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Abstract. Texture recognition has predominantly relied on methods
based on handcrafted features and more recently, on Convolutional Neu-
ral Network (CNN)-based methods. However, many of these approaches
do not capture the underlying directional relationships between visual
vocabularies, attributes and features. In this study, we introduce a graph-
based deep learning framework for texture and material recognition called
Graph Texture Network (GTN) that models the underlying directional
associations among latent texture attributes, that are hierarchically re-
lated to visual texture attributes, facilitating information exchange among
them and consequently improving the discriminative capability among
different texture and material categories. GTN, designed to handle non-
Euclidean data structures, provides flexibility to learn complex underly-
ing relationships among latent texture attributes via a learnable masked
adjacency matrix. To ensure robustness of GTN to noise, especially on
graphs with fewer vertices, we facilitate re-calibration of self-loop edge
weights to preserve salient texture information within each vertex. We
then utilize message passing mechanisms to enrich the representations of
latent texture attributes. Furthermore, GTN is able to facilitate inter-
action across multiple graphs, representing texture information across a
range of scales. Finally, GTN can be easily incorporated into a variety
of CNN architectures for end-to-end training and does not require fine-
tuning of pre-trained CNN backbones. Experimental results demonstrate
that GTN achieves state-of-the-art performance on several benchmark
texture and material datasets. Our code is available 1.
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1 Introduction

All objects have surface properties like texture, color and shape. Unlike color
or shape, which can be easily quantified and described, texture poses unique
challenges due to its complexity and subjective interpretation. Our ability to
pre-attentively perceive material properties e.g., roughness, is comparable to that
of recognising objects [14]. However, compared to object recognition, material
perception has received relatively less attention in computer vision literature.
A good understanding of surface texture properties of objects enables Artificial
General Intelligence (AGI) agents to better interact with their environment. For
1 Code: https://github.com/RavishankarEvani/GTN
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Fig. 1: Illustration of basic idea of GTN which encodes feature maps associated with a
texture image from DTD [8] dataset as a graph, where vertices represent various latent
texture attributes. Information exchange among these related latent texture attributes
leads to the formation of a probability distribution over visual texture attributes.

instance, the action sequence required to clean up liquid spillage on a spongy
sofa cushion would differ significantly from that on a wooden tabletop.

There are multiple definitions to texture due to its subjective interpreta-
tion and widespread application; however, texture can be viewed as a function
of spatial variation in pixel intensities [42]. It can exhibit a variety of internal
characteristics, ranging from high degree of stochasticity to predictable regu-
larity. Influences from external factors (e.g., changes in illumination, scale and
occlusion) can lead to appearance deformation, resulting in significant intraclass
variability and potentially indistinguishable differences between classes.

The perceptual characteristics of visual texture have been examined in earlier
studies, leading to the identification of a lexicon of terms used to describe tex-
ture [2,8]. Texture attributes are semantic concepts represented in visual textures
and multiple texture attributes can be perceptually similar [51]. For instance a
marbled texture can exhibit veined, stratified and cracked surface properties.
Inspired by these phenomena, our study aims to uncover how latent attributes
underlying these perceptually similar texture attributes are geometrically and di-
rectionally related, and how neighboring latent attributes can enrich their latent
representations. We further model the hierarchical association of latent texture
attributes with visual texture attributes. In this paper, we will examine the ef-
fectiveness of using graphs, which are non-Euclidean data structures, to model
structural relationships among latent texture attributes.

We propose a graph-based deep learning framework called Graph Texture
Network (GTN). First, we convert feature maps, extracted from several layers
of a backbone pre-trained on ImageNet [37], into graph vertex representations
of latent texture attributes, each associated with one or more perceptual texture
attributes. Next, learn a masked adjacency matrix that describes the relation-
ships among these latent texture attributes. To maintain GTN’s performance
even with a small number of vertices in the graph, we re-calibrate self-loop edge
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weights to mitigate the influence of noise from neighboring vertices, which can
corrupt latent texture representations during message passing and aggregation.
Next, we perform residual message passing and aggregation of related informa-
tion to enhance latent texture attributes. Finally, to account for the translation-
ally invariant property of texture [28], we aggregate along the spatial dimension
to obtain orderless representations of the enhanced latent texture attributes. The
general idea of GTN is illustrated in Fig. 1, where each visual attribute (Meshed
and Waffled) has a set of latent texture attributes. Meshed and waffled textures
may share structural similarities, resulting in some vertices being represented in
both visual attributes. This selective node sharing and directional neighborhood
connectivity of latent texture information facilitate message passing, enriching
the latent representations of visual attributes and enhancing the discrimination
among closely related texture and material categories.

GTN was purposefully designed to exhibit robustness across textures rep-
resented at different scales. This versatility is essential, as texture images may
contain varying sizes of textons, or images within a texture category may each
be represented at a different scale. To tackle this variability, GTN constructs
a graph from the feature maps extracted at each layer of the backbone. Each
graph captures texture information at a specific scale present in the input image.
By enabling interaction among these graphs, GTN enhances its ability to make
scale-invariant predictions.

Our contributions can be summarised as follows:

1. We propose GTN, a novel graph-based deep learning framework for texture
recognition. GTN does not require fine-tuning of the backbone as it has
an encoder that can effectively translate feature maps to latent texture at-
tributes. Their representations are then enriched through message passing.
To our knowledge, this is the first time a graph-based deep learning approach
is used for multiscale texture recognition.

2. We developed a hierarchical graph encoding scheme to generate multiple
graphs containing texture information at various scales to enable multiscale
interaction.

3. GTN is able to achieve state-of-the-art results on several challenging texture
and material recognition datasets.

2 Related Work

Handcrafted Features & Statistical Methods. The field of texture classi-
fication and recognition has evolved over several decades, marked by key contri-
butions and methodologies. Early work by Julesz [19] on textons and Haralick et
al. [15] on co-occurrence matrices laid the foundation for statistical approaches.
Laws [21,22] introduced texture energy measures using convolution masks, which
were widely adopted for texture classification. Notable frameworks also emerged,
including Bag of Textons (BoT) [11, 24] and Bag of Words (BoW) [10] meth-
ods, where images are represented as orderless histograms over a dictionary of
textons. These frameworks involve encoding local patches, aggregating global
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features, and using algorithms such as Support Vector Machines (SVM) to clas-
sify an image into one of the texture categories. Varma et al. [43, 44] advanced
the field by emphasizing the learning of texture descriptors from training data.
Additionally, powerful residual encoders have been developed; Jégou et al. [20]
introduced VLAD, which aggregates first-order statistics by accumulating dif-
ferences of local features assigned to each codeword, while Perronnin et al. [35]
used Fisher Vectors (FV, a probabilistic variant of VLAD) to encode local image
descriptors, capturing first and second-order statistics with respect to the visual
vocabulary.
Automatic Feature Learning. Recent literature focused more on leveraging
pretrained CNN models. FV-CNN [9] and LFV [41] use CNNs to extract fea-
tures that are then encoded using FV. However, methods that adopt FV, do not
support end-to-end training. Zhang et al. [52] addressed this issue by propos-
ing Deep-TEN, a framework that integrates dictionary learning and residual
encoding within an encoding layer. This encoding layer which acts as a pooling
layer (equivalent to VLAD and FV) is trainable end-to-end alongside a CNN
backbone. While RPNet [33] simplified the Deep-TEN architecture by replacing
dictionary learning component with a residual pooling layer, DEP [46] improved
on Deep-TEN by combining orderless texture information with local spatial fea-
tures in order to balance both the orderless component and ordered spatial in-
formation. Hu et al. [17] proposed MuLTER which improves over DEP by simul-
taneously leveraging features from various layers allowing it to maintain both
texture details and spatial information. Song et al. [40] introduced MSBFEN
which leverages a multiscale feature encoding mechanism combined with boost-
ing to effectively capture discriminative texture features. Some studies [5,6] have
explored cross-layer statistical features for texture recognition. Chen at el. [5]
introduced the concept of cross-layer statistical self-similarity to texture recogni-
tion, which captures the consistency of statistical properties from feature maps
extracted from different layers of a CNN backbone. In a later contribution, Chen
at el. [6] explored the use of cross-layer features in CNNs for local feature ex-
traction. They developed a local encoding scheme that is inspired by LBP, for
feature extraction. Their method, DTPNet, facilitates rotation invariance and
gray-scale robustness to extracted local codes.

Yang et al. [48] proposed DFAEN, which applies frequency attention mech-
anism to extract salient features from the input image. In addition, DFAEN
leverages on both first and second order texture encoding information to cap-
ture more texture details. Scabini et al. [38] utilizes a randomized aggregation
mechanism to fuse deep activation maps at different layers of a convolutional
neural network (CNN). By incorporating randomness into the aggregation pro-
cess, RADAM can effectively capture diverse texture patterns while reducing
overfitting. Similar to RADAM, we will evaluate GTN’s effectiveness at model-
ing textures without fine-tuning pre-trained ConvNeXt backbones.

Peeples et al. [34] proposed HistNet, a localized histogram layer that main-
tains spatial context. This layer allows bin centers and widths to be learned
during training. By incorporating Radial basis functions, HistNet ensures it is
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robust against small intra-class variations. Some studies [45,51] utilised spatially
aware aggregation operations; Yong et.al. [45] proposed FENet, which leverages
multi-fractal geometry and uses a hierarchical fractal analysis process for en-
coding the regularity of spatial arrangement in a feature map. Zhai et al. [49]
replaced spatially invariant orderless aggregation operation with DSR-Net that
captures spatial dependency of local primitive characteristics as inherent struc-
tural representations for texture recognition. In their earlier contribution that is
more relevant to our study, Zhai et al. [51] proposed MAP-net that progressively
learns visual texture attributes in a mutually reinforced manner. A spatially-
adaptive Global Average Pooling (GAP) is then applied to each branch to ag-
gregate the features. In their more recent work, Zhai et al. [50] introduced MPAP,
which adopts a multi-branch architecture to model both bottom-up structure and
top-down attributes relations by progressively learning the association between
local structure and global attributes. While relevant literature [50, 51] studied
correlations between visual texture attributes and associations between local
structure and global attributes, directional information of visual and latent tex-
ture attributes were not considered, e.g., waffled visual texture attribute might
be strongly dependent on checkered characteristics but the inverse relationship
may be weaker. Reale et al. [36] developed a technique to represent triangular
patches within an image as nodes in a graph, aiming to encode texture informa-
tion. However, their approach did not consider directional characteristics among
texture attributes and the multiscale nature of texture.

In our study we explore the effectiveness of a graph-based framework that
aims to capture the relationships among latent characteristics of texture that
are indicative of perceptual texture properties. In addition, we will investigate
how GTN facilitates directional information flow among latent texture attributes
enriching their representations. Furthermore, we will evaluate GTN’s ability to
accommodate texture information at various scales.

3 Graph Texture Network

The overall architecture of the Graph Texture Network (GTN) is shown in Fig. 2
(a). GTN first transforms feature maps, F = {Xom | 0 ≤ m ≤ M − 1}, de-
rived from M layers of a deep neural network backbone into a set of unsigned
homogeneous directed graphs, G = {Gm | 0 ≤ m ≤ M − 1}. A graph gen-
erated from feature maps from the mth layer is defined as Gm = (Xgm ,εm)
where Xgm = {Xgm

i | 0 ≤ i ≤ Nm − 1} is a set of Nm = |Xgm | vertices with
εm edges. The vertices represent latent texture attributes while the unsigned
masked adjacency matrix, Ã

m ∈ RNm×Nm represents the relationship between
these attributes.

3.1 Vertex Representation of Latent Texture Attributes

The first step is to encode feature maps Xom ∈ RHm×Wm×Cm as nodes in a graph
as depicted in Fig. 2 (b), where Cm are the number of channels and Hm and Wm
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Fig. 2: GTN Architecture and associated components. (a) Architecture of GTN applied
to ConvNeXt backbone, (b) conversion of feature maps from backbone to graph vertices
representing latent texture attributes, (c) generation of adjacency matrix relating the
latent texture attributes, (d) how messages are aggregated and vertices are updated,
(e) orderless aggregation of latent texture attributes and subsequent concatenation.

are height and width of the feature maps from the mth layer of the backbone.
A 1 × 1 convolution layer is used to compress the representation of features to
obtain Xcm ∈ RHm×Wm×⌊Cm

r ⌋, where r is the compression ratio. Batch Nor-
malisation [18] and GELU [16] activations are then applied to Xcm to reduce
internal co-variate shift and to ensure non-saturating activations respectively.
Finally, dropout is applied to regularise the training process and diversify the
feature space. Xcm is then reshaped to obtain graph vertices Xgm ∈ RFm×⌊Cm

r ⌋,
where Fm = HmWm represents the flattened spatial dimension of the feature
maps and r is set to 4 so that the number of vertices from all M graphs generated
from the GTN module (stemming from each of the M layers of the ConvNeXt-
T [29] backbone) are approximately or at least 367 (i.e. N ⪆ 367), the number
of words associated with texture lexicon [2].

3.2 Masked Adjacency Matrix

Relationship Matrix. We need to understand how the vertices in the graph
representing latent texture attributes are related. As depicted in Fig. 2 (c), first,
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a relationship matrix ξm ∈ RNm×Nm is learnt through backpropogation. The
mth relationship matrix corresponds to the the mth graph (associated with the
mth layer of the backbone). Each element in the relationship matrix, (ξmij ) rep-
resents the strength of the relationship between latent texture attribute i and
its neighbor j. The relationship matrix can serve as an alternative to bilinear
models [12,26,27] for representing second-order information.

Binary Quantization. Deep learning models often exhibit sensitivity to noise,
particularly when trained on small texture and material datasets. To address
this challenge, we apply binary quantization to the relationship matrix. This
ensures robustness to small variations within the data, enhancing the model’s
ability to generalize effectively. As part of the binary quantization process, we
first apply a sigmoid activation function to scale values in ξm between the range
0 and 1. An indicator function 1(·) is then applied to mask edges with weights
that are less than or equal to the threshold, λ which is set as 0.5, generating a
masked adjacency matrix expressed as

Γmij = 1

[
1

1 + e−ξ
m
ij
> λ

]
. (1)

The activated edges imply a positive relationship between corresponding latent
texture attributes. We then perform normalisation of the masked adjacency ma-
trix by scaling it the with the neighborhood size using the in-degree matrix,
D̂m
i =

∑
j ξ

m
ij , where the in-degree of a node i is the sum of the incoming edges

to that node. These elements represent edge weights between pairs of vertices.
The normalised masked adjacency matrix is formulated as

Ã
m

= D̂
m−1

Γm, (2)

where Γm ∈ {1, 0}Nm×Nm . Ã
m ∈ RNm×Nm may exhibit directionality (ãmj,i may

not be the same as ãmi,j), and self-loops for specific latent texture attributes could
be learnt to be important through backpropagation. The generated masked ad-
jacency matrix is non-negative, i.e., ãmj,i ≥ 0, ∀i, j, implying an unsigned graph.

Self-loop Re-calibration. Inspired by Cluster-GCN [7] that uses "diagonal
enhancement" to improve convergence and accuracy, we introduce a learnable
variant which adapts to the masking of the adjacency matrix called, self-loop
re-calibration to GTN to ensure it continues to perform well even when com-
pression ratios, r are high. When r is high, each vertex will have fewer neighbors,
and therefore, noise from neighboring vertices can have more influence on latent
texture representations during message passing and aggregation. To avoid this
phenomenon, the weights for self-loops that are preserved after masking the adja-
cency matrix are re-calibrated to emphasize the importance of associated latent
texture attributes, preventing neighboring latent texture attributes from domi-
nating during message aggregation. Re-calibration of self-loops helps regularize
the training process by proportionately reducing the contribution of neighbor-
ing vertices when aggregating neighborhood messages. Self-loop re-calibration
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is done by learning an inflation function, g(ψm) parameterized by a learnable
parameter, ψm to control the inflation of weights of self-loops as

diag(Ãm)← diag(Ãm)×
[
2 + e−ψm

1 + e−ψm

]
︸ ︷︷ ︸

g(ψm)

,
∀ diag(Ãm) ̸= 0,
ψm ∈ (−∞,∞),
g(ψm) ∈ (1, 2).

(3)

As the number of graph vertices differ between layers, ψm is learnt separately
for every layer.

3.3 Residual Message Passing

Next, we enhance the latent texture attributes via message passing and aggre-
gation of neighboring latent texture attributes as illustrated in Fig. 2 (d). Each
element in the masked adjacency matrix, Ãm represents an edge weight, ãmj,i be-
tween ith texture attribute, Xgm

i and it’s neighbors, Xgm
j (j could also represent

self-loops if they are preserved after masking as described in Sec. 3.2). We scale
the weighted aggregation of neighboring latent texture attributes and add them
to Xgm

i as follows

X̂
gm
i = Xgm

i + ρ
∑
j∈N (i)

⋃
{i} ã

m
j,iX

gm
j , ∀ i ∈ {0, ..., N − 1} (4)

where N (i) = {j | (j → i) ∈ εm} represents a set containing the in-degree
neighbors of the ith texture attribute and {i} represents the ith texture attribute,
if self-loop is learnt. The scaling factor, ρ can be used to proportionately adjust
the collective influence of re-calibrated and neighboring vertices. The process
of message passing and aggregation enhances latent texture attributes by in-
corporating information from related latent attributes. Finally, we apply GELU
to activate the enhanced attribute values. Next, we perform Layer Normalisa-
tion [1] of each layer’s graph representation to mitigate internal covariate shift
to stabilize the training process and accelerate convergence. The activation of
vertex values and graph normalisation is formulated as

Zm = γgm

fa(X̂
gm

)− E[fa(X̂
gm

)]√
V ar[fa(X̂

gm
)] + ϵ

+ βgm , (5)

where fa represents GELU activation function. E[.] and V ar[.] represent expec-
tation and variance respectively. γgm and βgm are affine parameters learnt for
mth layer’s graph representation. ϵ of 1e− 5 is added for numerical stability.

3.4 Multi-Graph Cross-Layer Latent Attribute Interaction

Next, we allow interaction of latent attributes from multiple graphs representing
various scales of texture information. However, the enhanced latent texture at-
tributes, Zm, are correlated with spatial coordinates of feature maps extracted
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from the backbone, making them sensitive to intraclass variability in visual tex-
tures. To address this issue, we transform Zm into a lower-dimensional, orderless
representation that is invariant to spatial deformations. We achieve this by using
the first statistical moments (mean) to obtain Nm orderless representations for
mth layer’s graph. These representations are then concatenated across M layers
to obtain a multiscale representation of texture information, as follows

Y =

M−1∥∥∥
m=0

Nm−1∥∥∥
i=0

[
1

Lm

Lm−1∑
k=0

zmik

] , (6)

where
∥∥ is a concatenation operation and Lm is the length of mth layer’s embed-

dings; each element in the embedding has a positional index, k. The resulting
vector, Y, represents orderless texture information across different scales. To
facilitate interaction among texture information across a range of scales and to
model the hierarchical relationship between latent and visual texture attributes,
we pass Y through a fully connected (FC) layer. This produces a vector of logits,
which is then passed through a Softmax function to generate a probability dis-
tribution over the classes. The class with the highest probability is the predicted
class.

4 Experiments

4.1 Datasets

We evaluated GTN using five benchmark datasets, with their characteristics
summarized as follows: (a) Ground Terrain in Outdoor Scenes (GTOS) [47] is
a dataset of 34,105 outdoor ground material images, separated into 40 cate-
gories, with 5 train/test splits. (b) GTOS-Mobile (GTOS-M) [46] is a dataset
collected from GTOS via mobile phone, consisting of 100,011 material samples
from 31 categories, with a single train/test split. (c) KTH-TIPS2-b (KTH) [4] is
a dataset composed of 4,752 images from 11 material categories, with 4 train/test
splits. (d) Flickr Material Dataset (FMD) [39] is composed of 10 material cat-
egories, with 100 images in each category. Validation is done through 10-fold
cross-validation. Random sampling for train-validation is done with stratification
to ensure the percentage of samples for each class is preserved. (e) Describable
Texture Dataset (DTD) [8] contains 5,640 images belonging to 47 categories,
with 10 train/validation/test splits.

4.2 Implementation Details

Our model is implemented in PyTorch and runs on a single NVIDIA RTX A6000
GPU. For all datasets, the learning rate is initialized to 0.0001 and follows a
cosine annealing schedule [30]. We use the Adam optimizer with decoupled weight
decay [31] and focal loss [25]. For each dataset, we train GTN until the final
epoch and report the model’s performance on the test set. Detailed training
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(a)

(b)

(c)

Fig. 3: (a) Comparing edge density extracted at each layer by pre-trained backbones
(ConvNeXt-T and ResNet50) using the KTH dataset. (b) Layer 3 and (c) Layer 4
Subgraph using ConvNeXt-L backbone trained on DTD Dataset.

hyperparameters and data augmentation techniques used in the experiments are
provided in the supplementary material.

4.3 Backbone Selection & Comparison Against State of the Art

Edge information in images can be used to compute local measures of textural
variation [13]. Fig. 3 (a) shows the variation in average edge density, determined
by the Canny edge detection algorithm [3], across network depths in the fil-
ter responses of ConvNeXt-T and ResNet50 backbones. This is based on 500
randomly selected images from KTH, where edge density is measured as the
proportion of pixels identified as edges in a feature map. The results show that
ConvNeXt-T maintains a relatively high and stable edge density from layers 1 to
4, indicating that texture information remains consistently accessible through-
out these network layers. This characteristic enhances the network’s effectiveness
in multi-scale texture recognition. In contrast, ResNet50 exhibits a trend where
high-level semantic features are prioritized over fine-grained edge details, espe-
cially in the deepest layers. This makes ResNet50 more suitable for tasks such as
object recognition, where high-level contextual information is more critical than
edge details. Recent literature [38] has also quantitatively shown that ConvNeXt
backbones are better at extracting texture-related features compared to ResNet
backbones. Hence, our paper will focus more of our analysis using a range of
ConvNeXt backbone variants. For completeness, we will also evaluate GTN us-
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ing ResNet50 backbone.

Tab. 1 depicts how GTN’s performance compares with the current state-of-
the-art RADAM across various ConvNeXT backbones pre-trained on ImageNet.
Following RADAM [38], we have frozen our ConvNeXt backbones and the aver-
age and standard deviation measures are calculated across the provided splits,
where applicable. We also analyze classification results for GTN using ResNet50
backbone, pre-trained on ImageNet. The classification accuracies are shown in
Tab. 2. Following [48], we have fine-tuned the pre-trained backbone during the
training of GTN and following [5, 45] the results on DTD and KTH are based
on 5-time statistics, and the results on GTOS-M are averaged over 2 runs.

Analysis. GTN performed relatively well on most benchmark datasets. For
DTD, KTH, and GTOS (using the ConvNeXt backbone), the performance gap
between GTN and RADAM generally increases with the size of the backbone.
This may be because a larger backbone would result in more latent texture at-
tributes describing any visual attribute at each scale, enhancing GTN’s capacity
to represent texture information. Conversely, GTN underperformed on FMD
(using the ConvNeXt backbone) and DTD (using the ResNet50 backbone). This
may be due to GTN creating graph vertices at an early stage of the architecture,
removing high-level shape information while preserving low to mid-level informa-
tion like texture. FMD and DTD contain relatively more object level information
compared to the remaining datasets. For instance, in DTD dataset, several im-
ages in the freckles texture category contain objects that have rounded shapes.
Similarly, object shapes are visible in FMD dataset. The t-SNE [32] plots in
Fig. 4 were generated using embeddings extracted before they are fed into the fi-
nal fully connected (FC) layer of GTN and the SVM classifier of RADAM. These
embeddings were obtained using KTH’s fourth test split and the ConvNeXt-L
backbone. The clusters generated by GTN appear to be more homogeneous,
which may be attributed to GTN’s ability to create diverse latent attributes and
subsequently enhance them through message passing.

(a) (b)

Fig. 4: Visualisation of embeddings from (a) RADAM and (b) GTN using t-SNE [32].
Backbone: ConvNeXt-L. Dataset: KTH (Split 4 Test Set)
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Table 1: Comparison of GTN with RADAM [38] in terms of classification accuracy
(%) on texture benchmarks. ConvNeXt-* variants are used as backbones. Pre-trained
weights are frozen. The best result for each backbone-dataset combination is bolded

Model -* DTD FMD KTH GTOS GTOS-M

RADAM N 74.9±0.7 87.1±0.4 89.6±3.8 83.7±1.5 81.8
GTN (ours) N 75.4±1.1 86.9±3.1 90.3±4.7 82.9±1.7 90.1

RADAM T 77.0±0.7 88.7±0.4 90.7±4.0 84.2±1.7 85.3
GTN (ours) T 77.5±1.0 87.2±3.4 92.0±4.9 84.7±1.6 91.9

RADAM B 76.4±0.9 90.2±0.2 87.7±5.6 84.1±1.6 82.2
GTN (ours) B 78.3±0.8 88.8±3.0 90.8±6.2 84.2±1.8 94.8

RADAM L 77.4±1.1 89.3±0.3 89.3±3.4 84.0±1.8 85.8
GTN (ours) L 79.3±0.8 88.1±3.0 92.5±4.7 84.9±1.7 93.9

Table 2: Comparison of GTN with different
methods in terms of classification accuracy (%)
on texture benchmarks. ResNet50 is used as
backbone.

Model DTD KTH GTOS-M

Deep-TEN [52] 69.6 82.0±3.3 -
MAP-net [51] 76.1±0.6 84.5±1.3 86.6±1.5

DSR-Net [49] 77.6±0.6 85.9±1.3 87.0±1.5

CLASSNet [5] 74.0±0.5 87.7±1.3 85.7±1.4

FENet [45] 74.2±0.1 88.2±0.2 85.2±0.4

RPNet [6, 33] 73.0±0.6 87.2±1.8 77.9±0.3

MSBFEN [40] 77.8±0.5 86.2±1.1 87.6±1.6

MSTH-Net [23] 71.45±0.6 87.7±1.0 87.5±0.8

DFAEN [48] 73.2 86.3 86.9
MPAP [50] 78.0 ±0.5 89.0±1.0 88.1±1.3

RADAM [38] 75.6±1.1 88.5±3.2 81.0
DTPNet [6] 73.5±0.4 88.5±1.6 88.0±1.2

GTN (ours) 74.6±0.2 89.3 ±0.3 91.6 ±1.4

Table 3: Evaluate effectiveness of
VR and RMP components of GTN
in terms of classification accuracy
(%). ConvNeXt-T is used as the
backbone.

VR RMP DTD KTH

✗ ✗ 27.6±4.3 46.5±5.0

✓ ✗ 77.0±0.8 91.2±4.6

✓ ✓ 77.5 ±1.0 92.0 ±4.9

Table 4: Evaluate effectiveness of
SR in terms of classification accu-
racy (%). Compression ratios, r =
[8, 16]. ConvNeXt-T is used as the
backbone.

r SR DTD KTH

8 ✗ 76.6±0.9 92.3 ±5.2

8 ✓ 76.7 ±0.9 92.3 ±5.2

16 ✗ 71.4±0.5 92.1±5.2

16 ✓ 71.5 ±0.6 92.2 ±5.2

4.4 Subgraph Visualization

Fig. 3 shows randomly sampled subgraphs of 20 vertices with associated edges
generated from feature maps extracted from layers 3 and 4 of the ConvNeXt-L
backbone, which was trained on the DTD dataset. The thickness of the edges is
proportional to the edge weights, determined by the neighborhood size and the
re-calibration of self-loops. We can observe that directionality is important; some
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latent texture attributes depend on others, while the inverse relationship does
not exist. Additionally, some vertices do not have self-loops, indicating that they
rely solely on neighboring attribute representations. In contrast, vertices with
self-loops find it important to retain a proportion of their own latent attribute
information when aggregating attribute information from their neighbors.

4.5 Ablation Study

We perform ablation studies to understand the effectiveness of vertex repre-
sentation of latent texture attributes (VR), residual message passing and ag-
gregations (RMP) and self-loop re-calibration (SR) components of GTN on a
texture dataset, DTD and a material dataset, KTH. Quantitative evaluation of
the effectiveness of VR and RMP components are depicted in Tab. 3. First, we
evaluate the effectiveness of the RMP component by replacing it with a linear
layer; parameters of which are learnt through backpropagation. The 5 projection
matrices from the 5 layers are concatenated and passed through a fully connected
(FC) layer and a Softmax function to determine the predicted class. The RMP
component has demonstrated to be quite useful when applied to both texture,
DTD and material, KTH datasets, suggesting that the residual message passing
and aggregation framework effectively represents latent texture attributes.

Next, to evaluate the effectiveness of GTN module as a whole we replace
both VR and RMP components with a linear layer; parameters of which are
learnt through backpropagation. We reshape the feature maps from the backbone
by flattening the spatial dimension, RHmWm×Cm before feeding them into the
linear layer. The 5 projection matrices from the 5 layers are concatenated and
passed through a fully connected (FC) layer and a Softmax function to determine
the predicted class. The linear layers fail to learn a meaningful representation
of the input texture and material information and exhibit underfitting when
the backbone is frozen. This underscores the representational capacity of the
VR component, which can effectively learn latent texture attributes without
requiring fine-tuning of any variant of the ConvNeXt backbone.

Finally, we evaluate effectiveness of SR. Tab. 4 demonstrates a slight improve-
ment in both texture and material datasets when compression ratio, r = 16.
When r = 8, only DTD has improved slightly while GTN’s performance on
KTH remained the same. This might be because the benchmark datasets are
well-prepared and contain minimal noise. Any small amount of noise present
has likely been corrected and regularized by GTN through SR, which serves to
reduce the influence of neighboring nodes.

4.6 Effect of Multi-layer Representation and Compression Ratio

We conducted experiments to evaluate the effectiveness of injecting various scales
of texture information and the number of latent texture attributes in each graph.
This was done by incrementally adding layers (from deepest to shallowest) that
feed into the GTN and by adjusting the compression ratio, r. Results are depicted
in Tab. 5. We achieved the best performance on DTD and GTOS-M when using
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Table 5: Performance of GTN
in terms of classification accuracy
(%) with varying number of layers
(M). ConvNeXt-T is used as the
backbone, r=4.

M DTD KTH GTOS-M

1 75.0±1.1 90.5±5.2 89.9
2 77.4±1.0 91.9±5.1 90.9
3 77.5 ±1.0 92.2 ±5.1 91.0
4 77.5 ±0.9 92.2 ±5.0 91.4
5 77.5 ±1.0 92.0±4.9 91.9

Table 6: Performance of GTN in terms of clas-
sification accuracy (%) with different compres-
sion ratios, r. ConvNeXt-T is used as the back-
bone, M = 5.

r
∑M−1

m=0 Nm DTD KTH GTOS-M

2 768 77.9±0.8 91.8±5.6 90.8
4 384 77.5±1.0 92.0±4.9 91.9
8 192 76.7±0.9 92.3±5.2 91.2
16 96 71.5±0.6 92.2±5.2 90.4

feature maps from all layers, while we noticed a slight drop in performance on
KTH dataset. In general, all layers contain useful texture information at various
scales that can be encoded as latent texture attributes within GTN.

We also tested GTN by altering the compression ratio, r, which, as discussed
in Sec. 3.1, is used to encode texture features as graph vertices. A larger r
results in a smaller number of graph vertices,

∑M−1
m=0 Nm, corresponding to the

number of latent texture attributes. The results of the experiment are shown
in Tab. 6. GTN performs best on DTD when r = 2, and on GTOS-M when
r = 4, both resulting in latent texture attributes exceeding 367, the number
of words associated with the lexicon for visual textures defined by Bhushan et
al. [2]. KTH, having only 11 material categories, requires fewer latent attributes
to model them. Conversely, DTD and GTOS-M, with 47 and 31 texture and
material categories respectively, require more latent attributes. We observe a
general drop in performance with higher r values, which can be attributed to the
resulting smaller number of graph vertices, leading to a sub-optimal hierarchical
mapping from latent to visual texture attributes.

5 Conclusion

This paper introduces GTN, a novel approach that represents each texture image
as a graph comprising latent texture attributes. The GTN framework facilitates
residual message passing to further enrich texture representations. GTN learns
a hierarchical mapping between these latent attributes and visual texture char-
acteristics. By utilizing graphs, a non-Euclidean data structure, GTN enables
flexible connectivity between vertices, allowing for the representation of intricate
directional relationships among neighboring latent texture attributes. Moreover,
GTN’s architecture includes an encoder that effectively translates feature maps
into latent texture attributes, obviating the need for fine-tuning the backbone.
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