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Fig. 1: Our proposed DreamDiffusion is capable of generating high-quality images
directly from brain electroencephalogram (EEG) signals, without the need to translate
thoughts into text.

Abstract. This paper introduces DreamDiffusion, a novel method for
generating high-quality images directly from brain electroencephalogram
(EEG) signals, without the need to translate thoughts into text. DreamD-
iffusion leverages pre-trained text-to-image models and employs temporal
masked signal modeling to pre-train the EEG encoder for effective and
robust EEG representations. Additionally, the method further leverages
the CLIP image encoder to provide extra supervision to better align
EEG, text, and image embeddings with limited EEG-image pairs. Over-
all, the proposed method overcomes the challenges of using EEG signals
for image generation, such as noise, limited information, and individual
differences, and achieves promising results. Quantitative and qualitative
results demonstrate the effectiveness of the proposed method as a sig-
nificant step towards portable and low-cost “thoughts-to-image”, with
potential applications in neuroscience and computer vision.
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1 Introduction

Image generation [4,15,21] has made great strides in recent years, especially after
breakthroughs in text-to-image generation [1, 12, 29, 30, 33]. The recent text-to-
image generation enables the creation of people’s ideas into exquisite paintings
and artworks controlled by text. We are very curious whether we could con-
trol image creation directly from brain activities (such as electroencephalogram
(EEG) recordings), without translating our thoughts into text before creation.
This kind of “thoughts-to-images" has broad prospects and could broaden peo-
ple’s imagination. For example, it can greatly improve the efficiency of artistic
creation and help capture those fleeting inspirations. It also has the potential
to help us visualize our dreams at night, (which inspires the name DreamDiffu-
sion). Moreover, it may even aid in psychotherapy, having the potential to help
children with autism and those with language disabilities.

Some recent works, such as MinD-Vis [7] and [39], attempt to reconstruct
visual information based on fMRI (functional Magnetic Resonance Imaging) sig-
nals, which is another way to measure brain activities. They have demonstrated
the feasibility of reconstructing high-quality results from brain activities. How-
ever, they are still far away from our goal of using brain signals to create conve-
niently and efficiently. 1) Since fMRI equipment is not portable and needs to be
operated by professionals, it is difficult to capture fMRI signals. 2) The cost of
fMRI acquisition is high. They greatly hinder the widespread use of this method
in the practical artistic generation. In contrast, EEG (electroencephalogram) is
a non-invasive and low-cost method of recording electrical activity in the brain.
Portable commercial products are now available for the convenient acquisition
of EEG signals, showing great potential for future art generation.

In this work, we aim to leverage the powerful generative capabilities of pre-
trained text-to-image models (i.e., Stable Diffusion [31]) to generate high-quality
images directly from brain EEG signals. However, this is non-trivial and has two
challenges. 1) EEG signals are captured non-invasively and thus are inherently
noisy. In addition, EEG data are limited and individual differences cannot be
ignored. How to obtain effective and robust semantic representations from EEG
signals with so many constraints? 2) Thanks to the use of CLIP [27] and the
training on a large number of text-image pairs, the text and image spaces in
Stable Diffusion are well aligned. However, the EEG signal has its own charac-
teristics, and its space is quite different from that of text and image. How to
align EEG, text and image spaces with limited and noisy EEG-image pairs?

To address the first challenge, we propose to train EEG representations using
large amounts of EEG data instead of only rare EEG-image pairs. Specifically, we
adopt masked signal modeling to predict the missing tokens based on contextual
cues. Different from MAE [17] and MinD-Vis [7], which treat inputs as two-
dimensional images and mask the spatial information, we consider the temporal
characteristics of EEG signals, and dig deep into the semantics behind temporal
changes in people’s brains. We randomly mask a proportion of tokens and then
reconstruct those masked ones in the time domain. In this way, the pre-trained
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encoder learns a deep understanding of EEG data across different people and
various brain activities.

As for the second challenge, previous methods [7,39] usually directly fine-tune
Stable Diffusion (SD) models using a small number of noisy data pairs. However,
it is difficult to learn accurate alignment between brain signals (e.g., EEG and
fMRI) and text spaces by end-to-end fine-tuning SD only using the final image
reconstruction loss. We thus propose to employ additional CLIP [27] supervision
to assist in the alignment of EEG, text, and image spaces. Specifically, SD itself
uses CLIP’s text encoder to generate text embeddings, which are quite different
from the masked pre-trained EEG embeddings in the previous stage. We leverage
CLIP’s image encoder to extract rich image embeddings that align well with
CLIP text embeddings. Those CLIP image embeddings are then used to further
optimize EEG embedding representations. Therefore, the refined EEG feature
embeddings can be well aligned with the CLIP image and text embeddings, and
are more suitable for SD image generation, which in turn improves the quality
of generated images.

Equipped with the above two delicate designs, our proposed method, namely,
DreamDiffusion, can generate high-quality and realistic images from EEG sig-
nals. Our contributions can be summarized as follows. 1) We propose DreamD-
iffusion, which leverages the powerful pre-trained text-to-image diffusion models
to generate realistic images from EEG signals only. It is a further step towards
portable and low-cost “thoughts-to-images”. 2) We specifically explored temporal
masked signal modeling method tailored to EEG data to learn effective repre-
sentations, which is useful for subsequent related work. 3) We further leverage
the CLIP image encoder to provide extra supervision to better align the EEG,
text, and image embeddings with limited EEG-image pairs. 4) Quantitative and
qualitative results have shown the effectiveness of our method.

2 Related works

2.1 Generating images from brain activity

The use of brain signals, including fMRI and EEG, to generate images has been
an active area of research. For the use of fMRI, traditional methods rely on fMRI-
image paired data to train the model to predict image features from fMRI. These
image features will be fed into GANs [35] for stimulus reconstruction during
testing. However, recent studies [3] have proposed unsupervised approaches, such
as a reconfigurable autoencoder design, to learn from unpaired fMRI and images,
and utilize regression models [24,26] to extract a latent fMRI representation that
can be used to fine-tune a pre-trained conditional BigGAN [5] for decoding. The
recent work MinD-Vis [8] integrates SC-MBM and DC-LDM to generate more
plausible images with better-preserved semantic information.

Similarly, generating images from EEG signals has also been explored us-
ing deep learning techniques. Brain2image [22] have developed using LSTM and
generative methods to learn a more compact representation of EEG data for gen-
erating visual stimuli that evoke specific brain responses. ThoughtViz [40] takes
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encoded EEG signals as input to generate corresponding images, even with lim-
ited training data. [9] uses EEG as a supervision signal for learning semantic
feature representations and achieving comparable performance to semantic im-
age editing.

2.2 Model pre-training

Pre-training models have become increasingly popular in the field of computer
vision, with various self-supervised learning approaches focusing on different pre-
text tasks [13, 25, 42]. These methods often utilize pretext tasks such as con-
trastive learning [2, 16], which models image similarity and dissimilarity, or au-
toencoding [6], which recovers the original data from a masked portion. In par-
ticular, masked signal modeling (MSM) has been successful in learning useful
context knowledge for downstream tasks by recovering the original data from
a high mask ratio for visual signals [17, 43] and a low mask ratio for natural
languages [10, 28]. Another recent approach, CLIP [27], builds a multi-modal
embedding space by pre-training on 400 million text-image pairs collected from
various sources on the Internet. The learned representations by CLIP are ex-
tremely powerful, enabling state-of-the-art zero-shot image classification on mul-
tiple datasets, and providing a method to estimate the semantic similarity be-
tween text and images.

2.3 Diffusion models

Diffusion models have become increasingly popular as generative models for pro-
ducing high-quality content [36]. The basic form of diffusion models is a prob-
abilistic model defined by a bi-directional Markov Chain of states [18]. These
models [11, 18, 32, 38] exhibit strong generative power due to their natural fit
with the inductive biases of image-like data. The best synthesis quality is typi-
cally achieved when using a reweighted objective during training [18], allowing
for a trade-off between image quality and compression capabilities. However,
evaluating and optimizing these models in pixel space is computationally ex-
pensive and time-consuming [19,23,34,37,41]. To address these challenges, some
diffusion models work on a compressed latent space of lower dimensionality, such
as the proposed LDMs [31]. By compressing images into lower-dimensional latent
features using a KL regularized autoencoder and then reconstructing them us-
ing the same latent space features, the LDM reduces computational costs while
maintaining synthesis quality.

3 Proposed method

Our method comprises three main components: 1) masked signal pre-training
for an effective and robust EEG encoder, 2) fine-tuning with limited EEG-image
pairs with pre-trained Stable Diffusion, and 3) aligning the EEG, text, and im-
age spaces using CLIP encoders. Firstly, we leverage masked signal modeling
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Fig. 2: Overview of DreamDiffusion. Our method comprises three main compo-
nents: 1) masked signal pre-training for an effective and robust EEG encoder, 2) fine-
tuning with limited EEG-image pairs with pre-trained Stable Diffusion, and 3) aligning
the EEG, text, and image spaces using CLIP encoders.

with lots of noisy EEG data to train an EEG encoder to extract contextual
knowledge. The resulting EEG encoder is then employed to provide conditional
features for Stable Diffusion via the cross-attention mechanism. In order to en-
hance the compatibility of EEG features with Stable Diffusion, we further align
the EEG, text, and image embedding spaces by reducing the distance between
EEG embeddings and CLIP image embeddings during fine-tuning. After that,
we obtain DreamDiffusion, which is capable of generating high-quality images
from EEG signals only.

3.1 Masked signal pre-training for effective and robust EEG
representations

EEG (Electroencephalogram) data is a recording of electrical activity generated
by the human brain, measured using electrodes placed on the scalp. It is a non-
invasive and low-cost method of measuring brain activity. EEG data has several
characteristics. Firstly, the data is two-dimensional, with one dimension repre-
senting the channels or electrodes placed on the scalp, and the other dimension
representing time. The temporal resolution of EEG is high, meaning that it can
capture rapid changes in brain activity that occur on the order of milliseconds.
However, the spatial resolution of EEG is low, meaning that it is difficult to pre-
cisely localize the source of the activity within the brain. Secondly, EEG signals
are highly variable, influenced by factors such as age, sleep, and cognitive state.
Finally, EEG data is often noisy, and requires careful processing and analysis to
extract meaningful information.

Due to the inherent variability and noise in EEG data, conventional model-
ing methods often struggle to extract meaningful information from EEG signals.
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The EEG data itself contains many signals unrelated to the corresponding vi-
sual concepts (noise), making the results of simply utilizing EEG through an
unpretrained encoder inaccurate. Consequently, adopting masked signal model-
ing techniques, which have been proven effective in capturing contextual infor-
mation from noisy and variable data [7, 17], represents a promising avenue for
deriving meaningful contextual knowledge from large-scale noisy EEG data. Dif-
ferent from MAE [17] and MinD-Vis [7], which treat inputs as two-dimensional
images and mask the spatial information, we consider the temporal characteris-
tics of EEG signals, and dig deep into the semantics behind temporal changes
in people’s brains.

Given the high temporal resolution of EEG signals, we first divide them into
tokens in the time domain, and randomly mask a certain percentage of tokens.
Subsequently, these tokens will be transformed into embeddings by using a one-
dimensional convolutional layer. Then, we use an asymmetric architecture such
as MAE [17] to predict the missing tokens based on contextual cues from the
surrounding tokens. Through reconstructing the masked signals, the pre-trained
EEG encoder learns a deep understanding of EEG data across different people
and various brain activities.

3.2 Fine-tuning with Stable Diffusion on limited EEG-image pairs

After obtaining an effective representation of EEG signals from masked signal
pre-training, we utilize it to generate images by leveraging a pre-trained Stable
Diffusion (SD) model. Stable Diffusion involves gradually denoising a normally
distributed variable to learn a data distribution. SD is augmented with a cross-
attention mechanism for more flexible conditional image generation and the most
common condition is the text prompt. Stable Diffusion has shown great genera-
tive power in generating high-quality images from various types of signals, such
as labels, text, and semantic maps.

Stable Diffusion operates on the latent space. Given an image x in pixel
space, x is encoded by a VQ encoder E(·) to obtain the corresponding latent
z = E(x). Conditional signals are introduced by the cross-attention mechanism
in the UNet. This cross-attention can also incorporate conditional information
from the EEG data. Specifically, the output of EEG encoder y is further pro-
jected with a projector τθ into an embedding τθ(y) ∈ RM×dτ . Then, this EEG
representation is incorporated into U-Net by a cross-attention layer implement-
ing Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V .

Q = W
(i)
Q · φi (zt) ,K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y), (1)

where φi (zt) ∈ RN×di
e denotes intermediate values of the U-Net. W

(i)
V ∈

Rd×di
ϵ ,W

(i)
Q ∈ Rd×dτ and W

(i)
K ∈ Rd×dτ are projection matrices with learnable

parameters.
During the fine-tuning process, we optimize the EEG encoder and cross-

attention heads of the U-Net together. We keep the remaining parts of Stable
Diffusion fixed. We use the following SD loss function for fine-tuning.
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Fig. 3: Main results. The images on the left depict paired image data, while the
three images on the right represent the sampling results. It can be observed that our
model generates images of high quality from the EEG data, and these images match
the EEG data accurately.

LSD = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t, τθ(y))∥22

]
, (2)

where ϵθ is the denoising function implemented as UNet.

3.3 Aligning the EEG, text, and image spaces with CLIP encoders

Next, we will fine-tune the EEG representation obtained from pre-training to
make it more suitable for generating images. The pre-trained Stable Diffusion
model is specifically trained for text-to-image generation; however, the EEG
signal has its own characteristics, and its latent space is quite different from
that of text and image. Therefore, directly fine-tuning the Stable Diffusion model
using limited EEG-image paired data is unlikely to accurately align the EEG
features with the text embeddings.
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Fig. 4: Comparison with Brain2Image. The quality of the generated images pro-
duced by DreamDiffusion is significantly higher than those generated by Brain2Image.

Thanks to the use of CLIP [27] and the training on a large number of text-
image pairs, the text and image spaces in Stable Diffusion are well aligned.
Therefore, we propose to employ additional CLIP [27] supervision to assist in
the alignment of EEG, text, and image space. Specifically, the EEG features
obtained from the pre-trained encoder are transformed into embeddings with
the same dimension as those of CLIP through a projection layer. We then use
a loss function to minimize the distance between the EEG embeddings and the
image embeddings obtained from the CLIP image encoder. The CLIP model is
fixed during the fine-tuning process. The loss function is defined as follows:

Lclip = 1− EI(I) · h(τθ(y))
|EI(I)||h(τθ(y))|

, (3)

where h is a projection layer and EI is the CLIP image encoder. This loss
function can encourage the EEG features to become more closely aligned with
the image and thus more similar to text features. In this way, we can align the
EEG signal, text and image in one unified space. The optimized EEG embedding
representation is more suitable for SD image generation, which in turn improves
the quality of generated images. CLIP alignment is not primarily to enhance
understanding of EEG, but rather to improve the adaptability of the effective
EEG representations obtained from pretraining to Stable Diffusion.
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4 Experiments and Analyses

4.1 Implementation details

Data for EEG representation pre-training. We have collected approxi-
mately 120,000 EEG data samples from over 400 subjects with channel ranges
from 30 to 128 on the MOABB [20] platform for the EEG pre-training. These
data include all EEG data with more than 30 channels in the platform. MOABB
is a software package designed to facilitate the development of brain-computer
interface (BCI) algorithms by providing a collection of publicly available EEG
datasets in a common format, along with a suite of state-of-the-art algorithms.
This platform enables researchers to easily validate new algorithms using auto-
mated statistical analysis, eliminating the need for time-consuming and unre-
liable data preprocessing. These data contain a wide variety of EEG data, in-
cluding tasks such as looking at an object, motor imagery, and watching videos.
Our goal is to learn universal representations from diverse EEG data, without
specific requirements on the types of EEG data.

Due to variations in the equipment used for data acquisition, the channel
counts of these EEG data samples differ significantly. To facilitate pre-training,
we have uniformly padded all the data that has fewer channels to 128 chan-
nels by filling missing channels with replicated values. During the pre-training
process, every 4 adjacent time steps are grouped into a token and each token
is transformed into a 1024-dimensional embedding through a projection layer
for subsequent masked signal modeling. The loss function calculates the MSE
between the reconstructed and original EEG signals. The reconstruction is per-
formed on the entire set of 128 channels as a whole, rather than on a per-channel
basis. The loss is only computed on masked patches. The reconstruction is per-
formed on the entire set of 128 channels as a whole, rather than on a per-channel
basis. The decoder is discarded after pretraining.

Our data processing method included the Beta (15-31 Hz) and Gamma (32-
70 Hz) bands, as they convey information involved in visual perception, as well
as potentially useful frequencies. EEG signals below 5Hz typically only appear
during deep sleep, so it is unlikely that useful signals below 5Hz would be present
in the data we used. Since the data used in pre-training comes from different
regions and devices with varying line noises, we did not consider this for uniform
processing. Moreover, based on experiments from previous works, the impact of
line noise is not significant.
Paired EEG-image data. We adopt the ImageNet-EEG [22] dataset for our
“thoughts-to-image” experiments, which is a collection of EEG recordings ob-
tained from 6 subjects while they were shown 2000 images belonging to 40
different categories of objects from the ImageNet dataset. Each category con-
sisted of 50 images, and each image was presented for 0.5 seconds, followed by
a 10-second pause for every 50 images. The EEG data were recorded using a
128-channel Brainvision EEG system, resulting in a total of 12000 128-channel
EEG sequences. The dataset includes images of various objects, such as animals
(dogs, cats, elephants, etc.), vehicles (airliners, bikes, cars, etc.), and everyday
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objects (computers, chairs, mugs, etc.). More details can be found in the related
reference [22].
Other details. We use version 1.5 of Stable Diffusion for image generation. The
mask ratio for EEG signals is set to 75%. All EEG signals are filtered within
the frequency range of 5-95 Hz. Subsequently, the signals are truncated to a
common length of 512. The encoder is pre-trained for 500 epochs and finetuned
with Stable Diffusion for another 300. The pre-training model for EEG is similar
to ViT-Large [14]. The training and testing were conducted on the same subject,
and all results presented in the paper were generated using data from Subject
4. For more results, please refer to the supplementary material.

Table 1: More comparison evaluation. In the context of comparing various quan-
titative metrics, our method outperforms previous approache significantly across the
board.

Methods FID ↓ IS ↑ PSNR ↑ SSIM ↑ LPIPS ↓

Brain2Image 18.76 5.06 12.8 0.213 0.701
Ours 3.61 28.54 14.6 0.267 0.644

4.2 Comparison with Brain2Image

In this section, we present a comparison of our proposed approach with Brain2I-
mage [22]. However, it presents results for only a few categories and does not
provide a reference implementation. In light of this, we conducted a qualitative
comparison of the results on a few categories (namely, Airliner, Jack-o-Lantern,
and Panda) that were showcased in the Brain2Image paper. To ensure a fair
comparison, we followed the same subjective evaluation strategy as outlined by
Brain2Image and presented generated instances of different methods in Figure 4.
The top rows depict the results generated by Brain2Image, whereas the bottom
rows were generated by our proposed method, DreamDiffusion. We observed that
the quality of the generated images produced by DreamDiffusion is significantly
higher than those generated by Brain2Image, thus validating the efficacy of our
proposed method.

Due to the limited number of images available, using metrics like FID/IS
may be unstable and cannot effectively measure the quality of generated images.
Therefore, we provide the FID/IS metrics here only as a reference (Table 1). The
metrics are calculated using images from Brain2Image paper. Nonetheless, our
method significantly surpasses previous approache in terms of these quantitative
metrics. We also add some other similarity-based metrics or perception-based
ones here. Since our method aims not for precise image reconstruction but for
generating corresponding conceptual images from EEG signals, these metrics are
provided for reference only.
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4.3 Ablation studies

In this section, we conduct several ablation studies on the proposed framework
using various cases. We evaluate the effectiveness of different methods by em-
ploying a 50-way top-1 accuracy classification task. We use a pre-trained Ima-
geNet1K classifier [14] to determine the semantic correctness of the generated
images. Both the ground-truth and generated images will be inputted into the
classifier. Then, we will verify whether the top-1 classification of the generated
image matches the ground-truth classification in 50 selected classes. A generated
image will be deemed correct as long as the semantic classification results of the
generated image and the ground-truth are consistent.

Table 2: Quantitative results of ablation studies. E and A represent fine-tuning
of the encoder and cross-attention heads, respectively. Params: trainable parameters
in the EEG encoder. Lines 1-4 mainly aim to illustrate the impact of clip fine-tuning
without pre-training on the results. Lines 5-7 aim to explain the influence of different
mask ratios on the results. Lines 8-11 demonstrate the impact of encoder parameter
volume, where larger parameters do not necessarily yield better results. Finally, lines
12-14 elucidate the effects of fine-tuning the encoder or attention layer separately.

Model MSM Pretraining CLIP Finetuning Mask Ratio E + A Params Acc (%)
Full ! ! 0.75 E + A 297M 45.8

1 % % - E + A 297M 4.2

2 % % - E + A 18.3M 3.7

3 % ! - E + A 297M 32.3

4 % ! - E + A 18.3M 24.5

5 ! ! 0.25 E + A 297M 19.7

6 ! ! 0.5 E + A 297M 38.3

7 ! ! 0.85 E + A 297M 33.4

8 ! ! 0.75 E + A 458M 38.5

9 ! ! 0.75 E + A 162M 36.6

10 ! ! 0.75 E + A 74M 29.8

11 ! ! 0.75 E + A 18.3M 28.7

12 ! ! 0.75 E only 297M 22.4

13 ! % 0.75 E + A 297M 28.3

14 ! % 0.75 A only 297M 20.9

Role of pre-training: To demonstrate the effectiveness of the pretraining with
large-scale EEG data, we conduct a validation by training several models with
untrained encoders. One of the models is identical to the full model, while the
other model has a shallow EEG encoding layer with only two layers to avoid
overfitting the data. During the training process, the two models were trained
with and without clip supervision, and the results are shown in Table 2, Model
1-4. It can be observed that the accuracy of the model without pre-training
decreased.
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The EEG data itself contains many signals unrelated to the corresponding
visual concepts (noise), making the results of simply utilizing EEG through an
unpretrained encoder inaccurate. The pretraining method, with random masking
operations, exposes the model to various types of noise and interference during
pre-training to reconstruct the original signal, thereby enabling the model to
learn effective representations of visual concepts. The improvements in accuracy
after using the pretrained encoder are manifested as “effective” and “robust.”
Mask ratios: We investigate to determine the optimal mask ratio for MSM
pretraining with EEG data. As shown in Model 5-7 of Table 2, excessively high
or low mask ratios can have a detrimental effect on the model’s performance.
The highest overall accuracy was achieved at a mask ratio of 0.75. This finding
is significant as it suggests that, unlike natural language processing where low
mask ratios are commonly used, a high mask ratio is also a preferable option
when performing MSM on EEG.
CLIP aligning: One of the keys of our method is to align the EEG representa-
tion with the image through the CLIP encoder. CLIP alignment is not primarily
to enhance understanding of EEG, but rather to improve the adaptability of
the effective EEG representations obtained from pretraining to Stable Diffusion.
To validate the effectiveness of this approach, we conducted experiments 13-14
as shown in Table 2. It can be observed that the performance of the model
significantly decreases when CLIP supervision is not used. In fact, as shown in
the bottom right corner of Figure 5, even in the absence of pre-training, using
CLIP to align EEG features can still yield reasonable results, which highlights
the importance of CLIP supervision in our method.
Other aspects: We further illustrate the roles of the remaining parts by ex-
plaining Figure 5 and Table 2. As shown in the two images in the top-right
corner of Figure 5, using an encoder without pre-training and fine-tuning with
CLIP results in very poor quality generation. Even when the encoder is trained
but not fine-tuned afterward, we find that it can decode concepts to some ex-
tent, but the quality is significantly inferior (bottom 1st). Without fine-tuning
the cross-attention layers of the stable diffusion simultaneously, accurate results
cannot be obtained (bottom 2nd). Decoding corresponding concepts without us-
ing CLIP during fine-tuning yields somewhat accurate but not entirely precise
results (bottom 3rd). While fine-tuning solely with CLIP can align EEG with
corresponding concepts to some extent, the effectiveness is not as high as with
the fully pre-trained method (bottom 4th). In conclusion, achieving high-quality
image generation from EEG data using Stable Diffusion is not straightforward,
and each aspect of the method discussed in the paper is indispensable.

Looking at the results in Table 2, lines 1-4 primarily aim to illustrate the
impact of clip fine-tuning without pre-training on the results. It can be observed
that regardless of the number of parameters in the encoder, clip supervision
helps construct the mapping from EEG signals to images, but it does not nec-
essarily aid in learning effective EEG representations. In any case, the accuracy
is lower compared to the pre-trained complete method. Lines 8-11 demonstrate
the impact of encoder parameter volume, indicating that larger parameters do
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Fig. 5: Qualitative results of ablation studies. The top-right two images illustrate
the effects of using an encoder without pre-training and fine-tuning with CLIP. The
results when the encoder is not further fine-tuned after training (1st in the line be-
low). The results when the cross-attention layers of stable diffusion are not fine-tuned
simultaneously (2nd in the line below). The results when clip is not used during the
fine-tuning process (3rd in the line below), and the results when only clip is used for
fine-tuning (4th in the line below).

not always lead to better results. When the parameter volume is too large, it
may fit some irrelevant noise in the EEG signals. Lines 12-14 aim to explain the
effects of fine-tuning only the encoder or attention layer. It can be observed that
fine-tuning either of them alone is not conducive to adapting the representation
of EEG to the conditional input of stable diffusion, resulting in a decrease in
corresponding accuracy.

4.4 Moving beyond coarse category information.

Comparing to reconstruction, our approach aims to utilizes EEG as a conditional
input to generate images. Sometimes, our brains conceive abstract concepts that
are not specific entities. Like Brain2Image, our objective is to use EEG sig-
nals containing abstract concepts to generate corresponding images, rather than
precise reconstruction for entities. Additionally, the data utilized in the current
experiments mainly contain category-level information, as each image was dis-
played for 0.5 seconds during data acquisition. We will explore more detailed
levels of image generation in the future, such as collecting EEG data with richer
semantics.

Although EEG data only provide coarse-grained information at the category
level in experimental results currently, our method aims to explore the possi-



14 Bai et al.

Fig. 6: Failure cases of DreamDiffusion. Some certain categories are erroneously
mapped to others due to their similarity in shapes or colors.

bility of generating images from EEG, rather than merely substituting category
information with EEG. If we use category labels instead of CLIP as supervision,
the accuracy will reach 86.7%. If we directly use category labels as input, the
accuracy can reach 97.2%. However, adding category labels is not a good prac-
tice because we aim to use EEG in future that is semantically richer than just
category information. Utilizing CLIP with EEG-image paired data for finetuning
is undoubtedly a better and more appropriate choice for future application.

5 Conclusion

This paper proposes a novel method, DreamDiffusion, for generating high-quality
images from EEG signals, which is a non-invasive and easily obtainable source
of brain activity. The proposed method addresses the challenges associated with
EEG-based image generation by utilizing the knowledge learned from large EEG
datasets and the powerful generative capabilities of image diffusion models.
Through a pre-training and fine-tuning scheme, EEG data can be encoded to the
representation suitable for image generation using Stable Diffusion. Our method
represents a significant advancement in the field of image generation from brain
activity.
Limitations. Figure 6 shows some failure cases, where some categories are
mapped to other categories with similar shapes or colors. We assume this may be
due to the fact that the human brain considers shape and color as two important
factors when recognizing objects. Nevertheless, DreamDiffusion has the poten-
tial to be used in a wide range of applications, such as neuroscience, psychology,
and human-computer interaction.
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