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Appendix

In the appendix, please note that some equations, tables and figures are referred
to the corresponding contents in the main text.

A More Discussions

A.1 Necessities and Motivations

We further explain the necessities and motivations of the individual components
in our method. Through the explanations in this subsection, readers can have a
clearer understanding of how the overall training objective is designed and how
the individual losses are motivated and connected together.

Inter-class Gaussian mixture modeling. The initial motivation of our
method is that NF-based AD methods usually fall into the “homogeneous map-
ping” issue when applied to the unified AD task. To address this issue, we first
empirically confirm that mapping to multi-modal latent distribution is effective to
prevent the model from learning the bias. The most natural method is to model
multiple Gaussian distributions in the latent space. However, the fixed multiple
Gaussian distribution centers still result in a relatively fixed whole distribution
in the latent space, lacking adaptability. Thus, the inter-class Gaussian mixture
modeling is proposed to increase the adaptability of latent distribution for better
fitting the complex multi-class normal distribution.

Mutual information maximization. The loss function for the inter-class
Gaussian mixture modeling is in Eq. (6), where the logsumexp operator will
sum the exp values of all classes, this means that the Eq. (6) only has the
drawing characteristic to ensure the latent features are drawn together to the
⋆ Corresponding Author.
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whole distribution. As the class centers are randomly initialized, this may cause
different class centers to collapse into the same center. Therefore, We need to
further introduce class repulsion property. Then, from the mutual information
perspective, we propose the mutual information maximization loss for increasing
class separating ability. Furthermore, we find that using Entropy as anomaly
measurement is beneficial to achieve better results (see Tab. 3c). And minimizing
the inter-class entropy can also introduce the class repulsion property. Moreover,
directly using entropy as an optimization item is also beneficial for the effect
of entropy-based measurement. Thus, we introduce entropy loss in Eq. (9) as a
regularizer item.

Learning intra-class mixed class centers. Finally, we consider that in
real-world scenarios, even one object class may contain diverse normal patterns.
We think modeling intra-class distribution by mixture Gaussian prior should
also be beneficial for the results (see Tab. 3a). Moreover, as we further explain
in Sec. A.4, another consideration is to guarantee the effectiveness of anomaly
determination. The inter-class Gaussian mixture modeling can’t effectively guar-
antee the anomalies that fall into the inter-class Gaussian mixture distribution
to be correctly recognized. To this end, we further model the intra-class Gaus-
sian mixture distribution for each class to ensure that the normal distribution
of each class still remains compact. Therefore, even if anomalies fall into the
inter-class Gaussian mixture distribution, they are usually in the low-density
regions among the inter-class class centers. So, we can still ensure that anomalies
are out-of-distribution through intra-class log-likelihoods.

Therefore, although our method has four parts, each part is not arbitrarily
introduced, but rather well motivated to achieve better unified AD performance.
These individual losses are logically well-connected together. Our method mainly
introduces a new learning objective for the NF-based AD methods, which usually
doesn’t increase implementation and model complexity. Thus, We think our
method should be general and can be applied to various NF-based AD methods
to assist them in improving the unified anomaly detection capability.

A.2 Supervision Information

We summarize the training samples and the supervision information required by
our method and other methods in Tab. 1.

Table 1: Training samples and supervision information summarization.

PaDiM MKD DRAEM PMAD UniAD OmniAL FastFlow CFLOW HGAD (Ours)
N N N+P N N N+P N N N
S S S S w/o S w/o S S S S
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where N means only using normal samples during training, P means also using
pseudo (or synthetic) anomalies during training, S means requiring separating
different classes and w/o S means not separating different classes.

If we think that using synthetic anomalies introduces anomalous information
during training, DRAEM and OmniAL can also be called as supervised or
self-supervised, while others are unsupervised. In addition, both UniAD and
OmniAL use additional information to simulate anomalies. UniAD adds noise
while OmniAL uses synthetic anomalies to learn how to reconstruct anomalies
into normal during training. But our method is entirely based on learning normal
feature distribution without any additional information (If synthetic anomalies
can be used, our method can easily be combined with BGAD [14] to achieve better
unified anomaly detection results). However, the methods based on synthetic
anomalies may perform much worse when synthetic anomalies cannot simulate real
anomalies well. This will result in limited application scenarios for such methods.
For example, on the more challenging VisA dataset, our method significantly
outperforms OmniAL (97.1/98.9 vs. 87.8/96.6). Compared to UniAD, results on
multiple datasets, such as MVTec3D-RGB, VisA, and Union datasets, also show
significant improvements (87.1 vs. 77.5, 97.1 vs. 92.8, 93.5 vs. 86.9).

Our method can be easily extended to completely unsupervised, as industrial
images often have significant differences between different classes. For instance,
after extracting global features, we can use a simple unsupervised clustering
algorithm to divide each image into a specific class. Or we can only require
few-shot samples for each class as a reference, and then compute the feature
distances between each input sample to these reference samples. In this way, we
can also conveniently divide each sample into the most relevant class.

A.3 More Discussions with “identical shortcut”

The “identical shortcut” is essentially caused by the leakage of abnormal infor-
mation. The process of reconstruction is to remove abnormal information in the
input, resulting in the failure of reconstruction in abnormal regions. But if the
abnormal features are leaked into the output, this will result in the reconstruction
network directly returning a copy of the input as output. This issue usually can
be addressed by masking, such as the neighbor masking mechanism in UniAD [16].
However, the “homogeneous mapping” is a specific issue in normalizing flow (NF)
based AD methods. In previous NF-based AD methods, the latent feature space
is uni-modal. When used for unified anomaly detection, we need to map different
class features to the single latent center, this may cause the model more prone
to take a bias to map different input features to similar latent features. Thus,
with the bias, the log-likelihoods of abnormal features will become closer to
the log-likelihoods of normal features, causing normal misdetection or abnormal
missing detection. We call this phenomenon as the “homogeneous mapping” issue,
rather than casually introducing it. Moreover, as analyzed in Sec. 3.2, we provide
a reasonable explanation from the perspective of the formula in normalizing flow.
To address this issue, we propose the hierarchical Gaussian Mixture modeling
approach, the key designs in our method are completely different from those in
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UniAD. As the causes and solutions of the two issues are significantly different,
“homogeneous mapping” is not intrinsically equal to “identical shortcut”.

A.4 The Way to Guarantee Anomalies Out-of-Distribution.

Here, we further explain how to guarantee that anomalies are out-of-distribution.
In our method, increasing inter-class distances is to ensure that the latent space
has sufficient capacity to accommodate the features of multiple classes. In addition,
we also model the intra-class Gaussian mixture distribution for each class to
ensure that the normal distribution of each class still remains compact. Therefore,
even if anomalies fall into the inter-class Gaussian mixture distribution, they
are usually in the low-density regions among the inter-class class centers. So,
we can still ensure that anomalies are out-of-distribution through intra-class
Gaussian mixture distributions. As described in Anomaly Scoring section (sec.
3.4), we can guarantee that anomalies are recognized as out-of-distribution by
combining intra-class log-likelihood and inter-class entropy to measure anomalies.
Because only if the anomaly is out-of-distribution, the anomaly score based on
the association of log-likelihood and entropy will be high, and the detection
metrics can be better. The visualization results (decision-level results based on
log-likelihood) in Fig. 2 and 1 also intuitively show that our method has fewer
normal-abnormal overlaps and the normal boundary is more compact.

A.5 Limitations

In this paper, we propose a novel HGAD to accomplish the unified anomaly
detection task. Even if our method manifests good unified AD performance, there
are still some limitations of our work. Here, we discuss two main limitations as
follows:

One limitation is that our method mainly targets NF-based AD methods to
improve their unified AD abilities. To this end, our method cannot be directly
utilized to the other types of anomaly detection methods, such as reconstruction-
based, OCC-based, embedding-based, and distillation-based approaches (see
Related Work, Sec. 2). However, we believe that the other types of anomaly
detection methods can also be improved into unified AD methods, but we need
to find and solve the corresponding issues in the improvement processes, such as
the “identical shortcut” issue [16] in reconstruction-based AD methods. How to
upgrade the other types of anomaly detection methods to unified AD methods
and how to find a general approach for unified anomaly detection modeling will
be the future works.

In this work, our method is mainly aimed at solving unified anomaly detection,
it doesn’t have the ability to directly generalize to unseen classes. Because, in our
method, the new class features usually do not match the learned known multi-
class feature distribution, which can lead to normal samples being misrecognized
as anomalies. Generalization to unseen classes can be defined as class-agnostic
anomaly detection [15], where the model is trained with normal instances from
multiple known classes with the objective to detect anomalies from unseen
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classes. In the practical industrial scenarios, models with class-agnostic anomaly
detection capabilities are very valuable and necessary, because new products will
continuously appear and it’s cost-ineffective and inconvenient to retrain models
for new products. We think our method should achieve better performance on
unseen classes than previous NF-based methods due to the ability to learn more
complex multi-class distribution, but it’s far from solving the problem. How to
design a general approach for class-agnostic anomaly detection modeling will be
the future works.

A.6 Model Complexity

With the image size fixed as 256× 256, we compare the FLOPs and learnable
parameters with all competitors. In Tab. 2, we can conclude that the advantage
of HGAD does not come from a larger model capacity. Compared to UniAD, our
method requires fewer epochs (100 vs. 1000) and has a shorter training time.

Table 2: Complexity comparison between our HGAD and other baseline methods.

PaDiM MKD DRAEM PMAD UniAD FastFlow CFLOW HGAD (Ours)

FLOPs 14.9G 24.1G 198.7G 52G 9.7G 36.2G 30.7G 32.8G
Learnable Parameters / 24.9M 97.4M 163.4M 9.4M 69.8M 24.7M 30.8M

Inference Speed 12.8fps 23fps 22fps 10.8fps 29fps 42.7fps 24.6fps 24.3fps
Training Epochs / 50 700 300 1000 400 200 100

A.7 Real-world Applications

In industrial inspection scenarios, the class actually means a type of product
on the production line. Unified anomaly detection can be applied to train one
model to detect defects in all products, without the need to train one model for
each type of product. This can greatly reduce the resource costs of training and
deploying. In video surveillance scenarios, we can use one model to simultaneously
detect anomalies in multiple camera scenes.

B Social Impacts and Ethics

As a unified model for unified anomaly detection, the proposed method does not
suffer from particular ethical concerns or negative social impacts. All datasets
used are public. All qualitative visualizations are based on industrial product
images, which doesn’t infringe personal privacy.
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C Implementation Details

Optimization Strategy. In the initial a few epochs, we only optimize with
Lg and Lmi to form distinguishable inter-class main class centers. And then we
simultaneously optimize the intra-class delta vectors and the main class centers
with the overall loss L in Eq. (11). In this way, we can better decouple the
inter-class and intra-class learning processes. This strategy can make the intra-
class learning become much easier, as optimizing after forming distinguishable
inter-class main centers will not have the problem that many centers initially
overlap with each other.

Model Architecture. The normalizing flow model in our method is mainly
based on Real-NVP [6] architecture, but the convolutional subnetwork in Real-
NVP is replaced with a two-layer MLP network. As in Real-NVP, the normalizing
flow in our model is composed of the so-called coupling layers. All coupling layers
have the same architecture, and each coupling layer is designed to tractably achieve
the forward or reverse affine coupling transformation [6] (see Eq. (4)). Then each
coupling layer is followed by a random and fixed soft permutation of channels [2]
and a fixed scaling by a constant, similar to ActNorm layers introduced by [8]. For
the coupling coefficients (i.e., exp(s(x1)) and t(x1) in Eq. (4)), each subnetwork
predicts multiplicative and additive components simultaneously, as done by [6].
Furthermore, we adopt the soft clamping of multiplication coefficients used by [6].
The layer numbers of the normalizing flow models are all 12. We add positional
embeddings to each coupling layer, which are concatenated with the first half of
the input features (i.e., x1 in Eq. (4)). Then, the concatenated embeddings are
sent into the subnetwork for predicting couping coefficients. The dimension of all
positional embeddings is set to 256. The implementation of the normalizing flows
in our model is based on the FrEIA library https://github.com/VLLHD/FrEIA.

D Datasets

MVTecAD. The MVTecAD [4] dataset is widely used as a standard benchmark
for evaluating unsupervised image anomaly detection methods. This dataset
contains 5354 high-resolution images (3629 images for training and 1725 images
for testing) of 15 different product categories. 5 classes consist of textures and the
other 10 classes contain objects. A total of 73 different defect types are presented
and almost 1900 defective regions are manually annotated in this dataset.

BTAD. The BeanTech Anomaly Detection dataset [9] is an another popular
benchmark, which contains 2830 real-world images of 3 industrial products.
Product 1, 2, and 3 of this dataset contain 400, 1000, and 399 training images
respectively.

MVTecAD-3D. The MVTecAD-3D [5] dataset is recently proposed for 3D
anomaly detection, which contains 4147 high-resolution 3D point cloud scans
paired with 2D RGB images from 10 real-world categories. In this dataset, most
anomalies can also be detected only through RGB images. Since we focus on
image anomaly detection, we only use RGB images of the MVTecAD-3D dataset.
We refer to this subset as MVTec3D-RGB.

https://github.com/VLLHD/FrEIA
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VisA. The Visual Anomaly dataset [18] is a recently proposed larger anomaly
detection dataset compared to MVTecAD [4]. This dataset contains 10821 images
with 9621 normal and 1200 anomalous samples. In addition to images that only
contain single instance, the VisA dataset also have images that contain multiple
instances. Moreover, some product categories of the VisA dataset, such as Cashew,
Chewing gum, Fryum and Pipe fryum, have objects that are roughly aligned.
These characteristics make the VisA dataset more challenging than the MVTecAD
dataset, whose images only have single instance and are better aligned.

E Detailed Loss Function Derivation

In this section, we provide the detailed derivation of the loss functions proposed
in the main text, including Lg (Eq. (6)), Lmi (Eq. (8)), and Lin (Eq. (10)).

Derivation of Lg. We use a Gaussian mixture model with class-dependent
means µy and unit covariance I as the inter-class Gaussian mixture prior, which
is defined as follows:

pZ(z) =
∑

y
p(y)N (z;µy, I) (1)

Below, we use cy as a shorthand of logp(y). Then, we can calculate the log-
likelihood as follows:

logpZ(z) = log
[∑

y
p(y)N (z;µy, I)

]
= log

[∑
y
p(y)(2π)−

d
2 e−

1
2 (z−µy)

T (z−µy)
]

= −d

2
log(2π) + log

(∑
y
ecy · e−

||z−µy||22
2

)
= −d

2
log(2π) + log

(∑
y
e−

||z−µy||22
2 +cy

)
= −d

2
log(2π) + logsumexp

y

(
− ||z − µy||22

2
+ cy

)
(2)

Then, we bring the logpZ(z) into Eq. (1) to obtain the log-likelihood logpθ(x)
as:

logpθ(x) = −d

2
log(2π) + logsumexp

y

(
− ||φθ(x)− µy||22

2
+ cy

)
+ log|detJ | (3)

Further, the maximum likelihood loss in Eq. (2) can be written as:

Lm = Ex∼p(X)[−logpθ(x)]

= Ex∼p(X)

[
− logsumexp

y

(
− ||φθ(x)− µy||22

2
+ cy

)
− log|detJ |+ d

2
log(2π)

]
(4)
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The loss function Lg is actually defined as the above maximum likelihood
loss Lm with inter-class Gaussian mixture prior.

Extending Lg for Learning Intra-Class Mixed Class Centers. When
we extend the Gaussian prior p(Z|y) = N (µy, I) to mixture Gaussian prior
p(Z|y) =

∑M
i=1 pi(y)N (µy

i , I), where M is the number of intra-class latent centers,
the likelihood of latent feature z can be calculated as follows:

pZ(z) =
∑

y
p(y)

(∑M

i=1
pi(y)N (µy

i , I)
)

(5)

Then, following the derivation in Eq. 2, we have:

logpZ(z) = log
(∑

y
p(y) sumexp

i

[−||z − µy
i ||22

2
+ cyi −

d

2
log(2π)

])
(6)

where cyi is the shorthand of logpi(y). The Lg for learning intra-class mixed class
centers can be defined as:

Lg = Ex∼p(X)

[
−log

(∑
y
p(y) sumexp

i

[−||φθ(x)− µy
i ||22

2
+cyi−

d

2
log(2π)

])
−log|detJ |

]
(7)

However, as the initial latent features Z usually have large distances with
the intra-class centers {µy

i }Mi=1, this will cause the value after sumexp operation
close to 0. After calculating the logarithm function, it’s easy to cause the loss
to be numerically ill-defined (NaN). Besides, we find that directly employing
Eq. 7 for learning intra-class mixed class centers will lead to much worse results,
as we need to simultaneously optimize all intra-class centers of all classes to
fit the inter-class Gaussian mixture prior. To this end, we propose to decouple
the inter-class Gaussian mixture prior fitting and the intra-class latent centers
learning. The loss function of learning intra-class mixed class centers is defined
in Eq. 11.

Derivation of Lmi. We first derive the general format of the mutual infor-
mation loss in Eq. (7) as follows:

Lmi = −I(Y, Z) = −H(Y ) +H(Y |Z) = −H(Y )−H(Z) +H(Y,Z)

= −H(Y )− Ex∼p(X)

[
− log

(∑
y
p(y)p(φθ(x)|y)

)]
+ E(x,y)∼p(X,Y )[−log(p(y)p(φθ(x)|y))]

= −H(Y )− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
= −Ey∼p(Y )[−logp(y)]− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
(8)

Then, by replacing p(φθ(x)|y) with N (φθ(x);µy, I) in the mutual information
loss, we can derive the following practical loss format for the second part of Eq.
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8. We also use cy as a shorthand of logp(y).

− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
= −E(x,y)∼p(X,Y )

[
log

p(y)N (φθ(x);µy, I)∑
y′ p(y′)N (φθ(x);µy′ , I)

]
= −E(x,y)∼p(X,Y )

[
log

(2π)−
d
2 e−

1
2 (φθ(x)−µy)

T (φθ(x)−µy) · ecy∑
y′(2π)−

d
2 e−

1
2 (φθ(x)−µy′ )T (φθ(x)−µy′ ) · ecy′

]

= −E(x,y)∼p(X,Y )

[
log

e−
||φθ(x)−µy||22

2 +cy∑
y′ e−

||φθ(x)−µ
y′ ||22

2 +cy′

]

= −E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
(9)

By replacing Eq. 9 back to the Eq. 8, we can obtain the following practical
loss format of the mutual information loss.

Lmi = −Ey∼p(Y )[−logp(y)]− E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
= −Ey∼p(Y )[−cy]− E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
= −E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)
− cy

]
(10)

Intra-Class Mixed Class Centers Learning Loss. The loss function for
learning the intra-class class centers is actually the same as the Lg in Eq. (6).
But we note that we need to replace the class centers with the intra-class centers:
µy
i = {µy

1 + ∆µy
i }Mi=1, and the sum operation is performed on all intra-class

centers µy
i within the corresponding class y. Another difference is that we need to

detach the main center µy
1 from the gradient graph and only optimize the delta

vectors. The loss function can be written as:

Lin = E(x,y)∼p(X,Y )

[
−logsumexp

i

(
−||φθ(x)− (SG[µy

1] +∆µy
i )||22

2
+cyi

)
−log|detJ |

]
(11)

Finally, we note that the use of logsumexp and logsoftmax pytorch operations
above is quite important. As the initial ||φθ(x) − µy||22/2 distance values are
usually large, if we explicitly perform the exp and then log operations, the values
will become too large and the loss will be numerically ill-defined (NaN).

F An Information-Theoretic View

Information theory [11] is an important theoretical foundation for explaining deep
learning methods. The well-known Information Bottleneck principle [1, 10, 12, 13]
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is also rooted from the information theory, which provides an explanation for
representation learning as the trade-off between information compression and
informativeness retention. Below, we denote the input variable as X, the latent
variable as Z, and the class variable as Y . Formally, in this theory, supervised
deep learning attempts to minimize the mutual information I(X,Z) between
the input X and the latent variable Z while maximizing the mutual information
I(Z, Y ) between Z and the class Y :

min I(X,Z)− αI(Z, Y ) (12)

where the hyperparameter α > 0 controls the trade-off between compression (i.e.,
redundant information) and retention (i.e., classification accuracy).

In this section, we will show that our method can be explained by the
Information Bottleneck principle with the learning objective minI(X,ZE) −
αI(Z, Y ), where ZE = φθ(X + E) and p(E) = N (0, σ2I) is Gaussian with mean
zero and covariance σ2I. First, we derive I(X,ZE) as follows:

I(X,ZE) = I(ZE , X) = H(ZE)−H(ZE |X)

= Ex∼p(X),ϵ∼p(E)[−logp(φθ(x+ ϵ))]︸ ︷︷ ︸
:=A

+Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|x)]︸ ︷︷ ︸
:=B

(13)

To approximate the second item (B), we can replace the condition x with
φθ(x), because φθ is bijective and both conditions convey the same information [3].

B = Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|x)] = Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|φθ(x))]
(14)

We can linearize φθ(x + ϵ) by its first order Taylor expansion: φθ(x + ϵ) =
φθ(x) + Jϵ+O(ϵ2), where the matrix J = ▽xφθ(x) is the Jacobian matrix of
the bijective transformation (z = φθ(x) and x = φ−1

θ (z)). Then, we have:

B = Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ+O(ϵ2)|φθ(x))]

= Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ|φθ(x))] + Eϵ∼p(E)[O(ϵ2)]

= Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ|φθ(x))] +O(σ2) (15)

where the Eϵ∼p(E)[O(ϵ2)] is actually the covariance of p(E) = N (0, σ2I), thus can
be replaced with O(σ2). Since p(E) is Gaussian with mean zero and covariance
σ2I, the conditional distribution is Gaussian with mean φθ(x) and covariance
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σ2JJT . Then, we have:

B = Ex∼p(X),ϵ∼p(E)[logN (φθ(x) + Jϵ;φθ(x), σ
2JJT )] +O(σ2)

= Ex∼p(X),ϵ∼p(E)[log((2π)
− d

2 · (|σ2JJT |)− 1
2 · e−

1
2

1
σ2 ϵT ϵ)] +O(σ2)

= Ex∼p(X)[−
1

2
log(|σ2JJT |)]− d

2
log(2π)− 1

2σ2
Eϵ∼p(E)[ϵ

T ϵ] +O(σ2)

= Ex∼p(X)[−
1

2
log(|JJT |)]− dlog(σ)− d

2
log(2π)− 1

2σ2
O(σ2) +O(σ2)

= Ex∼p(X)[−log|detJ |]− dlog(σ)− d

2
log(2π)− 1

2σ2
O(σ2) +O(σ2) (16)

For the first item (A), we can use the derivation in Eq. 2.

A = Ex∼p(X),ϵ∼p(E)[−logp(φθ(x+ ϵ))]

= Ex∼p(X),ϵ∼p(E)

[d
2
log(2π)− logsumexp

y

(
− ||φθ(x+ ϵ)− µy||22

2
+ cy

)]
= Ex∼p(X),ϵ∼p(E)

[
− logsumexp

y

(
− ||φθ(x+ ϵ)− µy||22

2
+ cy

)]
+

d

2
log(2π)

(17)

Finally, we put the above derivations together and drop the constant items
and the items that vanish with rate O(σ2) as σ → 0. The I(X,ZE) becomes:

I(X,ZE) = Ex∼p(X),ϵ∼p(E)

[
−logsumexp

y

(
−||φθ(x+ ϵ)− µy||22

2
+cy

)
−log|detJ |

]
(18)

We can find that the I(X,ZE) has the same formula as the loss Lg except the
constant item d

2 log(2π), and I(Z, Y ) = I(Y, Z) = −Lmi (see Eq. 8). Thus, the
learning objective minI(X,ZE)− αI(Z, Y ) in Information Bottleneck principle
can be converted to Lg + αLmi, which is the first half part of the training loss in
Eq. (11).

From the Information Bottleneck principle perspective, we can explain our
method: it attempts to minimize the mutual information I(X,ZE) between X
and ZE , forcing the model to ignore the irrelevant aspects of X + E which do
not contribute to fit the latent distribution and only increase the potential for
overfitting. Therefore, the Lg loss function actually endows the normalizing flow
model with the compression ability for establishing correct invertible mappings
between input X and the latent Gaussian mixture prior Z, which is effective to
prevent the model from learning the “homogeneous mapping”. Simultaneously,
it encourages to maximize the mutual information I(Y,Z) between Y and Z,
forcing the model to map different class features to their corresponding class
centers which can contribute to class discriminative ability.

G Additional Results

Quantitative Results Under the One-for-one Setting. In Tab. 3, we report
the detailed results of anomaly detection and localization on MVTecAD [4]
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under the one-for-one setting. We can find that all baselines achieve excellent
results under the one-for-one setting, but their performances drop dramatically
under the unified case (see Tab. 1 in the main text). For instance, the strong
baseline, DRAEM, suffers from a drop of 9.9% and 10.1%. The performance of
the previous SOTA NF-based AD method, FastFlow, drops by 7.6% and 2.5%.
This demonstrates that the unified anomaly detection is quite more challenging
than the conventional one-for-one anomaly detection task, and current SOTA
AD methods cannot be directly applied to the unified AD task well. Thus, how to
improve the unified AD ability for AD methods should be further studied. On the
other hand, compared with reconstruction-based AD methods (e.g, DRAEM [17]),
NF-based AD methods have less performance degradation when directly applied
to the unified case, indicating that NF-based approaches may be a more suitable
way for the unified AD modeling than the reconstruction-based approaches.

Table 3: Anomaly detection and localization results on MVTecAD. All methods
are evaluated under the one-for-one setting. ·/· means the image-level and pixel-level
AUROCs.

Category Baseline Methods Unified Methods NF Based Methods
PaDiM MKD DRAEM PMAD UniAD FastFlow CFLOW

Carpet 99.8/99.0 79.3/95.6 97.0/95.5 99.7/98.8 99.9/98.0 100/99.4 100/99.3
Grid 96.7/97.1 78.0/91.8 99.9/99.7 97.7/96.3 98.5/94.6 99.7/98.3 97.6/99.0

Leather 100/99.0 95.1/98.1 100/98.6 100/99.2 100/98.3 100/99.5 97.7/99.7
Tile 98.1/94.1 91.6/82.8 99.6/99.2 100/94.4 99.0/91.8 100/96.3 98.7/98.0

Wood 99.2/94.1 94.3/84.8 99.1/96.4 98.0/93.3 97.9/93.4 100/97.0 99.6/96.7

Bottle 99.9/98.2 99.4/96.3 99.2/99.1 100/98.4 100/98.1 100/97.7 100/99.0
Cable 92.7/96.7 89.2/82.4 91.8/94.7 98.0/97.5 97.6/96.8 100/98.4 100/97.6

Capsule 91.3/98.6 80.5/95.9 98.5/94.3 89.8/98.6 85.3/97.9 100/99.1 99.3/99.0
Hazelnut 92.0/98.1 98.4/94.6 100/99.7 100/98.8 99.9/98.8 100/99.1 96.8/98.9
Metal nut 98.7/97.3 73.6/86.4 98.7/99.5 99.2/97.5 99.0/95.7 100/98.5 91.9/98.6

Pill 93.3/95.7 82.7/89.6 98.9/97.6 94.3/95.5 88.3/95.1 99.4/99.2 99.9/99.0
Screw 85.8/98.4 83.3/96.0 93.9/97.6 73.9/91.4 91.9/97.4 97.8/99.4 99.7/98.9

Toothbrush 96.1/98.8 92.2/96.1 100/98.1 91.4/98.2 95.0/97.8 94.4/98.9 95.2/99.0
Transistor 97.4/97.6 85.6/76.5 93.1/90.9 99.8/97.8 100/98.7 99.8/97.3 99.1/98.0

Zipper 90.3/98.4 93.2/93.9 100/98.8 99.5/96.7 96.7/96.0 99.5/98.7 98.5/99.1

Mean 95.5/97.4 87.8/90.7 98.0/97.3 96.1/96.8 96.6/96.6 99.4/98.5 98.3/98.6

Log-likelihood Histograms. In Fig. 1, we show log-likelihoods generated
by the one-for-one NF-based AD method and our method. All categories are
from the MVTecAD dataset. The visualization results can empirically verify
our speculation that the one-for-one NF-based AD methods may fall into the
“homogeneous mapping" issue, where the normal and abnormal log-likelihoods
are highly overlapped.
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Fig. 1: Log-likelihood histograms on MVTecAD. All categories are from the
MVTecAD dataset.
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Qualitative Results. We present in Fig. 2 additional anomaly localization
results of categories with different anomalies in the MVTecAD dataset. It can be
found that our approach can generate much better anomaly score maps that the
one-for-one NF-based baseline CFLOW [7] even for different categories from the
MVTecAD dataset.
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Fig. 2: Qualitative results on MVTecAD. More visualization of anomaly localization
maps generated by our method on industrial inspection data. All examples are from
the MVTecAD dataset.
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