
PoseAugment 1

A Implementation Details

We will provide the implementation details including the training and evalua-
tions of PoseAugment, for future researchers to reproduce our work.

A.1 VAE Model Structure.

Fig. 4: The VAE model structure details. Two adjacent frames are first input to the
encoder with two separate residual blocks. After reparameterization, predictions of the
current frame x0

t will be reconstructed by the decoder with the MoE architecture.

Fig. 4 demonstrates the structure details of our VAE model. The current
frame xt, together with the condition frame xt�1, are first input to the encoder
network to capture a latent representation of their differences. The encoder is
comprised of 4 FC layers connected by two separate residual blocks. Then, the
encoding heads will output the mean and the standard deviation of the latent
vector, representing its distribution. The reparameterization stage finally adds
noises obeying the standard deviation � to the mean vector µ, generating dis-
turbed latent vectors.

Next, the latent vector is first decompressed to zexp, which will be decoded
together with the condition frame xt�1 by the decoder with a MoE architecture
[23]. The MoE network consists of 6 identical expert networks. Their output
is smoothed by the weight from the gate network, generating a more stable



2 Li et al.

motion prediction. Finally, the predicted frame x0
t will the current frame in the

reconstructed poses as well as the next condition frame in the next prediction.
In total, the VAE model contains 2950k parameters, which is lightweight and

easy to train.

A.2 Training VAE Model.

To make the autoregressive prediction stable, we adopted the scheduled sampling

technique proposed by [23]. First, the pose sequences are cut into mini-batches
with lengths equal to 30. Within each mini-batch, each pose prediction x0

t will
be used as the next conditioned frame xt�1 with probability (1 � p), while the
ground truth xt will be used with probability p. The total training epochs are
divided into three stages, including the supervised stage (p = 1), the transition
stage (p decreasing from 1 to 0 linearly), and the autoregressive stage (p = 0).
Since the VAE model during inferencing is purely autoregressive, this design will
make our model robust to self-prediction errors. In practice, since the sampling
rate is relatively high (60Hz, which means the frame difference is small for each
prediction), we choose L = 30 (0.5s) and the lengths of the three stages to be
50, 150, and 200 epochs.

In total, we trained the VAE model first with 10 warm-up epochs, where the
learning rate increased from 2⇥ 10�6 to 2⇥ 10�5 linearly. Then, the model was
trained with 400 scheduled sampling epochs in total, where the learning rate
started from 2 ⇥ 10�5 and decayed exponentially with a factor of 0.99 for each
epoch. We used the Adam optimizer, with a batch size equal to 512.

A.3 Baseline Methods

Our baselines include Jitter, MotionAug [26], ACTOR [34], and MDM [41] (in-
cluding MDM-M2M and MDM-T2M). Jitter is a universal data augmentation
method, that could be applied to any data modalities. MotionAug is a VAE/IK-
based method, trained on HDM05, and only supports 8 motion types. ACTOR
and MDM are conditioned on action labels and text descriptions, which also
require specific annotated datasets. Therefore, we first applied these methods
on their corresponding datasets to generate the basic datasets, as described in
Sec. 4.3. After that, we applied these methods again, together with Jitter and
PoseAugment to generate the augmented datasets.

For Jitter, we add random noise ⇠ N(0,�2) to the IMU data, following
[49,50]. To find the best �, we first conducted a pilot study, using different � to
train the TransPose model, and selected the best � with minimal reconstruction
errors. We searched � within {1 ⇥ 10x, 2 ⇥ 10x, 5 ⇥ 10x}, x 2 {�1,�2,�3,�4},
and got the best � = 0.002.

For MotionAug, since the IK-based method needs users to annotate the mo-
tion keyframes (referred to as "semi-automatic" in the original paper), we di-
rectly used 1/5 of the released dataset as the basic dataset, and 4/5 as the
augmented dataset.



PoseAugment 3

For ACTOR, we generated 200 motion clips for each action (12 actions in
total) as the basic dataset, and 800 motions for each action as the augmented
dataset. Each motion clip is sampled at 20Hz and contains 70 frames. Then,
all motion clips are upsampled to 60Hz using quadratic interpolation, to be
consistent with TransPose.

For MDM-T2M, we generate 1 motion clip for each text in the HumanML3D
text split (4384 texts in total) as the basic dataset, and 4 motions for each text
as the augmented dataset. Each motion clip is sampled at 20Hz and contains
120 frames. We upsampled the motions to 60Hz as well to train the TransPose
model.

For MDM-M2M, we modified the diffusion model in the original MDM, such
that it can denoise partially noised motions. We chose the partial noising steps
to be 500 (half of the original MDM model), such that the generated motion
diversity (dpos = 0.71cm, drot = 2.42�, the same metric as in Sec. 4.1) is compa-
rable with PoseAugment (dpos = 0.82cm, drot = 1.91�). Then, we generated the
basic and augmented datasets using the modified MDM-M2M model in a similar
way as MDM-T2M.

To generate the augmented datasets for Jitter and PoseAugment, we used
them on all of the basic datasets generated by MotionAug, ACTOR, MDM-
M2M, and MDM-T2M. As last, we got the basic and augmented datasets for all
baselines and PoseAugment to evaluate their data augmentation performance.

A.4 MoCap Model Training

To evaluate data augmentation methods for training MoCap models, two key
factors need to be addressed: (1) How much basic data should be used? (2) How
much data should be augmented? They both affect the actual dataset size to
train the model, which is essential for the data augmentation performance, as
explored in [56].

For the basic data, the lengths of the datasets generated by MotionAug,
ACTOR, and MDM are 2.65h, 2.22h, and 8.89h respectively, which are chosen to
be comparable with the training dataset size of these methods. They simulate the
situation of using small or big datasets in real practice. For the augmented data,
we define the augmentation scale naug, which represents using 1⇥ of the basic
dataset together with (naug � 1)⇥ of the augmented dataset to train the model.
We found the data augmentation performance would converge quickly when naug

reaches about 5 (4⇥ of augmented data), and more data would not improve the
model performance. Therefore, we set naug to be 2 � 5 in our evaluation and
selected the best model in each training to simulate the tuning process on naug.

The training data are all resampled to 60Hz and are first cut to a fixed window
size of 200 before training. For the basic dataset generated by ACTOR (2.22h),
we trained the TransPose model for 200 epochs with batch size 64. When using
other datasets or a different naug, we modified the training epochs accordingly
to make sure the total training steps would be the same. We used the Adam
optimizer, with the learning rate decreasing linearly from 5⇥ 10�4 to 5⇥ 10�5.



4 Li et al.

B Qualitative Results

Here we further provide more motions generated by PoseAugment, to demon-
strate the generalizability of our method.

(a) Normal walking. (b) Running. (c) Running backward. (d) Crouching.

(e) Jumping high. (f) Jumping on 1 foot. (g) Kicking. (h) Punching.

(i) Waving hands. (j) Dodging. (k) Bending down. (l) Sitting down.

Fig. 5: More poses generated by PoseAugment, including various motion types. In each
subfigure, one ground truth pose (green) and 9 augmented poses (red) are visualized.

As shown in Fig. 5, we randomly selected some motions with different mo-
tion types from the AMASS dataset, and augmented 9 similar motions with
PoseAugment for each of them. As a result, the augmented poses followed the
original motions closely, but with more diversity to cover the motion space. It
simulates the repetitions during data collection. Compared with other M2M,
A2M, and T2M methods, our method is not limited to specific motion types,
and maintains the original data distribution well, which is essential for the data
augmentation task.



PoseAugment 5

C Discussion

We would like to discuss the key factors of our data augmentation method, the
comparison with diffusion-based methods, and the potential applications of our
method, which will provide more insights into our design choices, and benefit
future research that has similar goals to us.

C.1 Data Augmentation Performance

Fundamentally, all data-driven tasks expect the test data (in real use) to have
a similar distribution with the training data, so that the knowledge the model
acquires during training can be transferred to the test data. As a result, to
achieve the best test performance, we need the training data distribution to
be closer to the test data distribution, and the training data should cover this
distribution comprehensively.

In our work, we found that the data augmentation performance is related to
many factors, which confirms the above analysis. The first factor is the dataset
size. With a fixed training time, models trained on the HumanML3D (8.89h)
have a better accuracy compared with models trained with HumanAct12 (2.22h).
Models trained with the augmented dataset would also outperform using the
original dataset (Sec. 4.3). We also found the data augmentation performance
of PoseAugment is generally higher on smaller datasets, due to the problem of
overfitting. Thus, our method would benefit the tasks with high data collection
costs or involve few-shot learning the most.

Another factor is the data distribution. We found direct manipulation of the
IMU data (e.g . Jitter) would not improve the model performance much, since
it may fail to capture the physical constraints of the body joints, thus lowering
the data quality. Our method, on the other hand, synthesizes IMU signals from
augmented poses with physical plausibility. This would best fit the distribution
of the real MoCap data.

Last but not least, the data diversity is also important. From the experiments,
we conclude that the best structure of the training dataset is "diverse motion
types with proper repetitions", just like the normal data collection process. Since
the ACTOR and MDM-T2M models are only conditioned on high-level infor-
mation, the poses they generate have too much diversity and lack of repetitions.
It would make the model hard to converge, resulting in underfitting. PoseAug-
ment only generates poses with a high fidelity, while with appropriate diversity
to simulate the motion repetitions during data collection. This would make the
model easier to converge on each motion, but not overfit to a specific motion
pattern compared with no data augmentation at all. As a result, it achieved the
best performance in our experiments.

C.2 Compare with Diffusion-based Methods

Since diffusion models have been widely used in AIGC and human motion diffu-
sion models [4,21,41,51,54] have also been proposed to generate poses, we would
like to discuss why we chose VAE instead of diffusion models in our work.



6 Li et al.

Our first priority is data fidelity. Current human diffusion models are good
at generating high-quality data from random noises and condition information,
but not focus on reconstructing poses. The forward and reverse diffusion process
may introduce large fluctuations to the pose distribution. Our method recon-
structs motion frames with minimal errors to ensure the frame level consistency
for synthesizing IMU data. Therefore, we choose VAE over diffusion models to
achieve a higher data fidelity.

The second factor is data generation efficiency. Diffusion models are known
for a longer inferencing time [4] due to the iterative diffusion process, thus taking
a significantly longer time to generate data. Moreover, another practical reason
is that current human diffusion models are trained on the HumanML3D dataset,
which only generates global joint positions. They need first to be converted into
local joint rotations using Inverse Kinematics (IK), which are even more time-
consuming than generating joint positions. As a result, our method is 33⇥ faster
than MDM [41] and is a more pervasive data augmentation method.

C.3 Applications

PoseAugment aims to improve the model performance and alleviate the data
collection burden for IMU-based motion capture. Furthermore, since the human
pose is a general representation of human motion, our method can be used for
any tasks driven by poses but is not limited to augmenting IMU data. For exam-
ple, PoseAugment can directly benefit pose-based action recognition, anomaly
detection, and motion rendering tasks. The augmented poses can also be con-
verted to other modalities, like images or videos, to benefit CV-based motion
capture and recognition. The physical module estimates the dynamic proper-
ties of the human body, which can be adopted for motion-related diseases and
sports analysis. PoseAugment can also make contributions to early prototyping
and explorations in research when there are few available data to use before the
mass data collection. In a word, as long as data-driven approaches continue to be
widely employed, PoseAugment will bring value to the aforementioned domains.


	PoseAugment: Generative Human Pose Data Augmentation with Physical Plausibility for IMU-based Motion Capture

