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A Results of Fine-tuning

As the qualitative and quantitative comparisons shown in our main paper, the
reconstructions of our model without fine-tuning exhabit finest geometric details
even compared with some fine-tuned models like SparseNeuS-ft [8]. Here, we
illustrate some results of our model after fast fine-tuning. Different with methods
[5,15] that require reconstructing separate cost volume for each view, our model
only builds the global volume, which makes our model easily fine-tuned (only 2.5k
iterations, about 10 minutes). The quantitative results in Tab. A show that our
model still ranks the first in most scenes and has the best mean chamfer distance.
Meanwhile, it is worth noting that our volume is sparse and more memory and
computationally efficient. And the qualitative results of some scenes are visulized
in Fig. A. Note that there are only three input views during fine-tuning.

Table A: Quantitative results of the fine-tuned model on DTU dataset. Best
results in each category are in bold and the second best are in underline.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

IBRNet-ft [13] 1.67 2.97 2.26 1.56 2.52 2.30 1.50 2.05 2.02 1.73 1.66 1.63 1.17 1.84 1.61 1.90
SparseNeuS-ft [8] 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27
GenS-ft [9] 0.91 2.33 1.46 0.75 1.02 1.58 0.74 1.16 1.05 0.77 0.88 0.56 0.49 0.78 0.93 1.03
SuRF-ft (Ours) 0.73 2.11 1.39 0.83 1.05 1.53 0.68 1.03 1.02 0.84 0.85 0.46 0.49 0.84 1.00 0.99

Table B: Reproduced results of VolRecon [10] and ReTR [7] in two image
sets.

Method Image Set 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

VolRecon [10]
Set0 1.27 2.66 1.54 1.04 1.41 1.94 1.10 1.53 1.36 1.08 1.18 1.37 0.74 1.22 1.26 1.38
Set1 1.80 3.46 2.14 1.12 1.92 1.74 1.17 1.72 1.63 1.31 0.94 1.46 0.78 1.23 1.30 1.58

Average 1.54 3.05 1.84 1.08 1.67 1.84 1.13 1.63 1.49 1.19 1.06 1.42 0.76 1.22 1.29 1.48

ReTR [7]
Set0 1.05 2.32 1.47 0.97 1.22 1.52 0.88 1.30 1.29 0.87 1.07 0.76 0.58 1.11 1.12 1.17
Set1 1.42 2.95 1.76 0.99 1.55 1.59 0.92 1.49 1.50 1.19 0.79 0.89 0.60 1.09 1.21 1.33

Average 1.23 2.63 1.62 0.98 1.38 1.56 0.90 1.39 1.39 1.02 0.93 0.83 0.59 1.10 1.16 1.25
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Fig.A: Visualization of fine-tuning results.
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Fig. B: Visual and metric comparisons with RC-MVSNet.

B More Comparisons with RC-MVSNet

We show some visual and metric comparisons with the TSDF fusion result of RC-
MVSNet [1] in Fig. B. The results show that the reconstruction of our model is
smoother and more complete, especially in low-texture regions, leading to better
results in the chamfer distance metric. To further verify the effectiveness of our
surface-centric modeling, we compare with two baselines which directly use the
surface point of RC-MVSNet to prune voxels: Baseline1 directly replaces the
surface region of our trained model with that of RC-MVSNet; Baseline2 uses
the surface region of RC-MVSNet to train a new model. Results in Tab. C show
that even simply using the surface region of RC-MVSNet can achieve superior
results. And our full model, trained together with the surface location module
(Our matching field), achieves the best performance. This is reasonable because
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Table C: More ablation studies about directly using the surface region of
RC-MVSNet.

RC-MVSNet Baseline1 Baseline2 Ours
Chamfer Distance 1.22 1.13 1.16 1.05

Image 1 Scale 2 Scales 3 Scales 4 Scales 5 Scales

Fig. C: Visual comparison with different number of scales on DTU dataset.

the surface region of these two baselines was not optimized or corrected with the
model when directly using the results of RC-MVSNet.

C Detailed Results of VolRecon and ReTR

As mentioned in our main paper, we report the reproduced results of VolRe-
con [10] and ReTR [7] on two image sets using their official repositories and
released model checkpoints. The detailed reproduction results of all scenes at
two image sets are illustrated in Tab. B, which are slightly different from the
results reported in their papers. We speculate that there are something incon-
sistent in the experimental configurations, but this inconsistency doesn’t affect
the valuable of their contributions.

D More Ablation Results

Here, we report more ablation results of our model, and we set the training time
to a quarter of the overall process (different from our main paper to save time)
and only test on the first image set for convenience.
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Table D: Ablation results on DTU
dataset.

Number of scales Surface sampling Cross-scale fusion Mean
1 scales ✓ ✓ 1.38
2 scales ✓ ✓ 1.22
3 scales ✓ ✓ 1.15
4 scales ✓ ✓ 1.11
5 scales ✓ ✓ 1.13
4 scales ✓ ✗ 1.15
4 scales ✗ ✓ 1.13

Number of scales. We conduct
some ablations to evaluate the effect
of the number of scales. We set the
resolution of the finest stage of each
model to be similar. The results in
Tab. D show that the overall qual-
ity first remarkably increases and then
slightly decreses, reaching the opti-
mum in 4 scales. We illustrate some
visual results of the model with differnet scales in Fig. C. The single-scale model
performs the worst, with reconstructions that are noisy and lack geometric de-
tail, while the four-scales model can reconstruct smooth geometry and restore
more geometric details.

Table E: Ablation results of loss
weight on DTU dataset.

Method β µ1 : µ2 : µ3 : µ4 Mean
A 0.0 0.25 : 0.50 : 0.75 : 1.00 1.17
B 1.0 0.25 : 0.50 : 0.75 : 1.00 1.11
C 1.0 1.00 : 1.00 : 1.00 : 1.00 1.16
D 1.0 1.00 : 0.75 : 0.50 : 0.25 1.25

Ablations on loss weight. We fur-
ther conduct some experiments to ver-
ify the effect of the weight of each
loss term on model performance. Con-
cretely, we change the weight of the
pseudo loss β and the weight combi-
nation of different stages of matching
field loss µj . The ablation model is
based on the 4-scales model and the results are shown in Tab. E. Through the
comparison between model A and model B, we can see that the pseudo point
clouds generated from the unsupervised multi-view stereo method [1] can guide
the model towards better convergence. To avoid the influence of erroneous pseudo
points, we apply a very strict filtering strategy, i.e., Only point clouds whose pro-
jection distance from at least 3 viewpoints does not exceed 0.2 pixels and whose
relative depth error does not exceed 0.001 can be left. From the results of the
model (B, C, D) adopt different weight combinations of the matching field loss,
we can see that model B which has µ1 : µ2 : µ3 : µ4 = 0.25 : 0.50 : 0.75 : 1.00
performs the best and model D performs the worst. This indicates that applying
greater weight to the high-resolution scale is beneficial to model convergence. Be-
cause there is no need to obtain very accurate predictions in the low-resolution
scale, and the gradient of the high-resolution scale will be transmitted back to the
low-resolution scale, it is reasonable to have a lower weight in the low-resolution
scale. And we show some visual comparisons of these models in Fig. D.

Model A Model B Model C Model D

Fig.D: Visual comparison of reconstructions with different loss weights.
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Scale1 Scale3 MeshImage

Fig. E: Visualization of the located surface region from the matching field
at different scales. We visualize the depth of the middle surface for convenience.

Table F: Ablation results of the range
of surface regions.

Method ϵ1 : ϵ2 : ϵ3 : ϵ4 Mean
B 1.00 : 0.40 : 0.10 : 0.01 1.11
E 1.00 : 0.30 : 0.10 : 0.01 1.10
F 1.00 : 0.30 : 0.05 : 0.01 1.12

Ablations on the range of sur-
face region. Here, we employ an ad-
ditional ablation experiment to study
the sensitivity of the range of sur-
face regions. ϵ0 is the range of the
first scale, and its value is fixed at 1,
which represents covering the entire
near and far area. And the value of
later scales means the percentage of
coverage. As the results shown in Tab. F, the differences of these three groups of
experiments are not large, as long as the surface region is gradually tightened,
and model F which has a range combination of ϵ1 : ϵ2 : ϵ3 : ϵ4 = 1.00 : 0.30 :
0.10 : 0.01 performs the best.

E Visualization of the Surface Region

To understand how the surface region changes as scale increases, we show some
visualization results of the surface region at different scales in Fig. E. For con-
venience, we show the depth of the middle position of the surface region. We
can see that the located surface region at the higher resolution scale is indeed
sharper, which proves the effectiveness of our design.

F Limitations and Future Work

Despite exhibiting efficiency over existing methods, our model still struggled to
extract the surface in real time due to the inherent drawback of MLP-based
implicit methods. In the future, we will be focusing on addressing this deficiency
issue, and we have constructed a lite-version model, which will be released lat-
ter. Furthermore, we plane to train our model on more large-scale dataset like
Objaverse [2] and expand the scale of the model like [4, 6].

G More Results

Because C2F2NeuS [15] doesn’t release the code, the memory of C2F2NeuS in
Tab. 2 of our main paper is refer to the implementation of CasMVSNet [3]. Fig.
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F shows additional comparisons with COLMAP [11], NeuS [12], SparseNeuS [8],
SparseNeuS-ft [8], VolRecon [10] and ReTR [7] on DTU dataset. We can see that
our method can stably achieve superior results and exhibit finer geometry details.
We further show some visual comparisons with the fast per-scene overfitting
method Voxurf [14] in Fig. G. While Voxurf still requires more than 30 minutes
of training time per scene, it struggles to reconstruct smooth and accurate surface
from sparse inputs.
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Fig. F: More qualitative comparisons on DTU dataset.

Ours Voxurf Ours Voxurf Ours Voxurf

Method Time Mean CD
Voxurf 37m 2.65
Ours 15s 1.04

Fig.G: Comparison with Voxurf on DTU dataset with 3 inputs.
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