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Abstract. Reconstructing the high-fidelity surface from multi-view im-
ages, especially sparse images, is a critical and practical task that has at-
tracted widespread attention in recent years. However, existing methods
are impeded by the memory constraint or the requirement of ground-
truth depths and cannot recover satisfactory geometric details. To this
end, we propose SuRF, a new Surface-centric framework that incorpo-
rates a new Region sparsification based on a matching Field, achieving
good trade-offs between performance, efficiency and scalability. To our
knowledge, this is the first unsupervised method achieving end-to-end
sparsification powered by the introduced matching field, which lever-
ages the weight distribution to efficiently locate the boundary regions
containing surface. Instead of predicting an SDF value for each voxel,
we present a new region sparsification approach to sparse the volume
by judging whether the voxel is inside the surface region. In this way,
our model can exploit higher frequency features around the surface with
less memory and computational consumption. Extensive experiments on
multiple benchmarks containing complex large-scale scenes show that
our reconstructions exhibit high-quality details and achieve new state-
of-the-art performance, i.e., 46% improvements with 80% less memory
consumption. Code is available at https://github.com/prstrive/SuRF.

Keywords: Surface reconstruction · sparsification · sparse views

1 Introduction

Reconstructing surface from multi-view images is a fundamental and challenging
task in computer vision with wide-ranging applications, including autonomous
driving, robotics, virtual reality, and more. While many typical methods [11,
15,36,38,49] have achieved satisfactory results through tedious multi-stage pro-
cesses (i.e., depth estimation, filtering and meshing), recent neural implicit meth-
ods [29, 32, 42, 51, 52, 56] attract increasing attention due to their concise pro-
cedures and impressive reconstructions. They can directly extract the geometry
through Marching Cube [25], and avoid the accumulated errors. Despite their

https://github.com/prstrive/SuRF
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Fig. 1: Pipeline comparison with existing methods. We omit the supervised
depth-fusion methods [22, 37] and only visualize two scales or stages here for con-
venience. (a) The multi-stage pipeline like SparseNeuS [24] is not end-to-end and
tends to accumulate errors, whose coarse stages cannot be optimized together with
fine stages and can no longer be corrected. (b) To achieve end-to-end training, meth-
ods like GenS [34] applied the multi-scale structure to concatenate the coarse and fine
volumes together, but the memory constraints limit the volume resolution. (c) View-
frustum based methods like C2F2NeuS [48] construct a separate cost volume for each
view, which consumes much memory and computation, especially when there are many
input views. On the contrary, we design an end-to-end and sparse pipeline (d), which
can leverage higher-resolution volumes with less memory and computational consump-
tion, and the coarse model can be optimized together with the fine model.

effectiveness, these methods are hampered by the cumbersome per-scene op-
timization and the requirement of a large number of input views, which makes
them unsuitable for many applications. Even recent fast methods like [44,47] and
3D Gaussian Splatting methods [6,12,16] struggle to extract meshes in seconds
and perform poorly under sparse input.

Recently, some generalizable neural surface methods [22, 24, 34, 37, 48] were
proposed to mitigate these problems by combining neural implicit representa-
tions with prior image information. However, as the pipeline comparisons shown
in Fig. 1, they either rely on the non-end-to-end pipeline that leads to accumu-
lated errors, or require constructing dense volumes (or even separate volumes)
for each view and consumes excessive memory and computation. We are inter-
ested in the question: why unsupervised end-to-end sparsification has not been
achieved yet? To sparse the volume for the next fine model initialization, previous
methods like SparseNeuS [24] require predicting SDF values for a large number
of voxels and determining whether the SDF values are within a threshold. This
is a time-consuming operation (about 10s), making it impossible to train the
coarse and fine stages together. We note that some concurrent methods [13, 21]
directly use a large reconstruction model to achieve sparse reconstruction, but
these methods are computationally expensive and can only generate the low-
resolution 3D representation, thus limiting their reconstruction fidelity.

In this paper, we present SuRF, the first attempt, to our knowledge, towards
simultaneously unsupervised, sparsified and end-to-end approach, which pro-
vides good trade-offs between performance, efficiency, and scalability. The main
idea behind this is the surface-centric modeling we adopt, which focuses more
attention on regions near the surface, called “surface regions”, a practice that im-
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proves both performance and efficiency. On the one hand, the projection feature
in surface regions is more multi-view consistent and more useful for geometric
reasoning. On the other hand, since the surface region only occupies a small
proportion of the scene bounding box, this focusing strategy can obviously save
memory and computational overhead, and enable the usage of high-resolution
volumes. To achieve this, we design a module called Matching Field to locate
surface regions, which poses two advantages: 1) it is the first to use the weight
distribution along rays to represent the geometry, and enable the use of image
warping loss to achieve unsupervised training; 2) it is highly efficient that only
needs an additional single-channel volume and the very-fast trilinear interpo-
lation. Concretely, at each scale, in addition to the n-channel feature volume
used for final geometric inference, we construct another single-channel matching
volume for predicting the matching field.

Based on the matching field, we propose a new strategy called Region Spar-
sification to generate sparse volumes for later high-resolution scales. Instead of
predicting the SDF values for each voxel using MLPs like existing methods, we
retain only voxels in surface regions visible from at least two views, which can
circumvent the influence of occlusion. Thus, we can generate multi-scale and
surface-centric feature volumes to remarkably improve the geometric details of
the reconstruction with less memory and computational consumption, as shown
in Fig. 2. Extensive experiments on DTU [1] BlendedMVS [50], Tanks and Tem-
ples [18] and ETH3D [40] datasets validate the efficiency of the proposed model,
surpassing the baseline model [24] by more than 46% and saving more than 80%
memory consumption compared with previous state-of-the-art methods [34,37].
In summary, our main contributions are highlighted below:

– We make the first attempt to achieve unsupervised end-to-end sparsification
in neural surface model for high-fidelity sparse reconstruction.

– We present a novel matching field to locate surface regions, which apply the
weight distribution to represent the geometry and use image warping loss to
achieve unsupervised training.

– We introduce a new region sparsification strategy based on the extracted
surface region that is robust to occlusions.

– Extensive experiments on standard benchmarks validate the effectiveness of
our approach from the perspectives of accuracy, efficiency and scalability.

2 Related Works

Multi-view stereo. Multi-view stereo (MVS) is a type of methods that take
the stereo correspondence as the main cue to reconstruct geometry from multi-
view images. Taking the scene representation as an axis of taxonomy, it can
be broadly categorized into three types: voxel grids-based [19,41], point clouds-
based [7, 20], and depth map-based [3, 8, 39]. Among them, depth map-based
methods decompose complex 3D reconstructions into explicit 2D depth map
estimates, becoming the most common one due to convenience. In particular,
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(a) VolRecon (b) GenS (c) SuRF (Ours) (e) Relationship between memory and 
the resolution of volumes

(d) Relationship between running time 
and the number of views

Fig. 2: Comparisons against recent state-of-the-art methods. All experiments
were conducted under the same configuration, e.g ., 600× 800 resolution and 512 rays.
The reconstruction of our method is more accurate and detailed. While the memory
consumption of other methods [22,24,37,48] increases exponentially with volume reso-
lution, we can utilize higher-resolution feature volumes with smaller memory overhead
to reconstruct higher-frequency details. Meanwhile, our method can directly extract
meshes using Marching Cubes on the SDF like [24,34], whose consumption is more sta-
ble with varying input numbers, and is more efficient than depth-fusion methods [22,37].

many learning-based methods [11, 36, 49] have been proposed to improve the
matching accuracy through a more robust cost volume. However, the surface
reconstruction of these methods is based on a multi-stage pipeline, which is
cumbersome and inevitably introduces accumulated errors.
Neural surface reconstruction. Although previous volumetric methods [30]
have achieved high-quality reconstructions, neural implicit functions have re-
cently revealed significant potential in 3D reconstruction [26,32,33,42,51,52,56]
and appearance modeling [2, 27, 28, 31, 43, 57]. Some work [29, 52, 55, 56] apply
surface rendering to reconstruct plausible geometry without 3D supervision, but
they often require extra priors like object masks [29,52] or sparse points [55]. In-
spired by the success of NeRF [27] in novel view synthesis, more and more meth-
ods integrate volume rendering into shape modeling. They treat the density of
volume rendering as the function of different implicit representations, e.g ., [32]
adopts the occupancy network to represent the geometry and [42, 45, 47, 51]
apply the signed distance function to replace the local transparency function.
Nevertheless, such methods suffer from lengthy per-scene optimization, cannot
generalize to new scenes and perform poorly with sparse inputs.
Generalizable neural surface reconstruction. Similar to the generalizable
novel view synthesis methods [5, 14, 43, 53], several methods [22, 24, 37, 48] are
proposed to solve the generalization of neural surface reconstruction. By replac-
ing the input from spatial coordinates with image features, these methods can
achieve impressive cross-scene generalization. Method [24] is the first attempt
to achieve this through a multi-stage pipeline, but still struggles to recover ge-
ometric details. Even recent methods have tried to improve this through the
view-dependent representation [37], transformer architecture [22] and even build
a separate cost volume for each view [48], still failing to balance performance,
efficiency, and scalability. To be specific, these methods are restricted by the re-
quirement of the ground-truth depth [36,37], cannot use high-resolution feature
volumes [24,36,37,48] and cannot scale to cases with more input views [48] due
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Fig. 3: Framework of SuRF. The multi-scale features are extracted through an FPN
network to generate the global volume through our cross-scale fusion strategy. We then
build our multi-scale surface-centric feature volumes through the region sparsification,
which is based on the surface region extracted from the matching field. We employ color
blending to estimate the appearance of points sampled by the surface sampling, and
adopt volume rendering to recover the color of a pixel. Here, we omit some modules,
e.g ., surface sampling and cross-scale fusion, for convenience.

to memory constraints. In this paper, we propose SuRF, which can reconstruct
more geometric details with limited memory consumption.

3 Methodology

In this paper, our goal is to reconstruct the high-fidelity surface S from images
with limited memory and computational consumption. The framework of our
model is illustrated in Fig. 3. We first introduce our overall pipeline in Sec. 3.1,
including how to aggregate multi-view features and reason about geometry and
appearance. Then we depict our matching field in Sec. 3.2, including the unsu-
pervised training and surface regions localization, and detail how to construct
the multi-scale surface-centric feature volumes based on our new sparsification
strategy in Sec. 3.3. The final loss function is described in Sec. 3.4.

3.1 Overall Pipeline

Given a set of calibrated images {Ii ∈ R3×H×W }Ni=1 captured from N differ-
ent viewpoints, we first extract the multi-scale features {F j

i ∈ RC×H×W }N,L
i,j=1,1

through a weight-shared FPN [23] network Fimg. To aggregate these multi-view
features, we adopt an adaptive cross-scale fusion strategy, which can grasp both
global and local features and is more robust to occlusion.
Cross-scale fusion. For a volume V with U number of voxels, we project each
voxel v = (x, y, z) to the pixel position of corresponding viewpoint with camera
intrinsics {Ki}Ni=1 and extrinsic {[R, t]i}Ni=1:

qi = π(KiR
T
i (v − ti)), (1)
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where π([x, y, z]T ) = [x/z, y/z]T . The corresponding multi-scale features {f ji ∈
RC}N,L

i,j=1,1 are then sampled from all image planes via bilinear interpolation.
We treat the high-scale features as detail residuals of low-scale features, and
sum them together as multi-view features {fi ∈ RC}Ni=1, which are then input
to a fusion network Ffus to generate view’s fusion weights {wi}Ni=1. The final
fused feature for each voxel is the concatenation of weighted mean and variance
features [Mean(v), V ar(v)]:

Mean(v) =

N∑
i=1

wifi, V ar(v) =

N∑
i=1

wi(fi −Mean(v))2. (2)

Further regularizing above fused features through a 3D network F3d, we can
get the final single-channel matching volume Vm ∈ R1×U and n-channel feature
volume Vf ∈ RC′×U . Note that in our surface-centric modeling, we will generate
the multi-scale feature volumes {V j

f }Lj=1 and only voxels in the surface regions
will be retained at high-resolution scales. The detailed procedure of surface re-
gion localization using our matching field will be stated in Sec. 3.2, and how to
construct the multi-scale surface-centric feature volumes using our new region
sparsification strategy will be elaborated in Sec. 3.3.

In this way, the surface can be reconstructed by the zero-level set of SDF
values, which is estimated through a surface prediction network Fsdf , which
concatenate interpolations of multi-scale feature volumes as input:

S = {p ∈ R3|Fsdf (p, < {V j
f (p)}

L
j=1 >) = 0}, (3)

where < · > is a concatenation operator. Meanwhile, since the traditional sam-
pling operator cannot interpolate from the sparse volume, we implement a sparse
trilinear sampling algorithm to achieve interpolation efficiently. We employ a
similar blending strategy as [43] to predict the color of each point on a ray:

c =

N∑
i=1

ηiĉi, (4)

where {ĉi}Ni=1 is the projected colors from source views, and {η}Ni=1 is the
softmax-activated blending weights estimated through a color prediction network
Fcolor, which takes projected image features and viewing direction differences as
input.

Finally, alpha-composition of samples {p(tk) = o + tkd|k = 1, ...,M} is
performed to produce the color of a ray emitting from camera center o in view
direction d:

Ĉ =

M∑
k=1

Tkαkck, Tk =

k−1∏
l=1

(1− αl), (5)

where α is formulated in an unbiased and occlusion-aware conversion of SDF
values:

αk = max(
Φs(Fsdf (p(tk)))− Φs(Fsdf (p(tk+1)))

Φs(Fsdf (p(tk)))
, 0), (6)

where Φ is the sigmoid function and s is an anneal factor, details in [42].
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Fig. 4: Illustration of our matching field. We encode the rough scene geometry
into a matching volume, and the surface position of a ray can be efficiently retrieved
through interpolation. For convenience, we illustrate the surface map E0 corresponding
to all rays of image I0 in the form of a depth map d0. Then we leverage the warping
loss Lwl to constrain the matching field unsupervised.

3.2 Matching Field

Fig. 4 illustrates the overall pipeline of our matching field, which is the cor-
nerstone of surface-centric modeling. In this section, we will elaborate on it in
twofold: how it achieves the surface region localization, and how it achieves un-
supervised training. Note that these procedures are the same for all scales, and
we omit the subscript of scales for convenience.
Surface region localization. For efficiency, we need this procedure to hold
three important properties:

– It requires encoding the entire scene geometry with limited memory con-
sumption . Existing methods [14, 48] borrow the main idea of MVS [11] to
construct a separate cost volume for each view, which is sometimes imprac-
tical for surface reconstruction, especially when there are many input views.

– It needs to rapidly locate the surface region with a small computational cost,
which makes multi-stage training or the use of extra networks unworkable.

– It needs to be occlusion-aware and view-dependent, i.e., those surfaces that
are behind or not visible from the input views are unuseful and unsolvable.

Motivated by these properties, we implement the matching field as a weight
distribution along the ray obtained from matching volume interpolation.

As shown in Fig. 4, instead of representing the geometry as the occupancy,
density or SDF value, we employ the view-dependent weight distribution, where
larger values represent closer proximity to the surface. Concretely, to extract
the surface of a ray r = (o,d), we first uniformly sample Ms points {p(tk) =
o + tkd}Ms

k=1 within the current surface region (Note that Ms decreases as the
scale increases). Next, we directly interpolate the corresponding value for each
point from the matching volume Vm, and then go through a softmax operator
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to generate the weight distribution {γk}Ms

k=1 along this ray. In this way, we can
infer the rough position of the surface point ps = o+ tsd, where:

ts =

Ms∑
k=1

γktk. (7)

Finally, the surface region that we need is defined as: sr = [ts− ϵ, ts+ ϵ], and
ϵ is a hyperparameter that gradually decreases as the scale increases. And the
surface region is set to the length of scene bounds for the first scale.
Unsupervised training. With the surface points, we can conveniently leverage
the image warping loss [9, 35] to constrain the matching field. Supposing the
reference image I0 has a resolution of H×W , through the matching field, we can
efficiently retrieve the surface point of all rays emitting through the pixels of I0 to
form the “surface map” E0 ∈ R3×H×W . Then we project these points to the pixel
positions of source images {Ii}Ni=1 through Eq. (1), and interpolate the colors to
generate the warped images {I0i }Ni=1. Theoretically, the projected colors of these
surface points should remain consistent across multiple viewpoints. Therefore,
we can generate the constraints through the difference between the ground-truth
reference image and the warped images from source images. Furthermore, we
combine the pixel-wise color loss with the patch-based SSIM [46]:

WLi = 0.8× 1− SSIM(I0, I
0
i )

2
+ 0.2× |I0 − I0i |. (8)

To avoid the influence of occlusions, we take the average of the K smallest
warping losses as the final constraint to optimize our matching field:

Lwl =
1

K

K∑
i=1

WLi. (9)

In this way, we can optimize our matching field unsupervised to locate the
surface region efficiently.

3.3 Feature Volume Construction based on Region Sparsification

As aforementioned and the pipeline comparisons shown in Fig. 1, previous meth-
ods [34,48] rely on the dense volume or multi-stage training [24], and they either
are limited by the memory constraints or introduce cumulative errors. To this
end, based on the surface region located through our matching field, we propose
a region sparsification strategy to construct the multi-scale and surface-centric
feature volumes to mitigate these drawbacks.
Region sparsification. Taking a certain scale j as an example, assume that
we have generated the matching volume V j

m ∈ R1×Uj

and feature volume V j
f ∈

RC′×Uj

according to the process in Sec. 3.1, and obtained the surface maps {Ej
i ∈

R3×H×W }Ni=1 of all views following the pipeline in Sec. 3.2. To prune those voxels
away from the surface, we project all voxels V oxj = {vh}U

j

h=1 to the pixel position
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Fig. 5: Illustration of region sparsification and surface sampling. For sparsifi-
cation, we illustrate three situations: voxels that fall into surface regions visible from
multiple viewpoints (a) will be preserved; voxels that fall into surface regions only vis-
ible by one viewpoint (b) or are outside surface regions (c) will be pruned. The black
rectangle represents the position of a voxel. For surface sampling, we sample the points
for each ray within the surface region at each scale.

of all surface maps through Eq. (1) and interpolate the corresponding surface
points {Êj

i ∈ R3×Uj}Ni=1 visible from each view through bilinear sampling. We
then can determine whether the voxel is inside the surface region based on the
distance between the voxel and the interpolated surface point:

Hj
i (v) = float(∥ Êj

i (v)− v ∥2< ϵj), (10)

where float is the operator that converts bool values to float values. Further-
more, to maintain the view consistency, we only retain voxels that simultaneously
fall into the surface region of at least two views:

V oxj+1 = {v|sum(Hj(v)) ≥ 2}, (11)

where sum is the summation operator. This is an important step to mitigate the
impact of occlusion, as regions visible only from a small number of views are
meaningless, and we depict some examples in Fig. 5. Then we can halve these
surviving voxels to aggregate higher-frequency information for the next scale.

Repeating the region sparsification for each scale, we can generate the final
multi-scale feature volumes {V j

f }Lj=1. While this multi-scale strategy is benefi-
cial for the model to reconstruct surfaces with high-frequency detail and global
smoothness like [34, 54], our volumes are surface-centric and can achieve higher
resolution with less memory consumption. Meanwhile, since the surface region
in the coarse stage is wide, using multi-scale features to predict the geometry
makes the model more robust when the surface region location in the fine scale is
wrong. Before employing the volume rendering to produce the color of a ray, we
propose surface sampling to efficiently sample more points for surface regions.
Surface sampling. We sample more points within the off-the-shelf surface re-
gions {srj}Lj=1, which contain more valuable information about the surface. We
uniformly sample a decreasing number of points within the surface region from
low-resolution to high-resolution scales, which results in more sampling points
near the surface as shown in Fig. 5. When interpolating from multi-scale feature
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volumes, we fill the feature of those sampling points that are outside the surface
region of certain scales with zero. Therefore, we do not need other networks to
resample more fine points like [24,27,42].

3.4 Loss Function

Our overall loss function consists of three components:

L = Lsurf + Lmf , (12)

where Lsurf is used to optimize surface network and Lmf is used to optimize
multi-stage matching fields.

Following existing methods [24,48], our surface loss Lsurf is defined as:

Lsurf = Lcolor + Lmfc + αLek + βLpe, (13)

where Lcolor is the average color loss of all sampled pixels, Lmfc is the multi-
scale feature consistency loss in [34] to constrain the geometry, and Lek is the
eikonal loss [10] to regularize SDF values.

Similar to [48], we leverage the pseudo label generated from the unsupervised
multi-view stereo method [4] to enhance and accelerate model convergence. We
apply a very strict filtering strategy to obtain relatively accurate pseudo point
clouds P̂ . The pseudo loss is:

Lpe =
1

|P̂ |

∑
p∈P̂

|Fsdf (p)|. (14)

The loss of the matching field is defined as the weighted sum of all scales’
warping loss:

Lmf =

L∑
j=1

µjLj
wl, (15)

where µj is the weight of stage j, and it increases from coarse to fine scale.

4 Experiments

In this section, we first introduce our implementation details and the datasets,
and then enumerate extensive experiments and ablation studies. Note that the
reported results here are based on our model without any finetuning.
Implementation details. We build our surface-centric feature volume in L = 4
scales and define the range of surface regions as ϵ1:ϵ2:ϵ3:ϵ4=1:0.3:0.1:0.01 for each
scale. To apply the final volume rendering, the total number of sampling points
of each ray is set to M = 120, which consists of 64, 32, 16 and 8 for our surface
sampling. During training, we adopt Adam optimizer [17] to train our model for
10 epochs. The base learning rate is set to 1e-3 for feature networks and 5e-4 for
MLPs. We set the number of source images as N = 4 and resize the resolution
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Fig. 6: Qualitative comparisons on the DTU [1] dataset.

to 640 × 480. The volume resolution of the first low-resolution scale is set to
R1 = 64× 64× 64. The weight of each loss term is set to α = 0.1, β = 1.0, and
the warping loss weights of each scale are set to 0.25, 0.5, 0.75 and 1.0. During
testing, we take N = 2 source images with a resolution of 800 × 576 as input,
and set R1 = 80×80×80. Our meshes are extracted using Marching Cubes [25].
Datasets. Following existing practices [24,37], we train our model on the DTU
dataset [1], and we employ the same splitting strategies as [24], i.e., 75 scenes for
training and two sets of images from 15 non-overlapping scenes for testing. To
validate our generalization ability, we further conduct some qualitative compar-
isons on BlendedMVS [50], Tanks and Temples [18] and ETH3D [40] datasets.

4.1 Results on DTU

For a fair comparison, we adopt the same evaluation strategy as previous meth-
ods [24,37], i.e., reconstruct the surface using only three input views and report
the average Chamfer distance of two image sets. The quantitative results on the
DTU dataset are summarized in Tab. 1, which indicate that our SuRF can bring
a satisfactory improvement to the baseline, i.e., more than 46% improvement
compared with SparseNeuS [24]. Our method only needs to construct a global
volume and is more efficient than those depth-fusion methods [22,37] and view-
frustum method [14, 48]. For those classical MVS methods [4, 38], our method
can win out in most metrics. Compared with the recent fast method [47] that
converges in minutes, our model can still reconstruct finer details in seconds.
Qualitative results in Fig. 6 show that our SuRF can reconstruct finer surfaces
only through fast network inference. We further compared with the 3DGS-based
method SuGaR [12] in Fig. 7. Results indicate that SuGaR failed with sparse in-
puts and our approach shows much better performance even with sparse inputs.
Number of input views. Fig. 8 indicates that the reconstruction quality of
our model gradually improves as the number of views increases, but it tends
to stabilize when the input views are enough. Meanwhile, a larger number of
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Table 1: Quantitative results on DTU dataset. Best results in each category
are in bold and the second best are in underline. ‘*’ denotes the depth-fusion methods
that need the ground-truth depth for supervision, and we report the reproduced results
using their officially released model. We test [4] at the same input resolution as ours.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

COLMAP [39] 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
RC-MVSNet [4] 0.93 2.64 1.92 1.00 1.55 1.62 0.88 1.29 1.16 1.00 0.82 0.67 0.60 1.04 1.22 1.22

NeuS [42] 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00
VolSDF [51] 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
Voxurf [47] 2.51 4.32 2.88 2.17 5.43 2.01 2.88 2.11 1.94 1.60 3.02 3.65 1.20 2.10 2.08 2.65
SparseNeuS-ft [24] 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27

IBRNet [43] 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09 2.32
MVSNerf [5] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
SparseNeuS [24] 2.17 3.29 2.74 1.67 2.69 2.42 1.58 1.86 1.94 1.35 1.50 1.45 0.98 1.86 1.87 1.96
VolRecon* [37] 1.54 3.05 1.84 1.08 1.67 1.84 1.13 1.63 1.49 1.19 1.06 1.42 0.76 1.22 1.29 1.48
GenS [34] 1.45 2.77 1.69 0.97 1.54 1.90 1.03 1.49 1.36 0.97 1.07 0.97 0.62 1.14 1.16 1.34
ReTR* [22] 1.23 2.63 1.62 0.98 1.38 1.56 0.90 1.39 1.39 1.02 0.93 0.83 0.59 1.10 1.16 1.25
C2F2NeuS [48] 1.12 2.42 1.40 0.75 1.41 1.77 0.85 1.16 1.26 0.76 0.91 0.60 0.46 0.88 0.92 1.11
SuRF (Ours) 0.85 2.35 1.48 0.88 1.17 1.39 0.74 1.14 1.24 0.84 0.77 0.51 0.51 0.86 1.03 1.05

Reconstruction
failed

Image SuGaR w/ 49 images SuGaR w/ 3 images Ours w/ 3 images

Fig. 7: Qualitative comparison on DTU dataset with SuGaR.

inputs does not lead to a significant increase in consumption, which is an obvious
advantage compared to [22,37,48], as comparisons shown in Tab. 2 and Fig. 2.

4.2 Generalization

To verify the generalization capabilities of our method, we further test on Blend-
edMVS [50], Tanks and Temples [18] and ETH3D [40] datasets using the model
pre-trained on the DTU dataset [1]. Some qualitative comparisons with existing
methods are shown in Fig. 9 and Fig. 10. The results prove that our method ex-
hibits great generalization ability even under these difficult scenes. The volume-
based method struggles on large scenes since most voxels are empty, but ours
can still reconstruct meshes with fine details even without any finetuning.

4.3 Ablation Studies

Our ablation experiments are performed on the first image set of the DTU
dataset, which is the same as [24]. To investigate the effectiveness of our end-to-
end sparsification, we compare it with existing solutions, i.e., the multi-stage
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Fig. 8: The performance of
mean Chamfer distance w.r.t.
different number of views.

Table 2: Memory consumption with dif-
ferent number of views. Image resolution is
800 × 600 and the highest volume resolution of
SuRF is 2563.

Method
Number of views 3 5 7 9

C2F2NeuS [48] 10G 16G 22G 28G
SuRF (Ours) 2.6G 2.7G 2.8G 3.1G

Per-scene Optimization Generalization

Image Colmap NeuS SparseNeuS-ft MVSNeRF SparseNeuS SuRF (Ours)

Fig. 9: Qualitative comparisons on the BlendedMVS [50] dataset.

training strategy in SparseNeuS [24] and the multi-scale dense structure in
GenS [34]. The results in (a) of Tab. 3 show that all these solutions bring im-
provements to the baseline model, and our solution performs the best mainly
because our features are surface-centric and can be continuously optimized. We
perform another study to understand how the resolution of volumes and images
affects the model. The results in (b) of Tab. 3 show that the higher resolution
favors the model but stabilizes when a certain resolution is reached.
Efficiency and scalability. Compared with existing methods, our SuRF ex-
hibits advantages in terms of efficiency and scalability as shown in Fig. 2. Our
model can leverage volumes of higher resolution with less memory and compu-
tational consumption, e.g ., only 3G memory for the model with the highest 2563
resolution volumes while at least 20G for previous methods [22,24,37,48]. Com-
pared with methods that require predicting depth maps [22,37,49] or construct-
ing cost volumes [48] for each view, the running time and memory consumption
of our model is relatively insensitive to the number of input views as shown in
Tab. 2, making it scalable to handle different input numbers. Meanwhile, the
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Table 3: Ablation results on DTU dataset.

(a) The effectiveness of our end-to-end sparsifica-
tion using our main contributions.

Method Mean Cham. Dist. ↓
baseline 1.70
w/ multi-stage training 1.52
w/ multi-scale dense volume 1.31
w/ end-to-end sparse. 1.02

(b) The performance of the model with different
resolution of volumes and input images.

Res. of Vol. Res. of Image Mean Cham. Dist. ↓
48× 48× 48 640× 480 1.12
64× 64× 64 640× 480 1.07
64× 64× 64 800× 576 1.04
80× 80× 80 800× 576 1.02

Image SparseNeuS SuRF (Ours) Image SparseNeuS SuRF (Ours)

Tanks and Temples ETH3D

Fig. 10: Qualitative comparisons on the Tanks and Temples [18] and the
ETH3D [40] datasets.

capability of using high-resolution volumes gives our method the potential to
reconstruct very large-scale scenes as the results shown in Fig. 10.

5 Conclusion

In this paper, we proposed a new generalizable neural surface model, SuRF,
to accomplish high-fidelity reconstruction even from sparse inputs with satisfac-
tory trade-offs between performance, efficiency and scalability. To the best of our
knowledge, it is the first unsupervised method to achieve end-to-end sparsifica-
tion based on our surface-centric modeling, which consists of a novel matching
field module and a new region sparsification strategy. The proposed matching
field adopts the weight distribution to represent geometry and introduces the
image warping loss to achieve unsupervised training, which can efficiently locate
the surface region. Then we adopted the region sparsification strategy to prune
voxels outside the surface regions in an occlusion-aware manner and generated
the multi-scale surface-centric feature volumes. Extensive experiments on multi-
ple public benchmarks demonstrate that our model exhibits great generalization
ability in diverse scenes and can reconstruct higher-frequency details with less
memory and computational consumption.
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