
CloudFixer:
Test-Time Adaptation for 3D Point Clouds

via Diffusion-Guided Geometric Transformation

Hajin Shim1,2∗ Changhun Kim1,3∗ Eunho Yang1,3

1Korea Advanced Institute of Science and Technology (KAIST), South Korea
2Samsung Advanced Institute of Technology (SAIT), South Korea

3AITRICS, South Korea
{shimazing, changhun.kim, eunhoy}@kaist.ac.kr

Abstract. 3D point clouds captured from real-world sensors frequently
encompass noisy points due to various obstacles, such as occlusion, limited
resolution, and variations in scale. These challenges hinder the deployment
of pre-trained point cloud recognition models trained on clean point
clouds, leading to significant performance degradation. While test-time
adaptation (TTA) strategies have shown promising results on this issue
in the 2D domain, their application to 3D point clouds remains under-
explored. Among TTA methods, an input adaptation approach, which
directly converts test instances to the source domain using a pre-trained
diffusion model, has been proposed in the 2D domain. Despite its robust
TTA performance in practical situations, naively adopting this into the
3D domain may be suboptimal due to the neglect of inherent properties of
point clouds, and its prohibitive computational cost. Motivated by these
limitations, we propose CloudFixer, a test-time input adaptation method
tailored for 3D point clouds, employing a pre-trained diffusion model.
Specifically, CloudFixer optimizes geometric transformation parameters
with carefully designed objectives that leverage the geometric properties
of point clouds. We also substantially improve computational efficiency by
avoiding backpropagation through the diffusion model and a prohibitive
generation process. Furthermore, we propose an online model adaptation
strategy by aligning the original model prediction with that of the adapted
input. Extensive experiments showcase the superiority of CloudFixer over
various TTA baselines, excelling in handling common corruptions and
natural distribution shifts across diverse real-world scenarios. Our code
is available at https://github.com/shimazing/CloudFixer.

1 Introduction

Recent advancements in 3D vision have established point clouds as expressive
representations of the natural world [16], enabling lots of applications ranging
from autonomous driving [8] to augmented reality [3]. These advancements have
been achieved by the development of various deep neural networks tailored for
* Equal contribution.

https://orcid.org/0000-0002-0116-3237
https://orcid.org/0009-0003-4930-6908
https://orcid.org/0000-0003-2188-0169
https://github.com/shimazing/CloudFixer

2 Shim et al.

point cloud recognition [1, 45,47,48,60]. These models are primarily trained on
well-curated clean benchmark datasets; however, in real-world scenarios, point
clouds collected from physical devices, such as LiDAR sensors, often encompass
noisy points due to multiple factors, including occlusion, fluctuation in scale and
density, limited resolution, and vibration or motion of the capturing devices. The
distribution mismatch between the source and target domain presents challenges
in deploying point cloud recognition models to real-world applications, as any
misinterpretation of this data could potentially lead to catastrophic consequences.

To address distribution shift problems, a novel approach called test-time

Fig. 1: Accuracy of
TENT [59] and Cloud-
Fixer across different
batch sizes and label
distributions (Random
Order vs. Class Order).

adaptation (TTA) [5,13,15,25,28,31,33,41,42,44,58,
59, 67] has recently emerged to adapt a pre-trained
model to an arbitrary target domain during the infer-
ence phase in an unsupervised manner. Despite the
abundance of TTA research in 2D vision and the ne-
cessity for developing effective TTA approaches for
the 3D domain, there has been only limited investi-
gation into TTA methods for 3D point clouds [42].
Furthermore, we unveil upon comprehensive investiga-
tion that naively applying conventional 2D test-time
model adaptation approaches does not yield enough
performance gain; this issue is particularly pronounced
in realistic scenarios with constraints like limited batch
sizes, temporally correlated test streams, and label dis-
tribution shifts, as depicted in Fig. 1. It is primarily
attributed to the heavy reliance on unstable model
predictions while underscoring the necessity for novel
TTA approaches over conventional model adaptation
methods.

In response, a method called DDA [13] was proposed to address these issues
in the 2D vision domain. Instead of adapting model parameters to fit the target
domain, DDA adapts the input to match the source domain using the domain
translation capabilities of a pre-trained diffusion model [9, 40]. This involves
forward process of adding Gaussian noise to an image, followed by iterative
reverse process that aligns the image to the source domain while preserving
overall shape integrity. Its per-sample basis manner operation robustness in real-
world scenarios, such as limited batch sizes, temporally correlated test streams,
and label distribution shifts. However, transitioning DDA to the 3D domain may
be suboptimal due to its oversight of the geometric properties of point clouds
and its prohibitive computational cost for real-time applications.

Motivated by these limitations, we introduce CloudFixer, a test-time input
adaptation method tailored for 3D point clouds, leveraging a pre-trained diffusion
model. Specifically, adaptation is achieved through optimization steps learning
rotation matrix parameters and point displacements guided by the source diffusion
model. We also suggest a per-point regularization weight for flexibility with noisy
isolated points while preserving core information. To address computational costs,

CloudFixer 3

our update procedure ensures that the diffusion model performs only a forward
pass without backpropagation during adaptation. While our primary focus is
achieving robust test-time adaptation in realistic scenarios via instance-wise
input adaptation, we further propose an online model adaptation technique,
minimizing a consistency loss to align class predictions of adapted and original
inputs. Our experiments demonstrate that CloudFixer achieves state-of-the-art
performance in various distribution shift scenarios, encompassing common and
realistic corruptions in the ModelNet40-C [57] benchmark and natural distribution
shifts in PointDA-10 [50]. To summarize, our contributions are threefold:

– We propose CloudFixer, which is the first test-time input adaptation strategy
tailored for 3D point clouds, proposing domain-specific parameterization and
objective, harnessing pre-trained diffusion models.

– CloudFixer is well-suited for real-time 3D applications as it requires neither
backpropagation through the diffusion model nor an excessive generation
process, enabling it to adapt a single instance in less than 1 second.

– Through extensive experiments, we demonstrate that our method achieves
state-of-the-art performance across diverse distribution shift scenarios, en-
compassing common corruptions and natural distribution shifts.

2 Related Work

Domain Adaptation and Generalization on Point Clouds Given the
frequent exposure of point clouds to distribution shifts in real-world scenarios,
various domain adaptation and generalization strategies have been proposed.
A significant branch involves unsupervised domain adaptation (UDA) [2, 4, 6,
11, 50, 54, 70]. These methods aim to achieve compatible performance on the
target domain by leveraging labeled source data and unlabeled target data. They
typically employ unsupervised objectives, such as pseudo-labeling [11], and self-
supervised tasks that predict the geometric properties [2,4,6,50,54,70]. Another
big category is domain generalization (DG) [29,61,61,64]. These primarily involve
adversarial learning or explicit feature alignment across multiple domains [23,
61,64] and utilize data augmentation methods [29]. Despite showcasing decent
performance gains, these methods have inability to operate in cases where source
data is inaccessible due to privacy or storage concerns.

Test-Time Adaptation Test-time adaptation (TTA) [5, 13, 15, 25, 28, 31, 33,
41,42,44,58,59,67] strategies have emerged to address limitations in UDA/DG.
These methods aim to adapt pre-trained models from a source to an arbitrary
target domain on the fly, utilizing only unlabeled target data without access to
source data. TTAs are typically categorized as follows. Firstly, fully TTA [25,28,
31, 44, 59, 67] involves training the model unsupervisedly, leveraging self-training
on the unlabeled target dataset. Secondly, test-time training [33,42,58] entails
training the model with both the main objective and an additional self-supervised
task and utilizing this self-supervision for adaptation during inference. Next,

4 Shim et al.

batch-norm statistics calibration methods [15,32,41,65] update statistics of batch
normalization layers using test instances to estimate unbiased normalization
statistics of target domain. In contrast, our approach diverges from these methods
by projecting input instances into the training data regime as [13] using a pre-
trained diffusion model on the source domain tailored for point clouds.

Diffusion Models Diffusion models [19, 55, 56], which approximate the reverse
of the diffusion process to learn the training manifold, have gathered significant
attention as prominent generative models. They have been widely used in various
domains, including 2D/3D vision [24,34,51–53,66,69], videos [18,20,26], and lan-
guages [14,30]. For 3D point clouds, several diffusion models have been proposed,
especially for generation [21,35,69], completion [36,37], and manipulation [66].
Diffusion models exhibit remarkable abilities in translating the domain of given
inputs to the source domain. For example, ILVR [9] accomplishes domain trans-
lation by iteratively generating an image while preserving the low-pass filtering
results, and SDEdit [40, 68] dilutes the reference image of a different domain
through a forward process, projecting it into the latent space where the two
domains intersect. Instead of these, we adopt an optimization-based method [46],
while acknowledging the unique characteristics of point clouds.

3 Preliminary

3.1 Problem Setup

Let q(x) be a source distribution of point clouds x ∈ RN×3 consisting of N points
for training dataset Ds = {(xsi , csi)}i in pairs of point clouds and class labels, and
fψ(x) ∈ RC be a C-class classification model trained on Ds. Given unlabeled
target domain Dt = {xti}i under distribution shifts, i.e., xti ̸∼ q(x), our test-time
input adaptation aims to achieve robust prediction performance under distribution
shifts. Existing TTA methods usually adapt the model fψ by optimizing ψ using
self-training, based on the prediction on test instances or replacing the statistics
in normalization layers with those of test examples [31, 44, 59, 67]. Instead, we
leverage the domain translation ability of a pre-trained diffusion model to directly
transform the input into the source domain.

3.2 Diffusion Models

Diffusion models [19, 55, 56] are generative models that estimate the reverse
process of the diffusion process to generate the data x0 ∼ q(x0) by gradually
denoising random noise xT ∼ N (xT ; 0, I). For each timestep t = 0, · · · , T , the
marginal distribution of xt given x0 is defined as q(xt|x0) = N (xt;αtx0, σ

2
t I),

where αt strictly decreases from 1 to 0 as t increases, and σt =
√

1− α2
t . The

models are trained for pθ(xt−1|xt) to approximate q(xt−1|xt, x0) by minimizing

Ldiff(θ) = Ex0∼q(x0),ϵ∼N (0,I),t

[
w(t)∥ϵθ(xt, t)− ϵ∥22

]
,

CloudFixer 5

Fig. 2: CloudFixer is an optimization-based diffusion-guided input adaptation, tailored
for 3D point clouds. CloudFixer iteratively optimizes geometric transformation parame-
ters ϕ for x to minimize the Chamfer distance between a parameterized point cloud
yϕ and the estimation ŷ from the diffusion model, aligned with the source domain.
A distorted input point cloud x, leading to a misclassification, is transformed into
yϕ∗, correcting its prediction. Additionally, online model adaptation minimizes the
KL-divergence between class predictions of the original and adapted point clouds.

where w(t) is a weight function of timestep t, xt = αtx0 + σtϵ is the forwarded
input, and the parameterized model ϵθ(·, t) is to predict truly injected Gaussian
noise ϵ in the forward process. With the estimated noise, we can estimate the
original data point x̂0 from xt as follows:

x̂0 =
xt − σtϵθ(xt, t)

αt
.

Here, ϵθ(xt, t), which approximates −σt∇xt
q(xt) allows us to obtain the direction

to move from a noised input towards the data distribution. When x0 is not from
the source domain but from another shifted domain, the disparity between the
estimation and the data point serves as guidance toward the source domain.

4 Proposed Method: CloudFixer

In this section, we introduce CloudFixer, which is a per-sample diffusion-guided
test-time input adaptation strategy tailored for 3D point clouds. We outline our
input adaptation and an optional online model adaptation methods in Section 4.1.
Following this, we cover the details of components of CloudFixer in Section 4.2
and 4.3. The overall procedure is depicted in Algorithm 1 in Appendix A.

4.1 Overview

CloudFixer directly aligns the distribution shift of a given test instance with
the source domain, leveraging the knowledge of the pre-trained diffusion model
pθ(x) on the source domain. A straightforward domain translation using the

6 Shim et al.

diffusion model is a generation-based method, where data points undergo a
forward process, mapping them to a noisy latent space at time t, followed by a
denoising process [9, 13,40,68]. However, at larger timestep t, there is a risk of
losing class information, while a small t may not provide sufficient translation.

Building upon the limitations above, we propose novel optimization-based
geometric transformation with diffusion guidance (upper part of Fig. 2) as follows.
First, we define geometric transformation yϕ(x) parameterized by ϕ of a test
input x. ϕ is initialized for yϕ(x) to be same as x. We iteratively update ϕ with
diffusion guidance. In each iteration, we randomly sample t from U [tmin, tmax]
and conduct a forward process from yϕ(x) to yt. Subsequently, we obtain the
estimation of the denoised point cloud ŷ from the pre-trained diffusion model ϵθ.
Since the diffusion model is trained on the source domain, ŷ transitions from yϕ
to the source domain. Therefore, we can utilize yϕ as a supervision to update
ϕ. Through this iterative optimization, we can effectively encourage stable and
gradual translation of shifted test instances into the source domain.

Although our primary focus is on input adaptation, we further extend Cloud-
Fixer to include online model adaptation (CloudFixer-O) to enhance adaptation
performance under conditions where enough batch size and an independent and
identically distributed (i.i.d.) distributions are ensured. Specifically, we introduce
a task that aligns the class distribution predictions of the original x and the trans-
formed yϕ∗ (lower part of Fig. 2). This approach facilitates domain adaptation
by establishing a correlation between source and target domains, mitigating the
need for uncertain information like pseudo-labels as long as the diffusion-guided
transformation is valid.

4.2 Diffusion-Guided Input Adaptation

Parameterization of Geometric Transformation yϕ We set the parameters
ϕ = (R,∆) for transforming the given input x as yϕ(x) = (x + ∆)R⊤ where
R ∈ R3×3 is a rotation matrix and ∆ ∈ RN×3 is a displacement matrix of all N
points whose j-th row δ⊤j corresponds to each point j. We include the rotation
transformation R because misalignment is a common test-time corruption of
point clouds. Furthermore, the simple per-point displacement ∆ is to allow
flexible transformation in response to various distribution shifts. Note here that
the rotation matrix R = [r1; r2; r3] is further parameterized by a 6D vector
(a1, a2) ∈ R3 ×R3 to satisfy the condition of rotation matrices, as derived by the
following operation as in [17]:

r1 =
a1
∥a1∥2

, r2 =
u2
∥u2∥2

, u2 = a2 − (r1 · a2)r1, and r3 = r1 × r2.

Objective As we mentioned in Section 3.2, a pre-trained diffusion model provides
guidance toward the source domain of the noised input. For each iteration, after
perturbing yϕ with the forward process at time t as yt = αtyϕ + σtϵ, we estimate
the denoised point cloud ŷ = (yt − σtϵθ(yt, t))/αt. The estimation moves from
yϕ towards the source domain by the diffusion model. Therefore, we update

CloudFixer 7

the parameters to reduce the distance D between yϕ and the diffusion model’s
estimation ŷ as follows:

ϕ← ϕ− η
(
∇yϕD(ŷ, yϕ)

∂yϕ
∂ϕ

+ λ∇ϕReg(ϕ)
)
, (1)

where η is a learning rate. When the distance is the square of ℓ2 distance
∥y − yϕ∥22, this update is equivalent to the Score Distillation Sampling (SDS)
loss [46] up to the scaling of each timestep t. However, we observe that optimizing
this objective does not lead to a stable convergence towards the source domain.
Instead, by leveraging the characteristic of point clouds as unordered sets, we
use the Chamfer distance to account for the permutation-invariant nature of 3D
point clouds defined as follows:

D(x, y) =
1

|x|

|x|∑
i=1

min
j

∥∥∥x(i)− y(j)∥∥∥2
2
+

1

|y|

|y|∑
j=1

min
i

∥∥∥x(i)− y(j)∥∥∥2
2
,

where x(i) and y(j) are 3D coordinates of point i and j of x and y, respectively. It
is worth noting that in CloudFixer, the diffusion model is used solely for predicting
ŷ for the supervision of yϕ, and it does not involve backpropagation through the
diffusion model. This stands in stark contrast to the 2D input adaptation-based
TTA method DDA [13], which requires backpropagation through the diffusion
model for guidance. This key difference is crucial, especially in the 3D domain
where efficiency is essential. The originality of CloudFixer compared to DDA is
summarized in Appendix B.

Regularization To simply regulate excessive changes in the point cloud, we
introduce a novel regularization objective by penalizing the squared norm of the
displacement δj for each point j, as Reg(∆) =

∑
j wj ||δj ||

2
2. Here, for each point,

we calculate weights {wj}j by taking the inverse of the average distance to its
k-nearest neighbors, providing greater flexibility for noisy isolated points.

Voting Due to the stochasticity of the input adaptation, we can obtain K
different transformations {yϕj

(x)}Kj=1 of a given input x. We enhance classification
performance by averaging the multiple predictions

∑
j fψ(yϕj

)/K, where fψ(·) ∈
[0, 1]C is a model prediction of class probability.

4.3 Online Model Adaptation

We extend CloudFixer to its online version, CloudFixer-O, by introducing a
model adaptation process that incorporates the adapted inputs {yϕj (x)}Kj=1 as
well as the original x. We perform an M -step update on the model except for a
classification head by minimizing the KL-divergence between the class probability
distribution of the test input x and its adapted inputs {yϕj

} as follows:

min
ψ

K∑
j=1

KL
(
fψ(x)

∣∣∣fψ(yϕj (x)
))
,

8 Shim et al.

where fψ(·) ∈ [0, 1]C is model prediction of class probability. Intuitively, our
objective guides the feature encoder of the classifier to extract class information,
disregarding shifted features, by aligning the class prediction of the test input
with the source-closer adapted input.

5 Experiments

This section rigorously and thoroughly demonstrates the empirical efficacy of
CloudFixer. We begin by providing a detailed description of our experimental
setup in Section 5.1, followed by an elucidation of the fundamental research
questions as follows: Does CloudFixer consistently outperform baselines under
challenging yet realistic scenarios such as limited batch size, temporally correlated
test streams, and label distribution shifts, as well as under mild conditions across
various benchmarks and classifier architectures? (Section 5.2 and Section 5.3)
Do the components of CloudFixer truly contribute to performance enhancement,
and are they optimal choices? (Section 5.3) Moreover, when visualized, does
CloudFixer genuinely transform point clouds into the desired source domain?
Does CloudFixer demonstrate strengths in computational efficiency (Section 5.4)
and hyperparameter sensitivity (Section 5.4), which can be pivotal at test time?

5.1 Experimental Setup

Datasets We evaluate our method on ModelNet40-C [57] which includes the
various types common corruptions of ModelNet40 [62]. It suggests 15 common
and realistic corruptions that are categorized into 3 types—density, noise, and
transformation. We abbreviate the corruption names as follows: OC (Occlusion),
LD (LiDAR), DI (Density Inc.), DD (Density Dec.), CO (Cutout), UNI (Uniform
noise), GAU (Gaussian noise), IP (Impulse), US (Upsampling), BG (Background
noise), ROT (Rotation), SH (Shear), FFD (Distortion), RBF (Distortion with
RBF Kernel), and IR (Distortion with Inverse RBF Kernel). We also utilize
a domain adaptation benchmark, PointDA-10 [50], which provides natural dis-
tribution shifts of sim-to-real and vice versa by pairing two out of the three
datasets—ModelNet [63], ShapeNet [7], and ScanNet [10]—as the source and tar-
get domains. ModelNet and ShapeNet are generated from 3D CAD models, while
ScanNet is created by scanning real scenes. Further details are in Appendix E.

Model Architectures For classifiers, we employ Point2Vec [1], which has
demonstrated notable success on ModelNet40 [62], as a classifier backbone for
ModelNet40-C, by using a publicized checkpoint in the official repository. We
additionally evaluate CloudFixer’s performance on PointMLP [38], PointNeXt [49],
and PointMAE [45]. For PointDA-10, we use DGCNN [60], which serves as the
backbone for most UDA works, and manually train it for each of the three
datasets. As a diffusion model, we adopt base40M-uncond from Point-E [43] in
Point-E repository and manually train it on each source dataset.

https://github.com/jiachens/ModelNet40-C
https://github.com/kabouzeid/point2vec
https://github.com/openai/point-e/tree/main

CloudFixer 9

Table 1: Accuracy on ModelNet40-C with a limited batch size of 1 using Point2Vec.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 41.09 20.02 90.03 86.51 83.91 63.41 49.68 66.25 38.33 37.68 47.04 79.29 75.97 74.68 77.51 62.09
O

n
li
n
e

PL [28] 30.11 4.38 91.65 88.82 85.74 88.78 5.88 80.83 4.70 5.02 30.92 83.71 81.32 82.17 83.91 56.53

TENT [59] 4.05 4.05 5.27 4.29 5.55 4.38 4.05 3.89 4.05 4.05 4.05 4.17 4.05 4.05 4.42 4.29

SHOT [31] 4.01 4.05 4.05 4.05 4.09 4.05 4.05 4.01 4.01 4.05 4.05 4.05 4.05 4.05 4.05 4.04

SAR [44] 16.37 5.71 90.44 83.43 83.47 81.40 73.10 32.17 14.83 24.03 19.73 77.51 75.93 76.54 78.04 55.51

DUA [41] 41.37 20.26 89.71 86.10 83.71 62.56 49.64 65.68 37.48 36.95 47.37 79.58 75.57 73.70 77.23 61.79

E
p
is

od
ic LAME [5] 40.96 20.50 90.19 85.70 84.16 63.57 49.92 66.25 38.33 37.32 47.04 79.34 75.24 74.72 77.59 62.06

MEMO [67] 46.27 36.67 90.76 82.94 81.77 79.90 76.18 80.88 70.91 32.94 63.57 79.74 79.21 78.28 81.16 70.75

DDA [13] 42.67 36.30 89.26 83.10 84.44 90.44 89.38 90.76 86.26 53.69 49.68 78.69 77.43 80.71 82.78 74.37

CloudFixer 41.00 38.82 87.32 80.27 83.06 91.09 90.52 90.76 89.06 75.49 81.04 78.28 78.73 82.98 85.09 78.23

+ Voting (K = 5) 41.00 38.90 88.05 80.55 84.16 91.45 91.29 91.98 89.79 76.58 83.51 79.38 79.70 84.12 85.90 79.09

Table 2: Accuracy on ModelNet40-C with temporally correlated non-i.i.d. test stream
using Point2Vec, where the test set is sorted based on label order.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 41.33 14.22 90.15 75.20 75.93 63.01 50.32 67.06 37.60 36.75 47.61 79.05 75.45 74.68 77.39 60.38

O
n
li
n
e

PL [28] 16.69 11.43 24.03 21.88 20.14 20.83 19.77 20.10 18.64 9.76 16.90 22.45 20.75 21.03 20.62 19.00

TENT [59] 12.16 8.59 16.61 16.33 14.26 14.55 14.75 14.91 14.55 6.24 8.35 10.25 11.51 15.92 13.01 12.80

SHOT [31] 12.16 8.59 16.61 16.33 14.26 14.55 14.75 14.91 14.55 6.24 8.35 10.25 11.51 15.92 13.01 12.80

SAR [44] 16.61 10.86 23.78 20.79 20.58 20.79 19.00 18.68 17.79 9.85 17.26 22.29 21.07 20.79 20.75 18.73

DUA [41] 19.29 13.49 26.86 24.96 23.74 24.11 22.53 23.10 21.23 12.12 19.21 24.68 23.62 23.70 22.49 21.68

E
p
is

od
ic LAME [5] 43.52 14.14 95.38 84.44 84.76 70.46 53.12 73.22 40.92 41.45 51.34 86.14 83.75 81.48 84.64 65.92

MEMO [67] 40.76 20.38 90.28 85.90 84.00 62.40 49.23 65.68 37.52 36.67 47.16 79.05 75.32 74.43 77.47 61.75

DDA [13] 42.67 36.30 89.26 83.10 84.44 90.44 89.38 90.76 86.26 53.69 49.68 78.69 77.43 80.71 82.78 74.37

CloudFixer 41.00 38.82 87.32 80.27 83.06 91.09 90.52 90.76 89.06 75.49 81.04 78.28 78.73 82.98 85.09 78.23

Baselines To compare CloudFixer with existing TTA methods, we implement
nine TTA baselines: PL [28], TENT [59], SHOT [31], SAR [44], DUA [41],
LAME [5], MEMO [67], DDA [13], and MATE [42]. The details of these baselines
are in Appendix F. They represent diverse TTA categories, including test-time
training [42], fully test-time adaptation [28,31,44,59,67], batch-norm statistics
calibration [41], input adaptation [13], and output adaptation [5]. Notably, we
extend DDA [13] to the 3D domain by using farthest point sampling instead of
low-pass filtering with the chamfer distance for regularization. MATE [42] is the
only test-time training method tailored for 3D point clouds.

Implementation Details We conduct zero centering and scale each point cloud
to a unit ball before passing it to the classifier by following [60]. Meanwhile, we
standardize the point clouds to achieve a unit variance for diffusion models by
following [66]. For diffusion models, we use the polynomial noise scheduling as
in [21] and set the total number of timesteps as T = 500. The batch size [31, 59]
is set to 64 for the TTA baselines unless specified except CloudFixer and other
per-sample TTA baselines (MEMO [67], DDA [13]) which inherently operate
with a batch size of 1. For input adaptation, we perform 30 steps of updates
with AdaMax optimizer [27]. The timestep interval for the diffusion forward
process is set as [0.02T, 0.12T]. Further details are in Appendices G and H and
our repository.

https://github.com/shimazing/CloudFixer

10 Shim et al.

Table 3: Macro-recall on ModelNet40-C with label distribution shifts, featuring a high
class imbalance ratio of 100, using Point2Vec.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 47.59 21.29 88.78 82.03 79.76 57.77 46.04 59.41 35.81 29.25 49.88 75.81 75.62 75.95 74.07 59.94

O
n
li
n
e

PL [28] 47.87 39.53 83.04 80.33 77.18 74.62 68.10 69.55 65.95 28.03 56.35 73.57 72.15 75.28 75.79 65.82

TENT [59] 35.71 32.99 76.93 74.12 65.13 64.46 66.74 63.95 66.09 27.39 46.49 55.69 65.42 69.19 67.04 58.49

SHOT [31] 35.44 28.90 66.72 65.08 64.71 56.88 59.36 58.21 58.92 33.41 37.10 61.73 64.25 62.40 66.92 54.67

SAR [44] 49.07 40.27 85.63 79.98 75.48 71.33 68.28 68.08 64.04 28.58 55.48 72.34 75.44 75.73 72.84 65.50

DUA [41] 51.03 42.56 85.16 82.89 81.98 77.39 71.37 74.81 67.55 29.78 59.86 78.07 76.95 76.25 77.45 68.87

E
p
is

od
ic LAME [5] 45.37 15.91 86.52 75.81 72.24 49.42 40.09 51.46 27.22 25.15 43.77 67.49 68.43 65.64 67.46 53.47

MEMO [67] 47.97 19.53 88.31 81.67 80.26 57.00 47.05 57.19 34.01 28.54 49.26 72.84 73.63 74.36 75.28 59.13

DDA [13] 47.88 39.49 84.93 80.77 82.58 84.71 85.77 85.49 78.81 43.07 51.67 74.79 75.23 75.55 78.79 71.30

CloudFixer 44.43 40.91 86.87 77.23 83.75 91.46 91.72 92.23 85.80 75.53 76.83 75.36 78.68 80.11 83.04 77.60

Table 4: Accuracy on ModelNet40-C using Point2Vec under the mild conditions of a
batch size of 64 and an i.i.d. test stream.

Method
Density Corruptions Noise Corruptions Transformation Corruptions

Avg.
OC LD DI DD CO UNI GAU IP US BG ROT SH FFD RBF IR

Unadapted 41.09 20.02 90.03 86.51 83.91 63.41 49.68 66.25 38.33 37.68 47.04 79.29 75.97 74.68 77.51 62.09

PL [28] 46.07 38.17 90.56 84.20 82.13 83.06 78.81 81.77 76.66 38.05 63.49 81.40 79.09 79.21 81.36 72.27

TENT [59] 47.33 37.88 91.25 87.44 86.43 89.14 87.80 85.41 87.64 67.91 71.23 85.37 85.05 86.30 86.51 78.85

SHOT [31] 46.72 47.45 86.83 84.60 82.90 80.92 79.78 74.92 80.92 61.51 74.31 78.48 81.16 81.73 82.54 74.98

SAR [44] 46.27 36.67 90.76 82.94 81.77 79.90 76.18 80.88 70.91 32.94 63.57 79.74 79.21 78.28 81.16 70.75

DUA [41] 47.85 39.55 91.45 85.25 83.51 81.28 77.84 82.62 74.92 38.49 66.00 82.66 80.23 80.51 82.94 73.01

LAME [5] 39.18 9.52 90.03 76.30 76.54 61.79 46.31 63.90 35.09 31.93 45.75 78.44 75.04 74.35 76.74 58.73

CloudFixer-O 46.39 44.94 90.92 84.76 86.99 91.94 91.86 91.82 92.14 74.92 85.98 83.83 82.09 86.30 87.40 81.49

5.2 Main Results

Results on Challenging Real-world Scenarios We initially assess Cloud-
Fixer in a genuinely plausible real-world scenario to verify its practical reliability.
We conduct validation under the batch size of 1 in Table 1, considering real-time
inference, temporally correlated test streams in Table 2, and significant label
distribution shifts due to high class-imbalances in Table 3 on ModelNet40-C using
Point2Vec. CloudFixer consistently outperforms other methods across various
corruptions, particularly in noise and transformation corruptions. This results
in a remarkable average performance improvement of 17% to 19% compared to
‘Unadapted’ in all challenging real-world scenarios. In contrast, entropy minimiza-
tion variants, such as TENT and SHOT, only achieve an accuracy of about 10%
in Table 1 and Table 2, indicating model collapse. While SAR was proposed to
overcome such challenging scenarios in 2D vision, it also fails in the point cloud
domain. Although Per-sample adaptation methods, such as MEMO and DDA,
do not collapse in these settings, MEMO shows only marginal improvement, and
DDA, despite having excessive computational cost (see Section 5.4), consistently
exhibits lower average performance than ours. This underscores the effectiveness
of optimizing geometric transformations specialized for 3D point clouds.

Results on Mild Conditions While our primary focus remains on ensuring
the effectiveness of our method in plausible real-world scenarios, we also verify
CloudFixer in a mild scenario of batch size of 64 and i.i.d. test stream, following

CloudFixer 11

Table 5: Accuracy on PointDA-10 using
DGCNN. We report the performance of
all method, except MEMO, DDA, Cloud-
Fixer, including CloudFixer-O with a
batch size of 64.

Method M → S M → S* S → M S → S* S* → M S* → S Avg.

Unadapted 81.38 52.23 77.10 44.83 62.03 64.69 63.71

O
n
li
n
e

PL [28] 75.52 50.99 66.82 50.42 58.88 61.12 60.63

TENT [59] 76.77 52.63 65.07 49.46 57.59 59.31 60.14

SHOT [31] 14.53 14.53 67.17 47.77 44.63 19.62 34.71

SAR [44] 74.12 49.75 66.36 50.03 54.32 58.83 58.90

DUA [41] 74.80 50.25 67.29 49.24 59.93 60.03 60.26

E
p
is

od
ic LAME [5] 82.26 53.93 80.84 44.83 20.68 43.42 54.33

MEMO [67] 75.84 47.26 73.25 50.99 47.90 60.27 59.25

DDA [13] 82.46 51.89 80.72 44.77 65.42 66.85 65.35

O
u
rs

CloudFixer 83.46 53.12 77.80 43.30 63.97 67.85 64.92

+ Voting (K = 3) 83.51 53.47 77.92 43.64 64.48 68.37 65.23

CloudFixer-O 80.42 53.08 75.00 51.55 66.00 69.02 65.85

Fig. 3: The average accuracy of Cloud-
Fixer and other baselines across all cor-
ruptions in ModelNet40-C for various clas-
sifier architectures.

the standard evaluation setup used for conventional TTA methods. For this
purpose, we use a Point2Vec on ModelNet40-C for common corruptions in
Table 4 and DGCNN on PointDA-10 [50] in Table 5 for natural distribution
shift. In Table 4, we evaluate the online extension CloudFixer-O for comparison.
We observe that our method consistently achieves the best performance on 9
corruptions and the second best performance on 3 corruptions out of 15, thus
achieving state-of-the-art performance on average also in the mild settings. This
is attributed to the effectiveness of our online model adaptation strategy, as
well as our input adaptation, which can be leveraged when considering the mild
conditions. A similar trend is observed with natural distribution shift in Table 5.

Across Various Classifier Architectures We investigate adaptation perfor-
mance across different architectures to verify that CloudFixer operates in an
architecture-agnostic manner due to its focus on input adaptation. Specifically,
we report the average adaptation accuracy of CloudFixer across all corruptions in
ModelNet40-C for various baseline architectures, including Point2Vec [1], Point-
MAE [45], PointMLP [38], and PointNeXt [49], along with TENT [59], which
shows the best performance among baselines with Point2Vec, and MEMO [67],
which is the instance-based model adaptation method. As shown in Fig. 3, we
observe that CloudFixer-O achieves an average performance gain ranging from
at least 13% (PointNeXt) to a maximum of 27% (PointMAE and PointMLP)
across various corruptions, achieving the highest performance across all archi-
tectures compared to baselines. With PointMAE, only a single instance-based
CloudFixer outperforms TENT with a batch size of 64. This demonstrates the
architecture-agnostic benefits of CloudFixer. The detailed performance for each
corruption across various architectures can be found in Appendix I.1.

5.3 Ablation Study

Parameterization, Objective, and Diffusion Timesteps This paragraph
comprehensively demonstrates whether the components of CloudFixer truly

12 Shim et al.

Table 6: Ablation study of the core strategies
in CloudFixer, including parameterization, ob-
jective, displacement regularization, forward
timesteps, voting, and online adaptation.

Setting
Density Noise Transform

Avg.
LD CO US BG ROT RBF

Unadapted 20.02 83.91 38.33 37.68 47.04 74.68 51.30

No Parameterization 39.02 82.13 91.81 75.64 49.79 80.87 70.85

Rotation → Affine 37.88 82.50 87.16 74.96 66.05 82.66 72.59

Squared ℓ2 37.12 83.71 71.80 76.34 78.93 80.23 72.47

Diffusion Loss 33.14 73.70 86.95 39.10 59.08 70.46 62.18

No Reg. 36.26 73.26 85.17 61.30 55.71 79.05 65.27

Uniform Reg. 39.30 89.10 84.68 48.82 80.02 83.87 71.49

t ∼ U [0.01T, 0.02T] 21.03 82.86 84.93 54.09 58.79 40.07 58.10

t ∼ U [0.4T, 0.5T] 17.06 48.10 38.61 58.14 60.01 37.16 42.72

CloudFixer 38.82 83.06 89.06 75.49 81.04 82.98 75.79

+Voting (K = 5) 38.90 84.16 89.79 76.58 83.51 84.12 76.83

CloudFixer-O 44.94 86.99 92.14 74.92 85.98 86.30 79.20

Table 7: Accuracy on ModelNet40-
C, using TTA baselines including
MATE [42] with batch size of 1 and
64 using PointMAE.

Method OC LD DD GAU BG IR Avg.

Unadapted 34.72 15.19 78.65 51.30 16.87 62.03 43.13

B
sz

.
1

MEMO [67] 33.18 14.79 78.08 47.57 6.81 59.97 40.07

DDA [13] 39.91 37.07 79.70 87.20 19.89 76.30 56.68

MATE(1) [42] 52.55 49.85 82.54 78.97 13.05 78.44 59.23

CloudFixer 34.24 35.62 71.15 87.16 50.36 72.45 58.50

CloudFixer-O 47.53 48.95 81.52 88.98 59.44 84.76 68.53

B
sz

.
64

PL [28] 48.01 41.45 79.13 70.38 17.83 70.18 54.50

TENT [59] 47.53 41.82 79.94 73.38 17.30 71.27 55.21

SHOT [31] 55.71 50.16 72.33 67.34 14.59 67.75 54.65

SAR [44] 47.73 45.62 80.79 72.00 10.98 72.20 54.89

DUA [41] 50.85 45.83 83.14 75.24 19.17 75.41 58.27

LAME [5] 34.89 16.05 80.92 50.49 8.51 62.40 42.21

MATE(1) [42] 48.52 36.51 84.40 71.07 11.18 72.49 54.03

MATE(10) [42] 54.09 46.47 84.28 76.34 19.69 78.97 59.97

MATE(20) [42] 55.06 48.87 83.31 76.42 21.35 80.19 60.87

CloudFixer-O 52.55 53.61 84.76 90.56 67.50 87.07 72.68

contribute to performance enhancement and if they are optimal choices. To
achieve this, we validate the core components of CloudFixer, including the pa-
rameterization of geometric transformation, objective function with chamfer
distance, per-point regularization, the range of timestep (tmin, tmax), the voting
mechanism, and the online input adaptation in Table 6. First, we confirm the
suitability of our geometric transformation parameterization of rotation and dis-
placement. Adapting the input without parameterization (No Parameterization)
or substituting the rotation matrix with a more parameter-rich affine matrix
(Rotation → Affine) leads to performance degradation. Second, we validate our
optimization objective. When employing the squared ℓ2 loss without accounting
for the unordered nature of point clouds (Squared ℓ2), or when naively adopting
the noise matching loss of the diffusion model (Diffusion Loss), both lead to a
decrease in average performance. Next, we explore the range of timesteps and
results indicate that maintaining a small value for t (t ∼ U [0.01T, 0.02T]) leads
to a performance drop due to failure to overlap the source and target domains.
Conversely, keeping a large value for t (t ∼ U [0.4T, 0.5T]) results in a significant
drop in adaptation performance, likely due to loss of original content. Finally,
we observe that both voting (+Voting (K = 5)) and online model adaptation
(CloudFixer-O) consistently boost the performance of the original CloudFixer.
Further discussions regarding the ablation study can be found in Appendices I.2
and I.3.

Batch Size of CloudFixer-O We also evaluate the extended online model
adaptation version, CloudFixer-O, compared to other baselines under varying
batch sizes. Table 7 is separated by a double line, with the upper part displaying
results for a batch size of 1 and the lower part for a batch size of 64. To include
MATE [42] in this comparison, we adopt the specific architecture, PointMAE [45],
utilized by MATE. ‘MATE(n)’ represents n-times model updates per batch during
online adaptation. Although CloudFixer-O is designed for mild conditions, we find

CloudFixer 13

GaussianCutout Rotation Distortion S*→ M S → S*

Fig. 4: Point cloud visualization examples demon-
strate the effects of CloudFixer on various common
corruption types in ModelNet40-C and natural dis-
tributions in PointDA-10. The upper row showcases
corrupted examples, while the lower row illustrates
the corresponding results after applying CloudFixer.

CloudFixer
(0.93, 78.4)

DDA
(23.6, 70.8)

MEMO
(0.14, 61.2)

Unadapted
62.1

Fig. 5: Computational cost
of CloudFixer and other per-
sample episodic TTA baselines
by averaging the adaptation
time across all corruption types
within the ModelNet40-C.

that it also performs well for a batch size of 1, achieving the best average accuracy
even compared to the baselines with a batch size of 64. Additionally, MATE
performs better than instance-based CloudFixer but worse than CloudFixer-O
with a batch size of 1. Moreover, the enhancement in performance with a larger
batch size is limited for MATE, in contrast to CloudFixer-O. To be specific, the
performance of MATE appears to saturate at approximately 61%, even as the
number of update steps increases. On the other hand, CloudFixer-O exhibits a
notable improvement, achieving an average accuracy of 72.68% with more than a
4% increase in accuracy points as the batch size increases from 1 to 64.

5.4 Further Analysis

Qualitative Analysis In this section, we assess whether the performance
improvement observed in CloudFixer is incidental or can be attributed to the
actual transformation of shifted test instances into the source domain through
CloudFixer’s input adaptation strategy. To investigate this, we visually examine
point clouds before and after adaptation across different target domains, as
illustrated in Fig. 4. Additionally, we present more adaptation examples for all
common corruptions in Fig. J4 to Fig. J6. As depicted in Fig. 4, we observe that
CloudFixer successfully restores corrupted target instances for each common
corruption—Cutout, Gaussian, Rotation, and Distortion—back to clean instances
from the source domain of ModelNet40. It is worth noting that this phenomenon
extends to natural distribution shifts as well; irregular point clouds from ScanNet
are transformed into regular patterns resembling those from ModelNet (S∗ →
M) , while conversely, the legs of a desk from ShapeNet are converted into the
irregular form of ScanNet (S → S∗). We also provide more adaptation examples
in Appendix J.

Computational Efficiency To assess the real-time feasibility of CloudFixer, we
conduct a comparison with per-sample episodic TTA baselines (MEMO, DDA).

14 Shim et al.

Fig. 6: Hyperparameter sensitivity analysis regarding (tmin, tmax) for the forward
process, the number of adaptation steps S, and the number of nearest neighbors k used
in displacement regularization using Point2Vec on IP of ModelNet40-C.

The assessment involves averaging the adaptation time across all corruption types
within the ModelNet40-C, utilizing a single RTX 3090 GPU. CloudFixer achieves
an acceptable adaptation speed within one second (0.93 seconds on average) with
a moderate number of iterations and the absence of backpropagation through the
diffusion model or extensive iterative generation. This stands in stark contrast to
DDA, which also utilizes the same diffusion model architecture as CloudFixer
but takes approximately 23.6 seconds, making it prohibitively costly for practical
real-time usage. Moreover, CloudFixer can take the advantage of batch processing.
Combining this observation with our hyperparameter sensitivity experiments,
we anticipate further reduction in adaptation time by employing a number of
iterations smaller than 30.

Hyperparameter Sensitivity To evaluate hyperparameter sensitivity, we
conduct an analysis involving the minimum and maximum timesteps tmin, tmax
for the forward process, the number of adaptation steps S, and the number of
nearest neighbors k used in displacement regularization using Point2Vec on ‘IP’
of ModelNet40-C. While keeping the remaining hyperparameters fixed as best
with (tmin, tmax, S, k) = (0.02, 0.12, 30, 5), we vary one at a time. Considering the
unadapted performance at 66.25%, as depicted in Fig. 6, CloudFixer illustrates
the establishment of a sweet spot for all critical hyperparameters, indicating
its insensitivity to hyperparameters. This highlights a significant advantage in
utilization during inference time, where hyperparameter optimization is infeasible
due to uncertainty about potential distribution shifts.

6 Conclusion

In this paper, we have introduced CloudFixer, a novel test-time input adaptation
method for 3D point clouds. Leveraging a pre-trained diffusion model’s domain
translation capability, CloudFixer directly optimizes carefully designed geometric
transformation parameters to translate input point clouds, taking into account
computational costs. Extensive experiments show that our method achieves
state-of-the-art results across diverse distribution shift scenarios. Our approach
advances test-time input adaptation for 3D point cloud recognition, highlighting
essential design principles that integrate geometric optimization and diffusion
model knowledge.

CloudFixer 15

Acknowledgments

This work was supported by the Institute for Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIP) (No.2019-0-00075, Artificial Intelligence Graduate School Program
(KAIST)).

References

1. Abou Zeid, K., Schult, J., Hermans, A., Leibe, B.: Point2vec for self-supervised
representation learning on point clouds. In: GCPR (2023)

2. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation
on point clouds. In: WACV (2021)

3. Alexiou, E., Upenik, E., Ebrahimi, T.: Towards subjective quality assessment of
point cloud imaging in augmented reality. In: IEEE MMSP (2017)

4. Alliegro, A., Boscaini, D., Tommasi, T.: Joint supervised and self-supervised learning
for 3d real world challenges. In: ICPR (2021)

5. Boudiaf, M., Mueller, R., Ben Ayed, I., Bertinetto, L.: Parameter-free online test-
time adaptation. In: CVPR (2022)

6. Cardace, A., Spezialetti, R., Ramirez, P.Z., Salti, S., Di Stefano, L.: Self-distillation
for unsupervised 3d domain adaptation. In: WACV (2023)

7. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015)

8. Chen, S., Liu, B., Feng, C., Vallespi-Gonzalez, C., Wellington, C.: 3d point cloud pro-
cessing and learning for autonomous driving: Impacting map creation, localization,
and perception. IEEE SPM (2020)

9. Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: ILVR: conditioning method for
denoising diffusion probabilistic models. In: ICCV (2021)

10. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

11. Fan, H., Chang, X., Zhang, W., Cheng, Y., Sun, Y., Kankanhalli, M.: Self-supervised
global-local structure modeling for point cloud domain adaptation with reliable
voted pseudo labels. In: CVPR (2022)

12. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization
for efficiently improving generalization. In: ICLR (2021)

13. Gao, J., Zhang, J., Liu, X., Darrell, T., Shelhamer, E., Wang, D.: Back to the
source: Diffusion-driven adaptation to test-time corruption. In: CVPR (2023)

14. Gong, S., Li, M., Feng, J., Wu, Z., Kong, L.: Diffuseq: Sequence to sequence text
generation with diffusion models. In: ICLR (2023)

15. Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., Lee, S.J.: Note: Robust continual
test-time adaptation against temporal correlation. In: NeurIPS (2022)

16. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d
point clouds: A survey. IEEE TPAMI (2020)

17. Hempel, T., Abdelrahman, A.A., Al-Hamadi, A.: 6d rotation representation for
unconstrained head pose estimation. In: ICIP (2022)

18. Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D.P.,
Poole, B., Norouzi, M., Fleet, D.J., et al.: Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303 (2022)

16 Shim et al.

19. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS
(2020)

20. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video
diffusion models. arXiv preprint arXiv:2204.03458 (2022)

21. Hoogeboom, E., Satorras, V.G., Vignac, C., Welling, M.: Equivariant diffusion for
molecule generation in 3d. In: ICML (2022)

22. Huang, C., Cao, Z., Wang, Y., Wang, J., Long, M.: Metasets: Meta-learning on
point sets for generalizable representations. In: CVPR (2021)

23. Huang, H., Chen, C., Fang, Y.: Manifold adversarial learning for cross-domain 3d
shape representation. In: ECCV (2022)

24. Jun, H., Nichol, A.: Shap-e: Generating conditional 3d implicit functions. arXiv
preprint arXiv:2305.02463 (2023)

25. Kim, C., Park, J., Shim, H., Yang, E.: SGEM: Test-time adaptation for auto-
matic speech recognition via sequential-level generalized entropy minimization. In:
INTERSPEECH (2023)

26. Kim, G., Shim, H., Kim, H., Choi, Y., Kim, J., Yang, E.: Diffusion video autoen-
coders: Toward temporally consistent face video editing via disentangled video
encoding. In: CVPR (2023)

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
28. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks. In: Workshop on challenges in representation
learning, ICML (2013)

29. Lehner, A., Gasperini, S., Marcos-Ramiro, A., Schmidt, M., Mahani, M.A.N., Navab,
N., Busam, B., Tombari, F.: 3d-vfield: Adversarial augmentation of point clouds
for domain generalization in 3d object detection. In: CVPR (2022)

30. Li, X., Thickstun, J., Gulrajani, I., Liang, P.S., Hashimoto, T.B.: Diffusion-lm
improves controllable text generation. In: NeurIPS (2022)

31. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In: ICML (2020)

32. Lim, H., Kim, B., Choo, J., Choi, S.: Ttn: A domain-shift aware batch normalization
in test-time adaptation. In: ICLR (2023)

33. Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: Ttt++:
When does self-supervised test-time training fail or thrive? In: NeurIPS (2021)

34. Liu, Z., Feng, Y., Black, M.J., Nowrouzezahrai, D., Paull, L., Liu, W.: Meshdiffusion:
Score-based generative 3d mesh modeling. In: ICLR (2023)

35. Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation. In:
CVPR (2021)

36. Lyu, Z., Kong, Z., Xu, X., Pan, L., Lin, D.: A conditional point diffusion-refinement
paradigm for 3d point cloud completion. In: ICLR (2022)

37. Ma, C., Yang, Y., Guo, J., Pan, F., Wang, C., Guo, Y.: Unsupervised point cloud
completion and segmentation by generative adversarial autoencoding network. In:
NeurIPS (2022)

38. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. In: ICLR (2022)

39. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

40. Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Image synthesis
and editing with stochastic differential equations. In: ICLR (2022)

41. Mirza, M.J., Micorek, J., Possegger, H., Bischof, H.: The norm must go on: Dynamic
unsupervised domain adaptation by normalization. In: CVPR (2022)

CloudFixer 17

42. Mirza, M.J., Shin, I., Lin, W., Schriebl, A., Sun, K., Choe, J., Possegger, H.,
Kozinski, M., Kweon, I.S., Yoon, K.J., et al.: Mate: Masked autoencoders are online
3d test-time learners. In: ICCV (2023)

43. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751
(2022)

44. Niu, S., Wu, J., Zhang, Y., Wen, Z., Chen, Y., Zhao, P., Tan, M.: Towards stable
test-time adaptation in dynamic wild world. In: ICLR (2023)

45. Pang, Y., Wang, W., Tay, F.E., Liu, W., Tian, Y., Yuan, L.: Masked autoencoders
for point cloud self-supervised learning. In: ECCV (2022)

46. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using 2d
diffusion. In: ICLR (2023)

47. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: CVPR (2017)

48. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: NeurIPS (2017)

49. Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny, M., Ghanem, B.:
Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In: NeurIPS (2022)

50. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain
adaption network for point cloud representation. In: NeurIPS (2019)

51. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
(2022)

52. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
Sutskever, I.: Zero-shot text-to-image generation. In: ICML (2021)

53. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. In: NeurIPS (2022)

54. Shen, Y., Yang, Y., Yan, M., Wang, H., Zheng, Y., Guibas, L.J.: Domain adaptation
on point clouds via geometry-aware implicits. In: CVPR (2022)

55. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)
56. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.:

Score-based generative modeling through stochastic differential equations. In: ICLR
(2021)

57. Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., Mao, Z.M.: Benchmarking
robustness of 3d point cloud recognition against common corruptions. arXiv preprint
arXiv:2201.12296 (2022)

58. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with
self-supervision for generalization under distribution shifts. In: ICML (2020)

59. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time
adaptation by entropy minimization. In: ICLR (2021)

60. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. In: ACM TOG (2019)

61. Wei, X., Gu, X., Sun, J.: Learning generalizable part-based feature representation
for 3d point clouds. In: NeurIPS (2022)

62. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3d shapenets for 2.5 d object
recognition and next-best-view prediction. arXiv preprint arXiv:1406.5670 (2014)

63. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

18 Shim et al.

64. Xiao, H., Cheng, M., Shi, L.: Learning cross-domain features for domain generaliza-
tion on point clouds. In: PRCV (2022)

65. You, F., Li, J., Zhao, Z.: Test-time batch statistics calibration for covariate shift.
In: ICLR (2022)

66. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
Lion: Latent point diffusion models for 3d shape generation. In: NeurIPS (2022)

67. Zhang, M., Levine, S., Finn, C.: Memo: Test time robustness via adaptation and
augmentation. In: NeurIPS (2022)

68. Zhao, M., Bao, F., Li, C., Zhu, J.: Egsde: Unpaired image-to-image translation via
energy-guided stochastic differential equations. In: NeurIPS (2022)

69. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: ICCV (2021)

70. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised
domain adaptation on object point clouds. In: ICCV (2021)

	 CloudFixer: Test-Time Adaptation for 3D Point Clouds via Diffusion-Guided Geometric Transformation

