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Fig. 1: Our proposed DreamDiffusion is capable of generating high-quality images
directly from brain electroencephalogram (EEG) signals, without the need to translate
thoughts into text.

Abstract. This paper introduces DreamDiffusion, a novel method for
generating high-quality images directly from brain electroencephalogram
(EEG) signals, without the need to translate thoughts into text. DreamD-
iffusion leverages pre-trained text-to-image models and employs temporal
masked signal modeling to pre-train the EEG encoder for effective and
robust EEG representations. Additionally, the method further leverages
the CLIP image encoder to provide extra supervision to better align
EEG, text, and image embeddings with limited EEG-image pairs. Over-
all, the proposed method overcomes the challenges of using EEG signals
for image generation, such as noise, limited information, and individual
differences, and achieves promising results. Quantitative and qualitative
results demonstrate the effectiveness of the proposed method as a sig-
nificant step towards portable and low-cost “thoughts-to-image”, with
potential applications in neuroscience and computer vision.
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1 Introduction

Image generation [4,15,21] has made great strides in recent years, especially after
breakthroughs in text-to-image generation [1, 12, 29, 30, 33]. The recent text-to-
image generation enables the creation of people’s ideas into exquisite paintings
and artworks controlled by text. We are very curious whether we could con-
trol image creation directly from brain activities (such as electroencephalogram
(EEG) recordings), without translating our thoughts into text before creation.
This kind of “thoughts-to-images" has broad prospects and could broaden peo-
ple’s imagination. For example, it can greatly improve the efficiency of artistic
creation and help capture those fleeting inspirations. It also has the potential
to help us visualize our dreams at night, (which inspires the name DreamDiffu-
sion). Moreover, it may even aid in psychotherapy, having the potential to help
children with autism and those with language disabilities.

Some recent works, such as MinD-Vis [7] and [39], attempt to reconstruct
visual information based on fMRI (functional Magnetic Resonance Imaging) sig-
nals, which is another way to measure brain activities. They have demonstrated
the feasibility of reconstructing high-quality results from brain activities. How-
ever, they are still far away from our goal of using brain signals to create conve-
niently and efficiently. 1) Since fMRI equipment is not portable and needs to be
operated by professionals, it is difficult to capture fMRI signals. 2) The cost of
fMRI acquisition is high. They greatly hinder the widespread use of this method
in the practical artistic generation. In contrast, EEG (electroencephalogram) is
a non-invasive and low-cost method of recording electrical activity in the brain.
Portable commercial products are now available for the convenient acquisition
of EEG signals, showing great potential for future art generation.

In this work, we aim to leverage the powerful generative capabilities of pre-
trained text-to-image models (i.e., Stable Diffusion [31]) to generate high-quality
images directly from brain EEG signals. However, this is non-trivial and has two
challenges. 1) EEG signals are captured non-invasively and thus are inherently
noisy. In addition, EEG data are limited and individual differences cannot be
ignored. How to obtain effective and robust semantic representations from EEG
signals with so many constraints? 2) Thanks to the use of CLIP [27] and the
training on a large number of text-image pairs, the text and image spaces in
Stable Diffusion are well aligned. However, the EEG signal has its own charac-
teristics, and its space is quite different from that of text and image. How to
align EEG, text and image spaces with limited and noisy EEG-image pairs?

To address the first challenge, we propose to train EEG representations using
large amounts of EEG data instead of only rare EEG-image pairs. Specifically, we
adopt masked signal modeling to predict the missing tokens based on contextual
cues. Different from MAE [17] and MinD-Vis [7], which treat inputs as two-
dimensional images and mask the spatial information, we consider the temporal
characteristics of EEG signals, and dig deep into the semantics behind temporal
changes in people’s brains. We randomly mask a proportion of tokens and then
reconstruct those masked ones in the time domain. In this way, the pre-trained
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encoder learns a deep understanding of EEG data across different people and
various brain activities.

As for the second challenge, previous methods [7,39] usually directly fine-tune
Stable Diffusion (SD) models using a small number of noisy data pairs. However,
it is difficult to learn accurate alignment between brain signals (e.g., EEG and
fMRI) and text spaces by end-to-end fine-tuning SD only using the final image
reconstruction loss. We thus propose to employ additional CLIP [27] supervision
to assist in the alignment of EEG, text, and image spaces. Specifically, SD itself
uses CLIP’s text encoder to generate text embeddings, which are quite different
from the masked pre-trained EEG embeddings in the previous stage. We leverage
CLIP’s image encoder to extract rich image embeddings that align well with
CLIP text embeddings. Those CLIP image embeddings are then used to further
optimize EEG embedding representations. Therefore, the refined EEG feature
embeddings can be well aligned with the CLIP image and text embeddings, and
are more suitable for SD image generation, which in turn improves the quality
of generated images.

Equipped with the above two delicate designs, our proposed method, namely,
DreamDiffusion, can generate high-quality and realistic images from EEG sig-
nals. Our contributions can be summarized as follows. 1) We propose DreamD-
iffusion, which leverages the powerful pre-trained text-to-image diffusion models
to generate realistic images from EEG signals only. It is a further step towards
portable and low-cost “thoughts-to-images”. 2) We specifically explored temporal
masked signal modeling method tailored to EEG data to learn effective repre-
sentations, which is useful for subsequent related work. 3) We further leverage
the CLIP image encoder to provide extra supervision to better align the EEG,
text, and image embeddings with limited EEG-image pairs. 4) Quantitative and
qualitative results have shown the effectiveness of our method.

2 Related works

2.1 Generating images from brain activity

The use of brain signals, including fMRI and EEG, to generate images has been
an active area of research. For the use of fMRI, traditional methods rely on fMRI-
image paired data to train the model to predict image features from fMRI. These
image features will be fed into GANs [35] for stimulus reconstruction during
testing. However, recent studies [3] have proposed unsupervised approaches, such
as a reconfigurable autoencoder design, to learn from unpaired fMRI and images,
and utilize regression models [24,26] to extract a latent fMRI representation that
can be used to fine-tune a pre-trained conditional BigGAN [5] for decoding. The
recent work MinD-Vis [8] integrates SC-MBM and DC-LDM to generate more
plausible images with better-preserved semantic information.

Similarly, generating images from EEG signals has also been explored us-
ing deep learning techniques. Brain2image [22] have developed using LSTM and
generative methods to learn a more compact representation of EEG data for gen-
erating visual stimuli that evoke specific brain responses. ThoughtViz [40] takes
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encoded EEG signals as input to generate corresponding images, even with lim-
ited training data. [9] uses EEG as a supervision signal for learning semantic
feature representations and achieving comparable performance to semantic im-
age editing.

2.2 Model pre-training

Pre-training models have become increasingly popular in the field of computer
vision, with various self-supervised learning approaches focusing on different pre-
text tasks [13, 25, 42]. These methods often utilize pretext tasks such as con-
trastive learning [2, 16], which models image similarity and dissimilarity, or au-
toencoding [6], which recovers the original data from a masked portion. In par-
ticular, masked signal modeling (MSM) has been successful in learning useful
context knowledge for downstream tasks by recovering the original data from
a high mask ratio for visual signals [17, 43] and a low mask ratio for natural
languages [10, 28]. Another recent approach, CLIP [27], builds a multi-modal
embedding space by pre-training on 400 million text-image pairs collected from
various sources on the Internet. The learned representations by CLIP are ex-
tremely powerful, enabling state-of-the-art zero-shot image classification on mul-
tiple datasets, and providing a method to estimate the semantic similarity be-
tween text and images.

2.3 Diffusion models

Diffusion models have become increasingly popular as generative models for pro-
ducing high-quality content [36]. The basic form of diffusion models is a prob-
abilistic model defined by a bi-directional Markov Chain of states [18]. These
models [11, 18, 32, 38] exhibit strong generative power due to their natural fit
with the inductive biases of image-like data. The best synthesis quality is typi-
cally achieved when using a reweighted objective during training [18], allowing
for a trade-off between image quality and compression capabilities. However,
evaluating and optimizing these models in pixel space is computationally ex-
pensive and time-consuming [19,23,34,37,41]. To address these challenges, some
diffusion models work on a compressed latent space of lower dimensionality, such
as the proposed LDMs [31]. By compressing images into lower-dimensional latent
features using a KL regularized autoencoder and then reconstructing them us-
ing the same latent space features, the LDM reduces computational costs while
maintaining synthesis quality.

3 Proposed method

Our method comprises three main components: 1) masked signal pre-training
for an effective and robust EEG encoder, 2) fine-tuning with limited EEG-image
pairs with pre-trained Stable Diffusion, and 3) aligning the EEG, text, and im-
age spaces using CLIP encoders. Firstly, we leverage masked signal modeling
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Fig. 2: Overview of DreamDiffusion. Our method comprises three main compo-
nents: 1) masked signal pre-training for an effective and robust EEG encoder, 2) fine-
tuning with limited EEG-image pairs with pre-trained Stable Diffusion, and 3) aligning
the EEG, text, and image spaces using CLIP encoders.

with lots of noisy EEG data to train an EEG encoder to extract contextual
knowledge. The resulting EEG encoder is then employed to provide conditional
features for Stable Diffusion via the cross-attention mechanism. In order to en-
hance the compatibility of EEG features with Stable Diffusion, we further align
the EEG, text, and image embedding spaces by reducing the distance between
EEG embeddings and CLIP image embeddings during fine-tuning. After that,
we obtain DreamDiffusion, which is capable of generating high-quality images
from EEG signals only.

3.1 Masked signal pre-training for effective and robust EEG
representations

EEG (Electroencephalogram) data is a recording of electrical activity generated
by the human brain, measured using electrodes placed on the scalp. It is a non-
invasive and low-cost method of measuring brain activity. EEG data has several
characteristics. Firstly, the data is two-dimensional, with one dimension repre-
senting the channels or electrodes placed on the scalp, and the other dimension
representing time. The temporal resolution of EEG is high, meaning that it can
capture rapid changes in brain activity that occur on the order of milliseconds.
However, the spatial resolution of EEG is low, meaning that it is difficult to pre-
cisely localize the source of the activity within the brain. Secondly, EEG signals
are highly variable, influenced by factors such as age, sleep, and cognitive state.
Finally, EEG data is often noisy, and requires careful processing and analysis to
extract meaningful information.

Due to the inherent variability and noise in EEG data, conventional model-
ing methods often struggle to extract meaningful information from EEG signals.
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The EEG data itself contains many signals unrelated to the corresponding vi-
sual concepts (noise), making the results of simply utilizing EEG through an
unpretrained encoder inaccurate. Consequently, adopting masked signal model-
ing techniques, which have been proven e�ective in capturing contextual infor-
mation from noisy and variable data [7, 17], represents a promising avenue for
deriving meaningful contextual knowledge from large-scale noisy EEG data. Dif-
ferent from MAE [17] and MinD-Vis [7], which treat inputs as two-dimensional
images and mask thespatial information , we consider the temporal characteris-
tics of EEG signals, and dig deep into the semantics behind temporal changes
in people's brains.

Given the high temporal resolution of EEG signals, we �rst divide them into
tokens in the time domain, and randomly mask a certain percentage of tokens.
Subsequently, these tokens will be transformed into embeddings by using a one-
dimensional convolutional layer. Then, we use an asymmetric architecture such
as MAE [17] to predict the missing tokens based on contextual cues from the
surrounding tokens. Through reconstructing the masked signals, the pre-trained
EEG encoder learns a deep understanding of EEG data across di�erent people
and various brain activities.

3.2 Fine-tuning with Stable Di�usion on limited EEG-image pairs

After obtaining an e�ective representation of EEG signals from masked signal
pre-training, we utilize it to generate images by leveraging a pre-trained Stable
Di�usion (SD) model. Stable Di�usion involves gradually denoising a normally
distributed variable to learn a data distribution. SD is augmented with a cross-
attention mechanism for more �exible conditional image generation and the most
common condition is the text prompt. Stable Di�usion has shown great genera-
tive power in generating high-quality images from various types of signals, such
as labels, text, and semantic maps.

Stable Di�usion operates on the latent space. Given an imagex in pixel
space,x is encoded by a VQ encoderE(�) to obtain the corresponding latent
z = E(x). Conditional signals are introduced by the cross-attention mechanism
in the UNet. This cross-attention can also incorporate conditional information
from the EEG data. Speci�cally, the output of EEG encoder y is further pro-
jected with a projector � � into an embedding � � (y) 2 RM � d� . Then, this EEG
representation is incorporated into U-Net by a cross-attention layer implement-
ing Attention( Q; K; V ) = softmax

�
QK T

p
d

�
� V .

Q = W ( i )
Q � ' i (zt ) ; K = W ( i )

K � � � (y); V = W ( i )
V � � � (y); (1)

where ' i (zt ) 2 RN � di
e denotes intermediate values of the U-Net.W ( i )

V 2
Rd� di

� ; W ( i )
Q 2 Rd� d� and W ( i )

K 2 Rd� d� are projection matrices with learnable
parameters.

During the �ne-tuning process, we optimize the EEG encoder and cross-
attention heads of the U-Net together. We keep the remaining parts of Stable
Di�usion �xed. We use the following SD loss function for �ne-tuning.
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