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Abstract. In this paper, we introduce PixArt-Σ, a Diffusion Trans-
former model (DiT) capable of directly generating images at 4K resolu-
tion. PixArt-Σ represents a significant advancement over its predeces-
sor, PixArt-α, offering images of markedly higher fidelity and improved
alignment with text prompts. A key feature of PixArt-Σ is its train-
ing efficiency. Leveraging the foundational pre-training of PixArt-α, it
evolves from the ‘weaker’ baseline to a ‘stronger’ model via incorporating
higher quality data, a process we term “weak-to-strong training”. The ad-
vancements in PixArt-Σ are twofold: (1) High-Quality Training Data:
PixArt-Σ incorporates superior-quality image data, paired with more
precise and detailed image captions. (2) Efficient Token Compression:
we propose a novel attention module within the DiT framework that
compresses both keys and values, significantly improving efficiency and
facilitating ultra-high-resolution image generation. Thanks to these im-
provements, PixArt-Σ achieves superior image quality and user prompt
adherence capabilities with significantly smaller model size (0.6B param-
eters) than existing text-to-image diffusion models, such as SDXL (2.6B
parameters) and SD Cascade (5.1B parameters). Moreover, PixArt-Σ’s
capability to generate 4K images supports the creation of high-resolution
posters and wallpapers, efficiently bolstering the production of high-
quality visual content in industries such as film and gaming.
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1 Introduction

The recent emergence of high-quality Text-to-Image (T2I) models has profoundly
impacted the AI Generated Content (AIGC) community. This includes both pro-
prietary models such as DALL·E 3 [31], Midjourney [29], as well as open-source
models like Stable Diffusion [36] and PixArt-α [4]. Nonetheless, developing a
top-tier T2I model involves considerable resources; for instance, training SD1.5
from scratch necessitates about 6000 A100 GPU days [36], posing a substantial
barrier to individual researchers with limited resources and impeding innovation
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Fig. 1: Images generated by PixArt-Σ. The model can output photo-realistic,
high aesthetic, extreme aspect ratio, multi-style images, and follow user instructions.
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within the AIGC community. Over time, the AIGC community will gain access
to continuously updated, higher-quality datasets and more advanced algorithms.
A pivotal question is: how can we efficiently integrate these new elements into
an existing model, achieving a more powerful version within the constraints of
limited resources?

To explore this issue, our research focuses on enhancing PixArt-α, an ef-
ficient T2I training method. PixArt-α represents an early venture within the
DiT framework, a model structure with significant potential, as evidenced by
works such as GenTron [6], Sora [33] and Stable Diffusion 3 [42]. To maximize
this potential, we build upon the pre-trained foundation of PixArt-α, inte-
grating advanced elements to facilitate its continuous improvement, resulting in
a more powerful model, PixArt-Σ. We refer to this process of evolving from
a relatively weaker baseline to a stronger model through efficient training as
“weak-to-strong training”. Specifically, to achieve “weak-to-strong training”, we
introduce the following enhancements:

Higher-Quality Training Data: We collect a high-quality dataset supe-
rior to that used in PixArt-α, focusing on two key aspects: (i) High-quality
images: The dataset comprises 33M high-resolution images sourced from the
Internet, all exceeding 1K resolution, including 2.3M images with resolutions
around 4K. These images are predominantly characterized by their high aes-
thetic and encompass a wide range of artistic styles. (ii) Dense and accurate
captions: To provide more precise and detailed captions for the aforementioned
images, we replace the LLaVA [22] used in PixArt-α with a more powerful image
captioner, Share-Captioner [5]. Furthermore, to improve the model’s alignment
capacity between the textual and visual concepts, we extend the token length
of the text encoder (i.e., Flan-T5 [10]) to approximately 300 words. We observe
these improvements effectively eliminate the model’s tendency for hallucination,
leading to higher-quality text-image alignment.

Efficient Token Compression: To enhance PixArt-α, we expand its gen-
eration resolution from 1K to 4K. Generating images at ultra-high resolutions
(e.g ., 2K/4K) introduces a significant increase in the number of tokens, leading
to a substantial rise in computational demand. To address this challenge, we
introduced a self-attention module with key and value token compression tai-
lored to the DiT framework. Specifically, we utilize group convolutions with a
stride of 2 for local aggregation of keys and values. Additionally, we employ a
specialized weight initialization scheme, allowing for a smooth adaptation from
a pre-trained model without KV compression. This design effectively reduces
training and inference time by ∼34% for high-resolution image generation.

Weak-to-Strong Training Strategy: we propose several fine-tuning tech-
niques to rapidly adapt from a weak model to a strong model efficiently. That
includes (1) replacing with a more powerful Variational Autoencoder (VAE) [36],
(2) scaling from low to high resolution, and (3) evolving from a model without
Key-Value (KV) compression to one with KV compression. These outcomes con-
firm the validity and effectiveness of the “weak-to-strong training” approach.
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3840x2160 (4K 16:9 HD)

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, 
and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, 
creating a mirror effect of the colorful lights. Many pedestrians walk about.

Fig. 2: 4K image generation with complex dense instructions. PixArt-Σ can
directly generate 4K resolution images without post-processing, and accurately respond
to the given prompt.

Through the proposed improvements, PixArt-Σ achieves high-quality 4K
resolution image generation at a minimal training cost and model parameters.
Specifically, fine-tuning from a pre-trained model, we additionally utilize only
9% of the GPU days required by PixArt-α to achieve a strong 1K high-
resolution image generation model, which is impressive considering replacing
with new training data and a more powerful VAE. Moreover, we use only 0.6B
parameters while SDXL [36] and SD Cascade [35] use 2.6B and 5.1B parameters
respectively. Images generated by PixArt-Σ possess an aesthetic quality com-
parable to current top-tier T2I products, such as DALL·E 3 [31] and MJV6 [29]
(as in Fig. 4). Additionally, PixArt-Σ also demonstrates exceptional capability
for fine-grained alignment with textual prompts (as shown in Fig. 2 and 3).

2 Related Work

Diffusion Transformers. The Transformer architecture has achieved remark-
able success across various domains, such as language modeling [37,38], computer
vision [23, 43, 51, 53], and other areas [3, 14]. In the realm of diffusion models,
DiT [34] and UViT [2] pioneer the use of Transformer architecture. Subsequent
works, including DiffiT [15], SiT [28], and FiT [26], have improved upon DiT’s
architecture, while [12, 52] enhance training efficiency through masked model-
ing techniques. For Text-to-Image (T2I) synthesis, PixArt-α [4] explore efficient
T2I training schemes, achieving the first Transformer-based T2I model capable of
generating 1024px high-quality images. GenTron [6] explores the flexibility and
scalability of diffusion Transformers in both image and video generation. The re-
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Prompt: A close-up photo of a person. The subject is a woman. She wore a blue coat with a gray dress underneath. She 
has blue eyes and blond hair, and wears a pair of earrings. Behind are blurred city buildings and streets.

PixArt-α PixArt-ΣSDXL

Prompt: Pixel art style of a snowboarder in mid-air performs a trick on a black rail, wearing a blue sweatshirt and 
black pants, with arms outstretched. The serene snowy landscape background, dotted with trees, complements the 
scene. The low-angle perspective emphasizes the trick's height and skill.

Prompt: half a solid black background and half a solid white background

PixArt-α

Fig. 3: Comparison of PixArt-Σ with open-source models, e.g., PixArt-α
and SDXL: Compared with PixArt-α, PixArt-Σ improves the realism of portraits
and the capability of semantic analysis. Compared with SDXL, our method has a better
ability to follow user instructions. The keywords are highlighted as blue.

cent advent of the powerful video generation model Sora [33] has further under-
scored the potential of Diffusion Transformers. In this work, for the first time, we
explore using the Transformer architecture to generate 4K ultra-high-resolution
images directly, tackling the computational complexity challenges posed by in-
volving long-sequence tokens.
High Resolution Image Generation greatly enhances visual quality and is
important in various industries such as film and gaming. However, increasing
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Prompt: a small cactus with a happy face in the Sahara desert

Adobe Firefly 2 Google Imagen 2

OpenAI Dalle3 Midjourney V6

PixArt-Σ

Prompt: a cherry pick scientist

PixArt-Σ Adobe Firefly 2 Google Imagen 2

OpenAI Dalle3 Midjourney V6

Fig. 4: Compare PixArt-Σ and four other T2I products: Firefly 2, Imagen 2,
Dalle 3, and Midjourney 6. Images generated by PixArt-Σ are very competitive with
these commercial products.

image resolution introduces challenges due to the substantial increase in com-
putational demands. Numerous methods have been explored in this direction.
For instance, Imagen [40], GigaGAN [18] and Stable Diffusion [39] introduce an
additional super-resolution network, while Stable Cascade [35] employs multiple
diffusion networks to increase resolution progressively. These combined-model so-
lutions, however, can introduce cumulative errors. On the other hand, works like
SDXL [36], DALL·E 2 [30], Playground [19] and PixArt-α [4] have attempted
to generate high-resolution images using diffusion models directly. Nevertheless,
these efforts are capped at generating images with resolutions up to 1024px
due to computational complexity. In this paper, we push this boundary to 4K
resolution, significantly enhancing the visual quality of the generated content.
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Efficient Transformer architecture. The self-attention mechanism in Trans-
former suffers from quadratic computational complexity with respect to the num-
ber of tokens, which hinders the scaling up of token quantity. Many works have
sought improvements in this area: (1) Sparse Attention [7, 8, 45, 46, 48], which
reduces the overall computational load by selectively processing a subset of to-
kens. For instance, PVT v2 [46] employs a convolutional kernel to condense the
space of the key and value, thus lowering the complexity involved in comput-
ing the attention. (2) Local Attention [13, 23, 47, 54] focuses attention within
nearby regions; notably, Swin Transformer [23] utilizes window-based attention
to limit computations to within a specified window size. (3) Low-rank/Linear
Attention [9, 25, 44]. The Linformer [44] reduces the computational complexity
of the self-attention mechanism through low-rank approximations. In this pa-
per, inspired by PVT v2 [46], we employ a self-attention mechanism based on
key/value compression to mitigate the high complexity of processing 4K images.

3 Framework

3.1 Data Analysis
The image features a large, ornate church with a tall, pointed roof and a large stained-glass window. The 
church is situated in a city, and it has a white and gray color scheme. The style of the church is Gothic, 
which is evident from the pointed roof and the intricate details of the stained-glass window. The presence of 
statues and a clock on the building further emphasizes the grand and historical nature of the structure. 

The image captures the grandeur of a cathedral, painted in a pristine white, stands majestically against the 
backdrop of a clear blue sky. The entrance to the cathedral is adorned with a large rose window. Flanking the 
entrance are statues of saints, standing as silent guardians of the sacred space within. The perspective of the 
photo, taken from a low angle. The lush green trees in the background adding serenity to the scene.

LLaVA
Hallucinations

Share-Captioner
Correctness

The image features a woman and a man sitting on a brick walkway near a body of water, which could be a 
river or a lake. They are both wearing head coverings, and the woman is holding a handbag. The scene is set 
during the day, with the sun shining brightly, creating a warm and inviting atmosphere. The style of the 
image is a black and white photo, which adds a timeless and classic feel to the scene. 

The image captures a serene scene at a harbor. Two individuals are seated on a bench, their backs to the 
camera, engrossed in the view of the water. The water, a deep shade of blue, is dotted with boats of various 
sizes and colors, including a white boat with a green stripe and a red boat. The sky above is a light blue.

Share-Captioner
Correctness

LLaVA
Hallucinations

Fig. 5: Comparative illustration of hallucinations: Contrasting differences in hal-
lucination occurrences between LLaVA and Share-Captioner, with red indicating hal-
lucinations and green denoting correctness.

Higher Aesthetic and higher Resolution. To enhance the aesthetic quality
of our dataset, we expand our internal data from 14M to 33M. For clarity, we
name the two datasets Internal-α and Internal-Σ, respectively. Note that this
expansion still falls short compared to the vast images utilized by currently
available open-source models like SD v1.5, which uses 2B data. We demonstrate
that effective training strategies with limited data amount can still obtain a
strong T2I model.

The images within Internal-Σ are above 1K resolution. To facilitate 4K res-
olution generation, we additionally collect a dataset of 8M real photographic
images at 4K resolution. To ensure aesthetic quality, we employ an aesthetic
scoring model (AES) [1] to filter these 4K images. This process yields a highly
refined dataset of 2M ultra-high-resolution and high-quality images.

Interestingly, we have observed that as the resolution of the images in-
creases, there is an improvement in the model’s fidelity (Fréchet Inception Dis-
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Table 1: Statistics of noun concepts for different datasets. VN: valid distinct
nouns (appearing more than 10 times); DN: total distinct nouns; Average: average
noun count per image; ACL: Average Caption length.

Dataset Volume Caption VN/DN Total Noun ACL Average

Internal-α 14M Raw 187K/931K 175M 25 11.7/Img
Internal-α 14M LLaVA 28K/215K 536M 98 29.3/Img
Internal-α 14M Share-Captioner 51K/420K 815M 184 54.4/Img

Internal-Σ 33M Raw 294K/1512K 485M 35 14.4/Img
Internal-Σ 33M Share-Captioner 77K/714K 1804M 180 53.6/Img

4K-Σ 2.3M Share-Captioner 24K/96K 115M 163 49.5/Img

tance (FID) [17]) and semantic alignment (CLIP Score), which underscores the
importance of the capabilities of generating high-resolution images.

ACL:25 ACL:98 ACL:180

Fig. 6: Histogram Visualization of
the Caption Length. We randomly se-
lect 1M captions from the raw captions,
Internal-α, and Internal-Σ to draw the
corresponding histogram. ACL denotes the
average caption length.

Better Text-Image Alignment.
Recent works such as PixArt-α [4]
and DALL-E 3 [31] emphasize the
significance of text-image alignment.
Strengthening this alignment is cru-
cial for boosting model capabilities.
To refine our collected “raw” descrip-
tions further, we focus on improv-
ing both the length and accuracy
of our captions. Notably, our cap-
tions (Internal-Σ) show several advan-
tages over the one used in PixArt-α
(Internal-α) in the following aspects:
1. Enhanced caption accuracy: As
depicted in Fig. 5, LLaVa used in
PixArt-α encounters certain hallu-
cination. We leverage a more power-
ful model, i.e., Share-Captioner [5], to
generate detailed and correct captions, augmenting the collected raw prompts.
2. Increased caption length: As shown in Tab. 1 and Fig. 6, the average
caption length increased significantly to 180 words, highly enhancing the de-
scriptive power of the captions. Additionally, we extend the token processing
length of the text encoder from 120 tokens (as in Internal-α) to 300 tokens. Our
model is trained on a mix of long (Share-Captioner) and short (raw) captions
with a ratio of 60% and 40%, respectively. This approach enhances the diversity
of textual descriptions and mitigates potential biases that might arise from solely
relying on generative captions.

Tab. 1 demonstrates a summary for both Internal-α and -Σ, where we assess
the diversity of the datasets through various metrics, including the noun variety,
total noun count, average caption length, and average nouns per image.
High-Quality Evaluation Dataset. Most SoTA T2I models chose MSCOCO [21]
as the evaluation set to assess the FID and CLIP Scores. However, we observe
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evaluations conducted on the MSCOCO dataset may not adequately reflect a
model’s capabilities in aesthetics and text-image alignment. Therefore, we pro-
pose a curated set comprising 30,000 high-quality, aesthetically pleasing text-
image pairs to facilitate the assessment. The selected samples of the dataset are
presented in the appendix. This dataset is designed to provide a more comprehen-
sive evaluation of a model’s performance, particularly in capturing the intricacies
of aesthetic appeal and the fidelity of alignment between textual descriptions and
visual content. Unless otherwise specified, the evaluation experiments in the pa-
per are conducted in the collected High-Quality Evaluation Dataset.

3.2 Efficient DiT Design

An efficient DiT network is essential since the computational demand signifi-
cantly increases when generating images at ultra-high resolutions. The atten-
tion mechanism plays a pivotal role in the efficacy of Diffusion Transformers,
yet its quadratic computational demands significantly limit model scalability,
particularly at higher resolutions e.g ., 2K and 4K. Inspired by PVT v2 [46],
we incorporate KV compression within the original PixArt-α’s framework to
address the computational challenges. This design adds a mere 0.018% to the
total parameters yet achieves efficient reduction in computational costs via token
compression, while still preserving both spatial and semantic information.
Key-Value (KV) Token Compression. Our motivation stems from the in-
triguing observation that applying key-value (KV) token compression directly
to the pre-trained PixArt-α can still generate reasonable images. This suggests
a redundancy in the features. Considering the high similarity within adjacent
R × R patches, we assume that feature semantics within a window are redun-
dant and can be compressed reasonably. We propose KV token compression,
which is denoted as fc(·), to compress token features within a R × R window
through a compression operator, as depicted in Fig. 7.

𝑓!"#$%&''())

Q K V

Compress

Multi-Head
Attention

𝑄,𝐾, 𝑉 ∈ ℝ!×#, 𝑁 = 𝐻×𝑊

𝐾,𝑉 ∈ ℝ+×-,

𝑁 =
𝐻
R×

𝑊
𝑅

(a) (b)

Fig. 7: Design of KV Token Compres-
sion. We merge KV tokens in spatial space
to reduce the computation complexity.

Furthermore, to mitigate the po-
tential information loss caused by KV
compression in self-attention compu-
tation, we opt to retain all the to-
kens of queries (Q). This strategy al-
lows us to utilize KV compression ef-
fectively while mitigating the risk of
losing crucial information. By employ-
ing KV compression, we enhance the
efficiency of attention computations
and reduce the computation complex-
ity from O(N2) to O

(
N2

R2

)
, thereby

making the computational cost of di-
rectly generating high-resolution im-
ages manageable.
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VAE Change
RA + PE Interp.
+ KV Compress
+ Conv Avg Init

512 →1024 RA 
+ PE Interp. Strategies

0 step

100 step

512 →1024 RA

100 step2K step

Fast
Adapt

100 step

RA + PE Adjust
+ KV Compress

100 step
(a) (b) (c)

Fig. 8: This illustration demonstrates how our training strategy designs expedite the
model’s convergence during the transition to VAEs, adjustment to higher resolutions,
and the KV compression process, facilitating rapid learning from weak to strong.

Attention(Q,K, V ) = softmax
(
Q · fc(K)T√

dk

)
fc(V ) (1)

We compress deep layers using the convolution operator “Conv2×2” with spe-
cific initialization. Detailed experiments on other design variants are discussed in
Sec. 5. Specifically, we design a specialized convolution kernel initialization “Conv
Avg Init” that utilizes group convolution and initializes the weights w = 1

R2 ,
equivalent to an average operator. This initialization strategy can initially pro-
duce coarse results, accelerating the fine-tuning process while only introducing
0.018% additional parameters.

3.3 Weak-to-Strong Training Strategy

We propose several efficient training strategies to enhance the transition from
a “weak” model to a “strong” model. These strategies encompass VAE rapid
adaptation, high-resolution fine-tuning, and KV Token compression.

Table 2: We fine-tune a high-resolution
model from a low-resolution model and ob-
serve that even fine-tuning for a relatively
short duration, such as 1K steps, can still
yield high-quality results.

Resolution Iterations FID ↓ CLIP ↑
256 20K 16.56 0.270
256 → 512 1K 9.75 0.272
256 → 512 100K 8.91 0.276

Adapting model to new VAEs.
As VAEs develop, training T2I models
from scratch is resource-intensive. We
replace PixArt-α’s VAE with SDXL’s
VAE and continue fine-tuning the dif-
fusion model. We observe a rapid con-
vergence phenomenon that fine-tuning
quickly converges at 2K training steps
as shown in Fig 8 (a). Fine-tuning is
more efficient when dealing with VAE
model transferring and negates the necessity of training from scratch.
Adapting to Higher-Resolution. When we fine-tune from a low-resolution
(LR) model to a high-resolution (HR) model, we observe a performance degrada-
tion in Fig. 8 (b), which we attribute to discrepancies in positional embeddings
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(PE) between different resolutions. To address this, we utilize the “PE Inter-
polation” trick [4, 49]: initializing the HR model’s PE by interpolating the LR
model’s PE, significantly enhancing the HR model’s initial status and expediting
fine-tuning. We can obtain visually pleasing images even within only 100 train-
ing iterations. Besides, we quantitatively compare the model’s performance as
illustrated in Tab. 2. The fine-tuning quickly converges at 1K steps, and further
training slightly improves the performance. This illustrates that using the “PE
Interpolation” trick enables rapid convergence of higher resolution generation,
obviating the need for training from scratch for generating at higher resolutions.
Adapting model to KV compression. We can use KV compression di-
rectly when fine-tuning from LR pre-trained models without KV compression.
As shown in Fig. 8 (c), with our “Conv Avg Init.” strategy, PixArt-Σ starts from
a better initial state, making converging easier and faster. Notably, PixArt-Σ
performs satisfied visual results even within 100 training steps. Finally, through
the KV compression operators and compression layers design in Sec 3.2, we can
reduce ∼34% of the training and inference time.

4 Experiment

4.1 Implementation Details

Training Details. We follow Imagen [40] and PixArt-α [4] to employ the
T5 [10]’s encoder (i.e., Flan-T5-XXL) as the text encoder for conditional fea-
ture extraction, and use PixArt-α [4] as our base diffusion model. Unlike most
works that extract fixed 77 text tokens, we adjust the length of text tokens from
PixArt-α’s 120 to 300, as the caption curated in Internal-Σ is much denser
to provide highly fine-grained details. To capture the latent features of input
images, we employ a pre-trained and frozen VAE from SDXL [36]. Other im-
plementation details are the same as PixArt-α. Models are finetuned on the
PixArt-α’s 256px pre-trained checkpoint with the position embedding inter-
polation trick [4]. Our final models, including 1K resolution, are trained on 32
V100 GPUs. We additionally use 16 A100 GPUs to train the 2K and 4K image
generation models. For further information, please refer to the appendix.

Note that we use CAME optimizer [27] with a weight decay of 0 and a
constant learning rate of 2e-5, instead of the regular AdamW [24] optimizer.
This helps us reduce the dimension of the optimizer’s state, leading to lower
GPU memory without performance degradation.
Evaluation Metrics. To better illustrate aesthetics and semantic ability, we
collect 30K high-quality text-image pairs (as mentioned in Sec. 3.1) to bench-
mark T2I models. We mainly evaluate PixArt-Σ via human and AI preference
study since FID [39] may not adequately reflect the generation quality. However,
we still provide the FID results on the collected dataset in the appendix.

4.2 Performance Comparisons

Image Quality Assessment. We qualitatively evaluated our methodology
against both closed-source text-to-image products and open-source models. As
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illustrated in Fig. 1, our model can produce high-quality, photo-realistic im-
ages with intricate details over diverse aspect ratios and styles. This capability
underscores the superior performance of our approach in generating visually
compelling content from textual descriptions. In Fig. 3, we compare PixArt-Σ
with open-source models SDXL [36] and PixArt-α [4], our method enhances the
realism of portraits and boosts the capacity for semantic analysis. In contrast to
SDXL, our approach demonstrates superior proficiency in following instructions.

Not only superior to open-source models, but our method is also very compet-
itive with current T2I closed-source products, as depicted in Fig. 4. PixArt-Σ
produces photo-realistic results and adheres closely to user instructions, which
is on par with contemporary commercial products.

v.s. 

Fig. 9: Comparisons on FID and Clip-Score
with Open-sourced T2I Models. PixArt-Σ
demonstrates enhanced performance in terms of FID
and Clip-Score on the curated 30K High-Quality
Evaluation Dataset.

High-resolution Genera-
tion. Our method is capa-
ble of directly generating 4K
resolution images without the
need for any post-processing.
Additionally, it excels in accu-
rately following complex, de-
tailed, and long text provided
by users, as demonstrated in
Fig. 2. Thus, users do not
need prompt engineering to
achieve satisfactory results.

Our approach enables di-
rect 4K image generation. In
parallel, studies [11, 16] have
introduced tuning-free post-processing techniques aimed at generating HR im-
ages from LR models or employing super-resolution models [50] to produce HR
images. However, their corresponding results often exhibit artifacts for two pri-
mary reasons: (1) Accumulative error may arise due to the cascade pipeline. (2)
These methods do not capture the true distribution of 4K images nor learn the
alignment between text and 4K images. We argue that our method might be
a more promising way to generate high-resolution images. Our method yields
superior results, and more visual comparison is included in the supplement.
Human/AI (GPT4V) Preference Study. We evaluate the well-trained model
in both the human and AI preference study using a subset of 300 captions
randomly collected from the High-Quality Evaluation Dataset mentioned in
Sec. 3.1. We collect images generated by overall six open-source models, in-
cluding PixArt-α, PixArt-Σ, SD1.5 [39], Stable Turbo [41], Stable XL [36],
Stable Cascade [35] and Playground-V2.0 [20]. We develop a website for the hu-
man preference study to display the prompts and their corresponding images.
This website was distributed to trained evaluators, who were asked to assess the
images, ranking them according to quality and how well they matched the text
prompts. The results, illustrated by the blue bar in Fig. 9, indicate a marked
preference for PixArt-Σ over the other six T2I generators. PixArt-Σ gener-



PixArt-Σ: Weak-to-Strong Training of DiT for 4K T2I Generation 13

Layers FID ↓ CLIP-Score ↑

N/A 8.244 0.276
Shallow (1-14) 9.278 0.275
Middle (7-20) 9.063 0.276
Deep (14-27) 8.532 0.275

(a) Compression layers.

Operator FID ↓ CLIP-Score ↑

N/A 8.244 0.276
Token Discarding 8.918 0.275
Token Pooling 9.415 0.275
Conv2×2 8.505 0.274

(b) Compression operators.

Res. Ratio FID ↓ CLIP-Score ↑ Train Latency ↓

512 1 8.244 0.276 2.3
512 2 9.063 0.276 2.2 (-4%)
512 4 9.606 0.276 2.1 (-9%)

1024 1 5.685 0.277 27.5
1024 2 5.512 0.273 22.5 (-18%)
1024 4 5.644 0.276 20.0 (-27%)
1024 9 5.712 0.275 17.8 (-35%)

(c) Compression rations on different resolutions.

Res. Ratio Train Latency ↓ Test Latency ↓
(s/Iter@32BS) (s/Img)

2K 1 56 58
2K 4 37 (-34%) 38 (-34%)

4K 1 191 91
4K 4 125 (-35%) 60 (-34%)

(d) Speed of different resolutions.

Table 3: KV-Token Compression Settings in Image Generation. This study
employs FID, CMMD, and CLIP-Score metrics to assess the impact of various token
compression components, such as compression ratio, positions, operators, and varying
resolutions. Speed calculation in Tab. 3c is Second/Iteration/384 Batch-size.

ates superior high-quality images that closely follow user prompts, using a much
smaller size (0.6B parameters) compared to existing T2I diffusion models like
SDXL (2.6B parameters) and SD Cascade (5.1B parameters).

For AI preference study, we employ the advanced multimodal model, GPT-4
V [32], as the evaluator. For each trial, we supply GPT-4V with two images: one
from PixArt-Σ and another from a competing T2I model. We craft distinct
prompts guiding GPT-4V to vote based on image quality and image-and-text
alignment. The results, represented by orange and green bars in Fig. 9, demon-
strate consistent outcomes in both human and AI preference studies. Specifi-
cally, PixArt-Σ surpasses the baseline, PixArt-α, in effectiveness. Compared
to advanced models such as Stable Cascaded, PixArt-Σ exhibits competitive
or superior performance on image quality and instruction-following abilities.

5 Ablation Studies

We conduct ablation studies on generation performance on various KV compres-
sion designs. Unless specified, the experiments are conducted on 512px genera-
tion. The detailed settings of each ablation trial are included in the appendix.

5.1 Experimental settings

We use the test set described in Sec. 3.1 for evaluation. We employ FID to com-
pute the distributional difference between the collected and generated data for
comparative metrics. Furthermore, we utilize CLIP-Score to assess the alignment
between prompts and the generated images.
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5.2 Compression Designs

Compression positions. We implemented KV compression at different depths
within the Transformer structure: in the shallow layers (1∼14), the intermediate
layers (7∼20), and the deep layers (14∼27). As indicated in Tab. 3a, employ-
ing KV compression on deep layers notably achieves superior performance. We
speculate this is because shallow layers typically encode detailed texture con-
tent, while deep layers abstract high-level semantic content. Since compression
affects image quality rather than semantic information, compressing deep layers
achieves the least information loss, making it practical for accelerating training
without compromising generation quality.
Compression operators. We explored the impact of different compression
operators. We employed three techniques, random discarding, average pooling,
and parametric convolution, to compress 2×2 tokens into a single token. As illus-
trated in Table 3b, the “Conv 2×2” method outperforms the others, underscoring
the advantage of using a learnable kernel to more effectively reduce redundant
features than simple discarding methods.
Compression ratios on different resolutions. We investigated the influence
of varying compression ratios on different resolutions. As shown in Tab. 3c, re-
markably, we find that token compression does not affect the alignment between
textual and generated images (CLIP Score) but influences the image quality
(FID) across resolutions. Although there is a slight degradation in image quality
with increasing compression ratios, our strategy brings a training speedup of
18% to 35%. This suggests that our proposed KV compression is both effective
and efficient for achieving high-resolution T2I generation.
Speed comparisons on different resolutions. We further comprehensively
validate the speed acceleration in both training and inference in Tab. 3d. By
‘latency’, we refer to the duration required for inference on a single sample. Our
method speeds up training and inference by about 35% in the 4K generation.
Notably, training acceleration increases with resolution, accelerating from 18% to
35% as the resolution increases from 1K to 4K. This indicates the effectiveness of
our method with increasing resolution, demonstrating its potential applicability
to even higher-resolution image generation tasks.

6 Conclusion

In this paper, we introduce PixArt-Σ, a Text-to-Image (T2I) diffusion model ca-
pable of directly generating high-quality images at 4K resolution. Building upon
the pre-trained foundation of PixArt-α, PixArt-Σ achieves efficient training
through a novel “weak-to-strong training” methodology. This approach is charac-
terized by the incorporation of higher-quality data and the integration of efficient
token compression. PixArt-Σ excels at producing high-fidelity images while ad-
hering closely to textual prompts, surpassing the high standards set by its pre-
decessor, PixArt-α. We believe that the innovations presented in PixArt-Σ
will not only contribute to advancements in the AIGC community but also pave
the way for entities to access more efficient, and high-quality generative models.
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