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In this appendix, we provide additional details such as further analysis and
implementation details that we could not include in the main paper due to space
constraints. Below is a list of the information contained in this appendix.

– More Results and Analysis
– Datasets and Implementation Details
– Limitations and Broader Impact

The code for our work is available at: /qwedaq/UDPCS

A1 More Results and Analysis

Pseudo-candidate set disambiguation: We examine the disambiguation
process employed by our UDPCS method. In Fig. A1, we present various tar-
get samples from the VisDA dataset across 12 classes, along with their ground
truth labels and the corresponding predicted labels from the trained UDA model
(MDD) before applying our UDPCS refinement strategy. As outlined in the main
paper, a crucial step in our UDPCS method involves disambiguating the pseudo-
candidate sets by utilizing the label confidence vector w, as per Eqn. (6). Fig. A2
demonstrates the evolution of the vector w across different epochs for all classes
in the VisDA dataset. In this figure, we depict the distribution of the vector w at
intervals of every eight epochs. As observed in Fig. A2, for instances that were in-
correctly classified by the trained UDA model, the UDPCS method often aligns
with the correct label later in the training process. Conversely, for instances that
were correctly classified by the trained UDA model, the disambiguation process
typically reaches convergence sooner.
Complexity Analysis: The complexity analysis of the UDPCS method, as
presented in Table A1, illustrates its efficiency in terms of training time while
achieving improvements in average accuracy. For the MDD model, extending
the training from 30 to 60 epochs results in no change in average accuracy,
with the time required doubling from 200 to 400 minutes. However, when the
UDPCS method is applied to the MDD model (MDD+Ours) for 60 epochs,
the average accuracy increases to 71.3%, with a total time of 231 minutes.
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Fig.A1: Predictions of a trained UDA model (MDD) prior to our UDPCS refinement
on the target samples of the VisDA dataset. (GT = Ground Truth , Pr = Predictions)

Table A1: Complexity Analysis
of UDPCS method on OfficeHome
dataset. (Avg. = Average Accuracy
(%), Time in minutes)
Model Epoch Time(↓) Avg. (↑)

MDD 30 200 69.5
MDD 60 400 69.5
MDD+Ours 60 231 71.3

MCC 30 150 72.6
MCC 60 300 72.8
MCC+Ours 60 177 73.6

Notably, 200 minutes of this total time are
allocated for training the base MDD model
for the initial 30 epochs, while the addi-
tional 31 minutes are attributed to the UD-
PCS method’s enhancements in the subse-
quent 30 epochs. This demonstrates that
the UDPCS method effectively boosts per-
formance with a relatively minor time over-
head. Similarly, for the MCC model, dou-
bling the epochs from 30 to 60 leads to
a slight increase in average accuracy from
72.6% to 72.8%, with the time required
doubling from 150 to 300 minutes. In contrast, the application of the UDPCS
method to the MCC model (MCC+Ours) for 60 epochs elevates the average
accuracy to 73.6%, with a total time of 177 minutes. This again highlights the
UDPCS method’s ability to enhance model performance efficiently.
Threshold τ : In Table A2, we present the experimental results of our UDPCS
method for various values of the hyperparameter τ on the OfficeHome dataset.
We evaluate the performance of our technique for two different base UDA meth-
ods: MDD and MCC. The choice of τ determines the size of the pseudo-candidate
set as per Eqn. (1). As illustrated in Tab. A2, the values for τ were selected based
on the magnitude of the predictions made by the trained base UDA model. For
the MDD+Ours strategy, we observe that the model achieves the highest average
accuracy of 71.3% when τ = 0.0009. Similarly, under the MCC+Ours strategy,
the model attains the best average accuracy of 73.6% for both τ = 0.0009 and
τ = 0.00009.
No Augmentation: In Table A3, we explore the impact of utilizing weak
augmentation A2 versus no augmentation in the non-candidate set loss Lnc on
the accuracy of our UDPCS method across various tasks in the OfficeHome
dataset. Under the MDD+Ours framework, employing weak augmentation yields
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Fig.A2: Pseudo-candidate set disambiguation of the proposed UDPCS method on
VisDA dataset
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Table A2: Accuracy(%) of UDPCS for different τ values on OfficeHome dataset.

τ A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

τ = 0.009 76.8 58.1 80.9 64.3 74.3 74.7 64.5 56.4 81.1 74 61.4 84.3 70.9
τ = 0.0009 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3
τ = 0.00009 77.7 58 80 65 75.2 75.2 63.7 56.7 81.6 73.9 61.2 84.7 71.1

MCC+Ours

τ = 0.009 80.8 58.9 83.9 69.6 77.7 79.8 68 56.2 83.2 74.3 62 86.2 73.4
τ = 0.0009 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6
τ = 0.00009 81.1 59.3 83.1 70.2 77.9 79.1 68.9 57.1 82.5 75.7 62.5 86.1 73.6

a slight increase in the overall average accuracy, improving from 71% with no
augmentation to 71.3% with weak augmentation. This trend is similarly observed
in the MCC+Ours strategy, where the average accuracy enhances marginally
from 73.4% without augmentation to 73.6% with weak augmentation.

Table A3: Accuracy(%) of UDPCS for different augmentation used on OfficeHome
dataset. (Aug. = Augmentation)

Aug. A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

No aug 77.2 57.9 80.4 65.2 74.5 74.5 64.8 56.4 81.5 74 61.5 84.4 71
Weak aug 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3

MCC+Ours

No aug 80.7 58.9 84.2 69.4 77.7 79.6 68.4 56.2 83 74.7 61.9 86.4 73.4
Weak aug 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6

Table A4: Additional Results.
(a) Avg. Accuracy.

Method OH VisDA

HMA 71.7 60.1
+ Ours 73.3 64.9

(b) Avg. Accuracy.
Method DN

LeCO 42.1
+ Ours 47.4

Additional Results: In Table A4, we
discuss results for additional baseline
methods, for purposes of completeness.
In both these cases, we report the av-
erage accuracy results obtained using
our implementations of these methods
(OH=OfficeHome, DN=DomainNet), due to the inability to reproduce results
for LeCO [43] method on DomainNet and HMA [51] method with the provided
code bases. (We could not include results of the COT [24] method due to unavail-
ability of code.) We note from Table A4 that adding our method outperforms
each of these methods by significant margins on our implementations.
Pseudo-Candidate Set and Domain Gap: The Pseudo-Candidate (PC)
Set implicitly captures the information being transferred from the source to the
target model, and thus correlates directly with the domain gap. To study this, we
measured the domain gap in OfficeHome dataset using Maximum Mean Discrep-
ancy (MMD) and Conditional Maximum Mean Discrepancy (CMMD), against
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the size of the PC set. The results in Table A5 show a consistent pattern across
the experiments: smaller domain gaps correspond to smaller PC sets (shown in
bold in table). This is intuitive since smaller gaps imply more similar features,
leading to fewer ambiguous labels and a smaller PC set. This trend shows the
connection between PC sets and domain gap.

Table A5: Relationship between Pseudo-Candidate Set and Domain Gap. AvgPC=
Avg Pseudo-Candidate set size; S-T=source-target domains; A=Art, C=Clipart,
P=Product, R=Real-world Domains. Values for CMMD are in e−2 scale i.e, read 5.3
as 5.3e−2, values for MMD are in e−3.

(a) Target Domain is ‘A’

S-T CMMD MMD AvgPC

C-A 5.3 7 4.6
P-A 5.3 6.9 4.5
R-A 5 6.7 2.9

(b) Target Domain is ‘C’

S-T CMMD MMD AvgPC

A-C 5.4 7 4.2
P-C 3.5 4.9 4.1
R-C 3.3 4.8 3.9

(c) Target Domain is ‘P’

OH CMMD MMD AvgPC

A-R 5.1 6.8 4.8
C-R 3 4.8 3.7
P-R 3.3 4.7 4.4

(d) Target Domain is ‘R’

OH CMMD MMD AvgPC

A-P 5.3 6.9 3.2
C-P 3.5 4.9 3.3
R-P 3.3 4.7 2.5

Hyperparameter λ: In Table A6 we show the complete results of the hyper-
parameter λ, which balances the candidate loss (Lc) and the non-candidate loss
(Lnc) in the total loss equation (Lc + λLnc). We run each experiment for three
trials and report the average values. As seen from Table A6, the UDPCS method
is robust to different λ values.

Table A6: Accuracy(%) of UDPCS for different λ values on OfficeHome dataset.

λ A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P

MDD+Ours

0.5 77.2 ±0.2 58.2 ±0.3 80.6 ±0.2 64.8 ±0.2 75.3 ±0.1 74.9 ±0.4 65.1 ±0.2 56.5 ±0.1 81.0 ±0.7 73.9 ±0.1 61.4 ±0.1 84.5 ±0.3

1 77.5±0.1 58.0±0.3 80.6±0.3 65.3±0.1 75.2 ±0.1 75.1 ±0.3 65.0 ±0.1 56.5 ±0.1 81.6 ±0.2 74.1 ±0.1 61.4 ±0.2 84.5 ±0.2

2 77.3 ±0.1 57.9 ±0.1 80.8 ±0.1 65.1 ±0.2 75.0 ±0.0 75.3 ±0.2 65.1 ±0.2 56.6 ±0.1 81.5 ±0.4 74.0 ±0.2 61.3 ±0.1 84.4 ±0.1

MCC+Ours

0.5 80.9 ±0.3 59.1 ±0.2 83.8 ±0.1 69.6 ±0.1 77.8 ±0.2 79.6 ±0.2 68.9 ±0.6 56.6 ±0.3 83.2 ±0.1 74.8 ±0.1 62.1 ±0.2 86.6 ±0.2

1 81.0 ±0.2 59.1 ±0.2 84.3 ±0.4 69.3 ±0.2 77.9 ±0.1 79.6 ±0.0 68.9 ±0.3 56.6 ±0.2 83.2 ±0.4 74.7 ±0.1 62.0 ±0.1 86.5 ±0.1

2 80.9 ±0.1 59.2 ±0.2 84.2 ±0.2 69.2 ±0.4 78.0 ±0.3 79.6 ±0.3 68.9 ±0.3 56.7 ±0.4 82.9 ±0.4 74.8±0.1 62.4 ±0.1 86.6 ±0.1
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A2 Datasets and Implementation Details

This section provides detailed information about the datasets, baselines and the
implementation of the proposed UDPCS method.
Datasets. The proposed method is extensively evaluated on three benchmark
UDA datasets defined as follows.

– VisDA [31]: The VisDA-2017 dataset consists of the UDA task from a
synthetic (source) and real-world (target) domain with a focus on 12 classes.
The source domain consists of 152,397 synthetic images and the target domain
has 55,388 real-world samples.

– DomainNet [30]: This is a large-scale dataset consisting of 0.6 million
images across 345 classes, including six domains: clipart, sketch, real, painting,
infographics, and quickdraw.

– OfficeHome [42]: This is a relatively smaller dataset consisting of 15,500
samples across 65 classes and includes four domains: Art, Clipart, painting,
and Real World.

Baselines. As discussed in the main paper, our UDPCS method is built on
the following diverse UDA methods: MDD [50], MCC [14], LeCo [43], SDAT
[35], and NWD [3]. Additionally, we compare UDPCS with recent benchmarks,
HMA [51] and COT [24]. Note that we focus on unsupervised domain adaptation
(UDA) in this work, unlike other related settings such as source-free domain
adaptation [52, 54, 56, 57, 60] or few-shot domain adaptation [53, 55, 58, 59, 61].
We hence focus on the most recent state-of-the-art UDA methods in this work
for comparisons.
Hyperparameters: Following recent state-of-the-art [24, 51], our UDPCS
model uses ResNet50 architecture as feature extractor for OfficeHome dataset. It
uses ResNet101 architecture as the feature extractor for VisDA and DomainNet
datasets. We train our model for 30 epochs using stochastic gradient descent
with momentum [34] on an NVIDIA A100 GPU with 40GB RAM. We list the
search space for the various hyperparameters used in this work in Tab. A7. We
also show the best hyperparameter values used for different datasets in Tab. A8.

Table A7: Search values of all hyperparameters used in the UDPCS method.

Hyperparameter Search values

γ [0.8,0.85,0.9,1]

τ [0.009,0.0009,0.00009]

λ [0.5,1,2]

Learning rate (Lr) [0.01,0.004,0.005]

Lr decay [0.75,0.85]

Momentum (M) [0.85,0.95]
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Table A8: Hyperparameter values of UDPCS method.

Dataset γ τ λ Lr Lr decay M Batch size

MDD+Ours

VisDA 0.85 0.0009 1 0.004 0.75 0.9 36
DomainNet 0.85 0.0009 1 0.004 0.75 0.9 32
OfficeHome 0.85 0.0009 1 0.004 0.75 0.9 32

MCC+Ours

VisDA 0.85 0.0009 1 0.005 0.75 0.9 36
DomainNet 0.85 0.0009 1 0.005 0.75 0.9 36
OfficeHome 0.85 0.0009 1 0.005 0.75 0.9 36

LeCo+Ours

VisDA 0.85 0.0009 1 0.004 0.75 0.9 36
OfficeHome 0.85 0.0009 1 0.04 0.75 0.9 36

SDAT+Ours

VisDA 0.85 0.0009 1 0.005 0.75 0.9 32
DomainNet 0.85 0.0009 0.5 0.005 0.75 0.9 32
OfficeHome 0.85 0.0009 1 0.005 0.75 0.9 32

NWD+Ours

VisDA 0.85 0.0009 1 0.005 0.75 0.9 36
OfficeHome 0.85 0.0009 1 0.005 0.75 0.9 36

A3 Limitations and Broader Impact

The proposed UDPCS technique builds on any off-the-shelf UDA method and
refines the model’s prediction by leveraging the pseudo-candidate set on target
data. Hence, any limitations from the base UDA method may percolate into
our method. As the pseudo-candidate sets are dependent on the trained UDA
model’s predictions, it may be important to have UDA models that are rea-
sonably good in terms of target accuracy (better than random predictions). We
however believe that this not a limiting assumption, considering many good UDA
methods already exist. This refinement strategy can be easily extended to other
settings, such as source-free domain adaptation and test-time adaptation. These
are interesting directions of future work.
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