in the feature
space to be similar when the original prediction probabilities for the test data batch
are provided. LAME is characterized by three crucial test-time hyperparameters: the
kernel affinity, used to define the kernel density function, the number of neighbors to be
regarded as similar, and the maximum number of steps for iterative output probability
optimization.

MEMO Marginal Entropy Minimization with One test point (MEMO) [67] is a
single-instance TTA technique. It utilizes multiple data augmentations to generate
multiple predictions for the test instance. Subsequently, it minimizes the entropy of
the average probability of these predictions. This approach not only achieves the effect
of traditional entropy minimization but also encourages similarity among predictions
from different viewpoints. MEMO is defined by three key test-time hyperparameters:
learning rate, adaptation steps, and the number of augmentations that can be applied
to each test instance.

DDA Diffusion-Driven Adaptation (DDA) [13] is a single-instance test-time adaptation
for 2D image classification tasks using a diffusion model, similar to our approach. DDA
is characterized by two essential test-time hyperparameters: guidance weight, which
determines the extent to which the original content is preserved, and the low-pass
filtering scale. Unlike our method, DDA is a generation-based method that employs
low-pass filtering in the reverse process to preserve class information after the forward
process. In contrast to this approach, our method achieves significantly faster execution
times by avoiding back-propagation through the diffusion model and delivers superior
performance by leveraging optimization-based techniques tailored for 3D tasks.

MATE MATE [42] is a test-time training approach for 3D point clouds, enhancing
deep network robustness in point cloud classification against distribution shifts. It
employs a masked autoencoder test-time objective, constructing batches of 48 from
single corrupted point clouds, randomly masking 90% of each sample, and fine-tuning
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the model using reconstruction loss. MATE efficiently adapts with minimal fractions of
points from each test sample, sometimes as low as 5%, making it lightweight for real-time
applications. However, MATE necessitates manipulation of the training procedure and
relies on the specific architecture of PointMAE for self-reconstruction.

G Further Implementation Details

Pre-processing Before passing point clouds to classifiers, we conduct zero centering
and scale it to a unit ball, adhering to the original configuration outlined in [60] for
each point cloud. In our pre-processing step for inputs of diffusion models, following
zero centering, we standardize the point clouds to achieve a unit variance following [66].

Pre-training Diffusion Models For 4 source datasets—ModelNet40-C, ShapeNet,
ModelNet, and ScanNet—we use the same setting as follows. We use the polynomial
noise scheduling used in [21] and set the total number of timesteps of the diffusion
model as T = 500. The diffusion model is trained for 5000 epochs on each dataset with
an exponential moving average (EMA) decay of 0.9999 and a batch size of 64.

Baselines For model adaptation methods (PL, TENT, SHOT, SAR, and MEMO),
we also update batch normalization statistics by initializing all layers to a trained
state at the onset of the inference phase. PL, TENT, and SAR exclusively fine-tune
the affine parameters of batch normalization statistics following the default settings
of previous works [44,59], while SHOT and MEMO optimize all parameters. For PL,
TENT, SHOT, and SAR, we configure all settings to be online, where the model is not
reset to the pre-trained state upon receiving the test batch. In contrast, for LAME,
MEMO, and DDA, we set all settings to be episodic, where the model is reset to the
pre-trained state every time a test batch is received. We adopt a standard batch size
of 64 for the online TTA baseline method, following common practice [31,59], unless
otherwise specified. Notably, our proposed method, CloudFixer, along with per-sample
TTA baselines (MEMO, DDA), can operate with a batch size of 1.

CloudFixer With regard to our input adaptation method, we employ a consistent
configuration across all datasets. We conduct 30 iterations of updates utilizing the
AdaMax optimizer [27] with a learning rate that linearly increases for 6 steps (20%
of warmup for total steps) from 0 to 0.2 and then linearly decreases to 0.01 for the
remaining steps. The timestep interval for the diffusion forward process is defined as
[tmin, tmax] with tmin = 0.02T and tmax = 0.12T . For the computation of weights wjj
to regulate δj , we designate the number of nearest neighbors as k = 5. For regularization,
λ(·) is initialized to 10 and cosine annealed to 1 for the 30 steps.

CloudFixer-O Under mild conditions, we propose to adapt model parameters as
well as inputs. Model adaptation is conducted in an online manner. With a batch size
of 64, we update models one time per batch using AdamW with a learning rate 10−5

and 10−4 on ModelNet40-C and PointDA-10, respectively. For each instance, we obtain
3 different transformations. Furthermore, we report the results of CloudFixer-O with
a batch size of 1 on ModelNet40-C using PointMAE. In this case, we update models
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Table H1: Hyperparameter search space of test-time adaptation baseline methods.

Method Hyperparameter Search Space
PL [28] learning rate: {10−4, 10−3, 10−2}, adaptation steps: {1, 3, 5, 10}
TENT [59] learning rate: {10−4, 10−3, 10−2}, adaptation steps: {1, 3, 5, 10}

SHOT [31]
learning rate: {10−4, 10−3, 10−2}, adaptation steps: {1, 3, 5, 10},
pseudo-labeling loss weight: {0, 0.1, 0.3, 0.5, 1}

SAR [44]
learning rate: {10−4, 10−3, 10−2}, adaptation steps: {1, 3, 5, 10},
entropy threshold: {0.2, 0.4, 0.6, 0.8}, epsilon threshold: {0.01, 0.05, 0.1}

DUA [41] adaptation steps: {1, 3, 5, 10}, decay factor: {0.9, 0.94, 0.99}

LAME [5]
kernel affinity: {rbf, kNN, linear}, # of neighbors: {1, 3, 5, 10},
max steps: {1, 10, 100}

MEMO [67]
learning rate: {10−6, 10−5, 10−4, 10−3}, adaptation steps: {1, 2},
# of augmentations: {16, 32, 64}

DDA [13] guidance weight: {3, 6, 9}, low pass filtering scale: {2, 4, 6}

one time per batch using AdamW with a learning rate 10−6. We use a smaller learning
rate because the update step increases as a batch size decreases. For each instance, we
obtain 48 different transformations following MATE [42].

H Hyperparameter Optimization

Due to the well-known sensitivity of hyperparameters in TTA methods [13, 44], we
conduct rigorous hyperparameter optimization when reproducing the baselines. As
optimizing hyperparameters for each test dataset is unfeasible in real-world scenarios,
we tune the hyperparameters of each TTA method using the original test set of the source
classifier. Generally, the batch size is a critical hyperparameter in test-time adaptation,
and while increasing it typically improves adaptation performance, it cannot be increased
indefinitely given the online nature of the practical test-time situations. Therefore, we
initially set the batch size to 64 following the standard setting [13,44]. Subsequently,
we optimize the hyperparameters of each method by conducting a random search with
a maximum iteration of 30. Our hyperparameter search space is reported in Table H1.

I Additional Experiments

I.1 Results for All Corruption Types Across Various Architectures

In this subsection, we present the adaptation results under mild conditions, employing
a batch size of 64 and i.i.d. test stream, which is an extension of the findings depicted in
??. We consider three additional architectures: PointMLP [38] in Table I1, PointNeXt
in Table I2, and PointMAE [45] in Table I3. Note here that we maintain the same
test-time hyperparameters used in the Point2Vec experiments. We find that CloudFixer
consistently shows its superiority regardless of architecture. Moreover, CloudFixer-O
also brings successful performance enhancement across diverse classifier architectures.

I.2 Ablation Study on All Corruption Types

In our main paper, we partially report the ablation studies through ?? due to space
constraints. We also show the ablation results on all corruptions of ModelNet40C in
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Table I1: Accuracy on ModelNet40-C using PointMLP under the mild conditions of
a batch size of 64 and an i.i.d. test stream except for DDA, MEMO, and CloudFixer
which operate with a batch size of 1.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 29.01 6.11 87.92 79.70 79.13 53.12 37.96 36.53 20.82 7.24 48.37 85.37 79.21 74.55 77.87 53.53

O
n
li
n
e

PL [28] 31.04 17.54 68.35 69.85 55.63 65.56 61.02 58.51 54.62 65.48 51.05 69.89 73.26 68.72 63.33 58.26

TENT [59] 50.36 31.69 88.82 85.58 85.25 84.89 80.11 85.01 80.63 78.08 80.79 87.32 85.13 85.41 85.90 78.33

SHOT [31] 44.53 31.32 80.06 79.09 77.51 74.23 74.84 73.14 72.85 71.84 77.19 78.53 78.00 79.70 79.86 71.51

SAR [44] 44.77 28.48 31.60 43.44 30.02 30.39 38.86 43.96 76.09 18.35 49.47 29.38 46.19 52.51 42.10 40.37

DUA [41] 47.29 30.43 88.74 84.56 83.79 82.62 78.65 81.56 78.28 67.99 76.09 85.98 83.55 83.23 84.20 75.80

E
p
is

od
ic LAME [5] 28.89 5.71 88.05 80.59 79.94 52.92 36.67 34.76 19.89 8.55 48.26 85.78 79.94 75.81 77.92 53.58

MEMO [67] 27.23 4.66 83.18 77.47 76.54 44.25 30.31 28.32 13.94 6.16 45.26 79.58 75.36 71.19 74.43 49.19

DDA [13] 37.56 26.13 88.70 80.55 84.44 88.86 86.26 87.16 82.17 26.13 51.46 84.36 81.28 82.25 84.16 71.43

CloudFixer 34.16 32.86 84.68 75.61 78.57 87.84 87.40 88.94 86.39 67.63 75.73 81.73 78.16 78.93 81.56 74.68

+ Voting (K = 3) 34.56 33.79 85.70 77.23 80.11 89.10 87.97 89.83 87.80 69.45 80.67 82.78 79.66 80.79 82.86 76.15

CloudFixer-O 44.69 38.65 88.25 82.78 84.97 90.40 89.18 89.91 90.32 82.66 85.33 85.98 83.47 85.86 87.56 80.67

Table I2: Accuracy on ModelNet40-C using PointNeXt under the mild conditions of
a batch size of 64 and an i.i.d. test stream except for DDA, MEMO, and CloudFixer
which operate with a batch size of 1.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 41.41 27.95 87.84 86.18 86.06 69.12 57.90 70.58 77.02 50.77 42.50 79.01 76.45 75.04 77.55 67.03

O
n
li
n
e

PL [28] 51.58 45.99 88.90 87.36 86.87 86.51 84.81 86.91 87.40 79.13 76.78 84.32 83.18 83.91 85.21 79.92

TENT [59] 49.68 44.85 89.22 86.91 87.20 85.25 84.08 85.45 86.83 76.50 70.66 82.74 81.73 82.41 83.51 78.47

SHOT [31] 54.13 50.28 88.90 87.24 87.20 83.55 82.86 86.51 85.58 80.27 77.96 83.10 84.85 84.16 84.52 80.07

SAR [44] 48.87 38.82 87.76 84.85 85.78 84.48 83.83 84.28 86.02 73.26 69.00 81.20 79.21 80.83 82.05 76.68

DUA [41] 49.35 44.45 88.90 87.20 87.64 84.93 83.71 86.18 86.75 76.82 70.54 82.94 81.69 82.70 83.87 78.51

E
p
is

od
ic LAME [5] 41.13 28.04 88.09 86.47 85.66 70.18 57.90 70.91 77.11 51.78 42.75 79.09 76.54 75.00 77.88 67.24

MEMO [67] 8.83 3.12 34.40 24.88 23.10 32.13 29.46 30.51 39.10 7.13 20.79 33.10 29.21 25.85 27.07 24.58

DDA [13] 41.41 37.84 90.11 85.13 87.76 89.55 89.06 88.98 90.32 58.43 45.06 78.00 79.29 82.01 82.86 75.05

CloudFixer 41.65 35.01 81.93 77.96 83.23 87.60 87.80 88.49 88.94 76.42 71.47 74.96 76.46 80.96 83.43 75.75

CloudFixer-O 44.81 41.69 86.14 83.79 85.41 89.63 89.99 89.71 91.09 85.13 81.73 81.24 80.51 84.76 86.63 80.15

Table I4. As in ??, the originally proposed setting, CloudFixer, achieves the best perfor-
mance on average even when considering all corruptions. Similar to the ablation study in
the main paper ??, this consistently validates the significant performance improvement
contributed by various components of CloudFixer, including geometric transformation
parameterization, objective function with chamfer distance, per-point regularization,
timestep range (tmin, tmax), voting mechanism, and online input adaptation, affirming
their optimality. However, we can observe that ablated settings demonstrate improved
performance in certain cases. For example, in the case of Shear (SH) corruption, utilizing
affine transformation instead of rotation yields the best performance. This observation
can be attributed to the original definition of Shear transformation which falls within
affine transformations.

I.3 Further Ablation Study on Distance Metrics

We propose using Chamfer distance as our distance metric between a point cloud
undergoing adaptation and an estimate from the diffusion model. This choice is motivated
by the unordered nature of the points in point clouds. The other possible choice is
to naively use squared ℓ2 distance which is used to train our diffusion model. We
present various adaptation examples in Fig. J1, using two different distance metrics.
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Table I3: Accuracy on ModelNet40-C using PointMAE under the mild conditions of
a batch size of 64 and an i.i.d. test stream except for MATE (bsz. 1), DDA, MEMO,
CloudFixer, and CloudFixer-O (bsz. 1) which operate with a batch size of 1.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 34.72 15.19 85.53 78.65 74.64 61.35 51.30 55.47 51.01 16.87 31.56 67.02 61.87 58.31 62.03 53.70

O
n
li
n
e

PL [28] 48.01 41.45 80.83 79.13 78.44 73.74 70.38 68.44 69.57 17.83 50.85 69.81 68.68 69.25 70.18 63.77

TENT [59] 47.53 41.82 82.58 79.94 79.34 74.15 73.38 69.65 69.49 17.30 51.26 71.39 69.08 70.62 71.27 64.59

SHOT [31] 55.71 50.16 73.66 72.33 71.35 70.71 67.34 66.73 67.10 14.59 53.36 64.71 65.11 68.31 67.75 61.93

SAR [44] 47.73 45.62 82.58 80.79 79.46 75.49 72.00 69.25 69.89 10.98 51.30 70.79 70.34 70.58 72.20 64.60

DUA [41] 50.85 45.83 84.76 83.14 82.70 77.88 75.24 73.46 73.01 19.17 55.79 74.31 72.89 73.54 75.41 67.87

MATE (bsz. 1) [42] 52.55 49.85 85.66 82.54 80.63 82.86 78.97 73.62 60.29 13.05 57.54 75.89 75.53 76.05 78.44 68.23

MATE (bsz. 64) [42] 55.06 48.87 87.24 83.31 83.87 80.55 76.42 69.57 60.78 21.35 59.72 79.29 77.67 78.93 80.19 69.52

E
p
is

od
ic LAME [5] 34.89 16.05 86.55 80.92 78.32 62.68 50.49 52.92 52.23 8.51 30.88 68.03 62.52 59.56 62.40 53.80

MEMO [67] 33.18 14.79 85.01 78.08 76.78 59.16 47.57 49.23 48.06 6.81 29.90 67.46 60.70 56.97 59.97 51.58

DDA [13] 39.91 37.07 87.07 79.70 81.16 87.60 87.20 88.09 85.13 19.89 38.37 69.98 70.83 73.70 76.30 68.13

CloudFixer 34.24 35.62 79.62 71.15 73.54 86.71 87.16 87.72 82.25 50.36 54.05 65.40 68.60 70.66 72.45 67.97

CloudFixer-O (bsz. 1) 47.53 48.95 85.01 81.52 83.31 88.41 88.98 88.25 88.41 59.44 75.36 75.49 78.48 84.08 84.76 77.20

CloudFixer-O (bsz. 64) 52.55 53.61 88.17 84.76 86.91 89.91 90.56 90.48 89.79 67.50 78.97 79.66 80.15 85.33 87.07 80.36

Table I4: Ablation study conducted on all corruptions of ModelNet40C involves
dissecting the core strategies in CloudFixer. This includes parameterization, objective,
displacement regularization, forward timesteps, voting, and online adaptation.

Setting
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 41.09 20.02 90.03 86.51 83.91 63.41 49.68 66.25 38.33 37.68 47.04 79.29 75.97 74.68 77.51 62.09

No Parameterization 41.49 39.02 87.96 80.75 82.13 91.21 90.92 91.73 91.81 75.64 49.79 77.63 78.16 80.87 83.42 76.17

Rotation → Affine 40.07 37.88 86.83 79.70 82.50 90.15 89.91 90.11 87.16 74.96 66.05 84.32 78.32 82.66 83.59 76.95

Squared ℓ2 40.92 37.12 90.40 84.04 83.71 84.93 82.90 88.29 71.80 76.34 78.93 81.36 76.94 80.23 82.70 76.04

Diffusion Loss 39.87 33.14 84.36 76.09 73.70 88.21 87.40 82.13 86.95 39.10 59.08 75.97 71.03 70.46 72.08 69.30

No Reg. 36.59 36.26 74.11 64.02 73.26 87.76 87.32 87.84 85.17 61.30 55.71 63.21 69.00 79.05 79.86 69.36

Uniform Reg. 41.61 39.30 89.10 82.62 84.68 91.05 90.56 84.68 87.80 48.82 80.02 79.90 79.34 83.87 85.62 76.60

t ∼ U [0.01T, 0.02T ] 41.05 21.03 89.67 83.35 82.86 86.10 83.39 81.36 84.93 54.09 58.79 80.19 45.71 40.07 40.68 64.88

t ∼ U [0.4T, 0.5T ] 26.34 17.06 45.34 42.54 48.10 55.71 54.98 62.28 38.61 58.14 60.01 51.82 36.71 37.16 39.22 44.93

CloudFixer 41.00 38.82 87.32 80.27 83.06 91.09 90.52 90.76 89.06 75.49 81.04 78.28 78.73 82.98 85.09 78.23

+ Voting (K = 5) 41.00 38.90 88.05 80.55 84.16 91.45 91.29 91.98 89.79 76.58 83.51 79.38 79.70 84.12 85.90 79.09

CloudFixer-O 46.39 44.94 90.92 84.76 86.99 91.94 91.86 91.82 92.14 74.92 85.98 83.83 82.09 86.30 87.40 81.49

The adapted results with Chamfer distance consistently appear to be clearer than the
others. This indicates considering the nature of point clouds is important for stable
adaptation.

I.4 Comparison with Data Augmentation

In this section, we compare CloudFixer with data augmentation strategies, which
are commonly used in domain generalization. Domain generalization methods like
MetaSets [22] might be effective for specific shifts like sim-to-real transfer, but they
heavily rely on presumed augmentations, limiting efficacy in TTA scenarios with ar-
bitrary target domains. Besides, CloudFixer operates at test time, complementing
rather than competing with train time domain generalization. MetaSets’ augmentations
improve Point2Vec on ModelNet40-C (Avg.) from 62.09% to 68.75%, notably enhanc-
ing ‘Density Corruptions’ (e.g ., OC: 41.09% to 61.46%), but show no improvement
for ‘Transformation Corruptions.’ CloudFixer-O further improves the performance to
83.05%, handling corruptions MetaSets could not, showing domain generalization and
ours are complementary.
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Table I5: Accuracy on ModelNet40-C using Point2Vec under the mild conditions of
a batch size of 64 and an i.i.d. test stream except for MetaSets [22], CloudFixer, and
CloudFixer-O.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 0.4109 0.2002 0.9003 0.8558 0.8391 0.6341 0.4968 0.6625 0.3833 0.3768 0.4704 0.7929 0.7597 0.7468 0.7751 0.6203

MetaSets [22] 0.6146 0.5057 0.9340 0.9263 0.9246 0.8132 0.6852 0.7459 0.5466 0.1102 0.4413 0.8006 0.7703 0.7318 0.7626 0.6875

+ CloudFixer 0.5239 0.4976 0.8995 0.9024 0.9109 0.9105 0.9080 0.9157 0.9055 0.6451 0.8148 0.7950 0.7978 0.8278 0.8359 0.8060

+ CloudFixer-O 0.5474 0.5255 0.9015 0.8991 0.9125 0.9169 0.9182 0.9141 0.9169 0.7098 0.8630 0.8416 0.8432 0.8716 0.8764 0.8305

I.5 Efficacy on Adversarial Attack

Another potential application of CloudFixer is its effectiveness in countering adversarial
attacks. To this end, we compare the adaptation performance for adversarial examples
generated using the projected gradient descent method [39] on an original clean test
set of ModelNet40 using PointMLP in Table I6. The adversarial attack utilized a step
size of 4 · 10−3 over 30 steps, with a bound of 0.16 for each coordinate, where both
the step size and the bound are measured as ℓ∞ distance. We could compare with
adversarial robustness-focused methods, but they often require specialized training.
Since our primary focus is on TTA, we opt to compare with TTA methods. Some TTA
methods such as TENT, SAR, and LAME fail to recover performance significantly.
However, CloudFixer demonstrates substantially higher performance compared to other
benchmarks, achieving accuracy levels close to the oracle. This underscores the reliability
of CloudFixer in test scenarios where natural distribution shifts may occur or unintended
attacks may arise.

Table I6: Accuracy of various test-time adaptation methods under adversarial at-
tacks [39] on the original clean test set of ModelNet40 using PointMLP. We further
provide the clean (oracle) accuracy without any adversarial attacks.

Method Accuracy
Clean (Oracle) 93.84
Adversarial 11.30
PL 42.34
TENT 16.29
SHOT 35.25
SAR 11.59
DUA 15.68
LAME 11.26
MEMO 13.49
DDA 39.18
CloudFixer 79.58

J Adaptation Examples

We visualize originally corrupted and translated examples using CloudFixer on ModelNet40-
C from Fig. J4 to J6. These examples provide additional qualitative analysis, confirming
that for various severe corruption types, CloudFixer can truly translate the input point
clouds to a clean source domain.
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Unadapted Squared Dist. Chamfer Dist. Unadapted Squared Dist. Chamfer Dist.

Fig. J1: Qualitative analysis of the ablation study on distance metrics with illustrative
examples.

Occlusion LiDAR Density Inc. Density Dec. Cutout

Uniform Gaussian Impulse Upsampling Background

Rotation Shear Distortion RBF Inv. RBF

Fig. J2: An illustrative example depicting 15 distinct corruption types—Occlusion,
LiDAR, Density Inc., Density Dec., Cutout, Uniform, Gaussian, Impulse, Upsampling,
Background, Rotation, Shear, Distortion, RBF, Inv. RBF—for a single original point
cloud associated with the dresser class in the test set of ModelNet40-C.
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Fig. J3: An illustrative example showcasing 10 different classes—Bathtub, Bed, Book-
shelf, Cabinet, Chair, Lamp, Monitor, Plant, Sofa, Table—in PointDA-10.
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Fig. J4: Comparison between the corrupted and adapted point clouds following the
application of CloudFixer to 15 different corruption types. The example pertains to a
single original point cloud belonging to the desk class in the test set of ModelNet40-C.
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Fig. J5: Comparison between the corrupted and adapted point clouds following the
application of CloudFixer to 15 different corruption types. The example pertains to a
single original point cloud belonging to the table class in the test set of ModelNet40-C.
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Fig. J6: Comparison between the corrupted and adapted point clouds following the
application of CloudFixer to 15 different corruption types. The example pertains to a
single original point cloud belonging to the monitor class in the test set of ModelNet40-
C.
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