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In the supplementary material, we provide the technical details of the room-
wise encoder in Sec. 1, additional ablation studies in Sec. 2, quantitative and
qualitative results of semantically-rich floorplans in Sec. 3, and more visualized
comparison results in Sec. 4.

1 Room-wise Encoder Details

This section discusses the details of the room-wise encoder. We utilize a DETR-
based [1] transformer architecture to process a single floorplan image input and
output several room feature codes, each corresponding to a latent representa-
tion of a room. Figure 1 illustrates the architecture of the room-wise encoder,
which is divided into three modules: CNN backbone, transformer encoder, and
transformer decoder. Given an input image, we first utilize a CNN backbone
(ResNet50 [3]) to extract L layers of multi-scale feature maps {z;}~ ,, where
each layer’s feature map has ¢ channels. Subsequently, the multi-scale feature
maps are fed into the transformer encoder to generate enhanced feature maps
{#,}L_, with the same resolutions as the inputs. The entire transformer encoder
is composed of multiple encoder layers, each of which includes a multi-scale de-
formable self-attention module (borrowed from Deformable DETR [6]) and a
feed-forward network. Then, we input m learnable embeddings F' € R™*? into
the transformer decoder. These embeddings adaptively extract local room fea-
tures from the global image features output by the transformer encoder, such
that each output embedding corresponds to a latent feature representation of a
room. For each learnable embedding f € RY, we discovered that using a single
code with channel ¢ to represent each embedding, i.e., f € R, is insufficient for
accurate reconstruction. Instead, inspired from RoomFormer [4], we employ a
stack of d codes to represent each learnable embedding f € R?*¢. The entire
transformer decoder is divided into 7 decoder layers. In the first 6 layers of the
decoder layers, we perform self-attention on all local-level codes regardless of
the room they belong to. In the cross-attention module, the learnable local-level
codes extract different regions of image feature output from the transformer en-
coder. In the final decoder layer, we additionally introduce room-wise attention,
which restricts the local-level codes to attend only to codes within the same room.
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Fig. 1: The room-wise encoder architecture.

Table 1: Additional ablation studies.

Settings Room Corner Angle

Prec. Rec. Prec. Rec. Prec. Rec.

Default 99.5 98.7 90.8 84.9 89.6 84.3

Using general lines 98.3 973 85.8 844 788 775
Using sigmoid function 97.8 93.2 87.8 70.8 86.9 70.2

The local-level codes that belong to the same room are concatenated to produce
the respective output room feature codes. The output room feature codes not
only capture global image information but also aggregate local information from
their corresponding rooms, which is sufficient for the final decoding.

2 Additional Ablation Studies

We provide additional ablation studies on two aspects: (1) Using general lines
instead of separate lines, and (2) Using the sigmoid function instead of the loss
terms defined in Eq. (7) and (11).

As shown in the 2°¢ row of Table 1, directly predicting the diagonal lines
is less effective. Our objective is to optimize parameters for all the lines. While
diagonal lines offer a more general representation, directly predicting them can
lead to an extensive solution space. This complexity can impede the model’s abil-
ity to accurately identify horizontal and vertical lines, which are predominant in
most architectural layouts. To address this, we’ve adopted a two-phase predic-
tion: first focusing on horizontal and vertical lines to establish a robust initial
structure, then introducing diagonal lines for angular features. This methodical
approach has yielded substantial performance benefits.

As shown in the 3'¢ row of Table 1, using the sigmoid function decreases
overall metrics, indicating that the loss terms defined in Eq. (7) and (11) are
more effective for optimizing the binary matrix.

3 Semantically-Rich Floorplans

Our method can easily be extended to semantically-rich floorplans, where we
input the room-level features into a simple linear layer to predict the room label
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Table 2: Semantically-rich floorplan reconstruction scores on Structured3D test set.

*
Methods Room Room Corner Angle

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
RoomFormer [4] 71.9 70.9 94.0 92.8 84.2 80.0 756 719
Ours 75.1 74.4 98.5 97.6 88.3 84.2 87.1 83.1

probabilities. The quantitative result on the semantically-rich floorplan is shown
in Table 2. Our model still outperforms RoomFormer after considering the room
categories. The qualitative results are shown in Figure 2.

4 More Visualization Results

We provide more comparison results with HEAT [2] and RoomFormer [4] on
Structured3D [5] in Figure 3 and 4.
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Ground Truth

Fig. 2: Qualitative results on semantically-rich floorplans.
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Fig. 3: More qualitative results on Structured3D [5].



Fig. 4: More qualitative results on Structured3D [5].



	FRI-Net: Floorplan Reconstruction via Room-wise Implicit Representation  Supplementary Material

