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Abstract. Hyperspectral Imaging (HSI) plays an increasingly critical
role in precise vision tasks within remote sensing, capturing a wide
spectrum of visual data. Transformer architectures have significantly en-
hanced HSI task performance, while advancements in Transformer Archi-
tecture Search (TAS) have improved model discovery. To harness these
advancements for HSI classification, we make the following contributions:
i) We propose HyTAS, the first benchmark on transformer architecture
search for Hyperspectral imaging, ii) We comprehensively evaluate 12
different methods to identify the optimal transformer over 5 different
datasets, iii) We perform an extensive factor analysis on the Hyperspec-
tral transformer search performance, greatly motivating future research
in this direction. All benchmark materials are available at HyTAS.

Keywords: Hyperspectral Image Classification · Transformer Architec-
ture Search · Zero-Cost Proxies · Benchmark and Analysis

1 Introduction
Hyperspectral Imaging (HSI) captures a broad spectrum of electromagnetic
wavelengths, providing detailed spectral information beyond conventional RGB
images. This rich spectral data has significantly impacted various industries, in-
cluding agriculture for plant monitoring [6,8,21,32,36], remote sensing for Earth
analysis [9, 27], and robotics for enhanced navigation and vision [13,28].

Scientists in fields like agriculture or remote sensing may seek to analyze
Hyperspectral images using transformer models, see Fig. 1. However, designing
high-performing Hyperspectral image transformers requires significant expertise
and computational resources. Transformer Architecture Search (TAS) methods
like AutoFormer [5] or ViTAS [23] can help but demand extensive computational
resources (e.g., 24 GPU days for AutoFormer).

An alternative is using training-free architecture search techniques, known as
zero-cost proxies [14, 16, 25, 31, 39]. Hereafter, we will use the term "proxy" for
brevity. Proxies quickly evaluate transformer architectures without training, of-
fering two key advantages: i) Efficiency: Proxies identify high-performing trans-
formers within minutes. ii) Data Independence: Many proxies do not require real
data, reducing setup and data collection costs [3,20,25,39]. This characteristic is
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Fig. 1: A scientist outside AI domain may find it difficult to design a novel Hyper-
spectral image transformer tailored to their tasks and data. To automate the design
of Hyperspectral transformers, we introduce Hyperspectral Transformer Architecture
Search (HyTAS) in this paper. The scientist images are generated by DALL-E.

especially advantageous for hyperspectral imaging applications, where the setup
and calibration of the camera, as well as the collection and annotation of data,
incur significant costs.

To that end, in this paper, we introduce Hyperspectral Transformer Architecture
Search (HyTAS), to automatically identify Hyperspectral transformers tailored
for downstream tasks and datasets. Our motivations are three-fold: i) Democ-
ratization : HyTAS enables researchers, especially in fields like biology or agri-
culture, to identify top-performing, lightweight models using minimal resources.
ii) Attention : We aim to highlight the unique challenges of HSI to the NAS
community, which has focused more on RGB images. iii) Novelty : We share
novel findings to guide the development of better hyperspectral-specific search
techniques and architectures.

Our approach begins by generating a substantial pool of candidate Hyper-
spectral transformers. Subsequently, we assess the performance of various proxies
in their capacity to efficiently identify accurate Hyperspectral image transform-
ers. Lastly, we conduct a comprehensive factor analysis to elucidate the fac-
tors influencing the performance of both Hyperspectral image transformers and
proxy-based transformer search methods.

To sum up, this paper presents three primary contributions:
I. We introduce HyTAS, the pioneering benchmark for Transformer Architec-

ture Search in HSI classification, comprising 2000 distinct Hyperspectral
Image transformer architectures.

II. We conduct comprehensive benchmarking using 12 proxies across 5 datasets.
Our benchmarking demonstrates the capability to achieve superior perfor-
mance over a well-established, human-crafted counterpart within minutes.

III. We analyze various factors influencing the effectiveness of Transformer archi-
tecture search. Our findings include: i) Proxies demonstrate a bias towards
larger models, ii) Proxies operate without necessitating real data input, iii)
Proxies synergistically complement each other in predicting the accuracy of
input transformers, suggesting promising avenues for future research.
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2 Related Work

2.1 Transformer Architecture Search via Proxies

Neural Architecture Search (NAS) customizes optimal architectures for specific
tasks [2,18,22,40]. Transformer Architecture Search (TAS) is gaining popularity
alongside transformer-based model advancements [4, 5, 23, 39]. However, these
methods are computationally intensive, often taking days or months to converge
[15, 33]. Many researchers lack resources; for instance, this study employs only
a single GPU. An alternative approach involves using proxy functions, which
swiftly assess architecture fitness without training [3, 14–16, 25]. In this paper,
we adapt proxy methods to quickly search over a large database of Hyperspectral
transformers.

2.2 Hyperspectral Image Transformers

Hyperspectral image classification involves processing input cubes with signifi-
cantly more channels (e.g., 200 vs. 3) and lower spatial resolution than conven-
tional RGB imaging [17]. With the emergence of Vision-Transformers (ViT) [7],
manual design of transformer architectures for Hyperspectral image classification
has become common practice. For instance, Hong et al. [12] introduce Spectral-
Former, adapting ViT for HSI classification, while Sun et al. [24] and Zhou et
al. [38] enhance it with spatial-local attention modules. However, manual network
design is laborious and resource-intensive. Therefore, in this study, we propose
HyTAS to automate Hyperspectral image transformer design.

3 HyTAS Benchmark

In practice, the optimal architecture is determined by its performance, often
measured by the highest test accuracy for classification tasks. However, in TAS
proxies, where training is not involved, a proxy measure is needed to rank ar-
chitectures sampled from a search space based on their initial model weights
or one-step gradients. This proxy score serves as the metric for estimating the
performance of each architecture.

The process of TAS proxy for HSI classification is illustrated in Fig. 2, con-
taining four main steps: 1). Patchify HSI image and tokenize each patch along
its spectra, then randomly sample a batch of input. 2). Design a search space
and sample architectures from it. 3). Select a proxy to estimate the sampled
architectures and rank them by their proxy scores. 4). Evaluate the performance
of search proxies. Formally, the objective of TAS proxy is formulated as follows:

a∗ = argmax
a∈A

OA(a) ≡ a∗ = argmax
a∈A

Fs (a) (1)

where a is a transformer architecture sampled from the search space A, OA and
Fs denote the test overall accuracy and a scoring function, respectively. The
objective aims to discover the optimal architecture a∗ through a scoring function
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Fig. 2: Diagram of TAS proxies for HSI classification: (1) Patchify the image and tok-
enize each patch along its spectra. (2) Randomly sample architectures from a designed
search space. (3) Select a proxy to compute scores for sampled architectures after pass-
ing a batch of input. (4) Use the scores to rank architectures and choose the one with
the highest score to retrain. Proxy evaluation metrics include test overall accuracy,
model size, Spearman correlation between proxy scores and test OA, and search time.

instead of training all models. Designing a good search space A and a suitable
proxy scoring function that accurately estimates architectures’ performance is
crucial for TAS proxies.

3.1 Benchmark Proxies

Optimizing Equation 1 relies on employing an appropriate proxy scoring function
Fs. In this section, we provide a concise overview of various existing proxies
commonly utilized within the NAS and TAS communities. The mathematical
equation of each proxy as well as further details are presented in Section 7.1 in
our supplementary material.

GradNorm [1]: aggregates the Euclidean norms of each layer’s gradients
after processing a single batch of training data.

SNIP [14]: calculates a saliency metric by incorporating both gradients and
weights, facilitating parameter pruning in neural networks.

GraSP [31]: considers both the first-order and second-order derivatives of
the network to preserve training dynamics instead of the loss at the beginning
of training.

Synflow [25]: a modification of SNIP that eliminates the absolute expression
to address layer collapse during parameter pruning.

LogSynflow [3]: addresses the issue of neglecting the significance of weights
due to gradients in Synflow, by scaling down the gradients with a logarithmic
function before summing up the contributions of their weights.

Fisher: initially presented by [26] to achieve more runtime-efficient neural
architectures, and utilized as a pruning metric at initialization by [30]. More
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recently, [1] applied this metric to aggregate all gradients of the activations for
scoring a network.

JacobCov [19]: leverages gradients over the input data instead of parameters
or activations.

NASWOT [20]: computes the network score according to its kernel matrix
of the binary activation patterns between a batch of training inputs.

DSS [39]: specifically designed for transformer architectures via combining
synaptic diversity scores of MSA and synaptic saliency scores of MLP modules.

CRoZe [11]: measures the consistency of features, parameters, and gradients
between perturbed and clean samples.

T-CET [35]: incorporates the orthogonality of gradient-based (SSNR) and
activation-based (NASWOT) compressibility to score an architecture.

ZiCo [16]: considers both absolute mean and standard deviation of gradients,
emphasizing their influence on convergence rate and generalization capacity.

3.2 A New Proxy: ZiCo++

Inspired by ZiCo’s principle of favoring networks with high absolute mean and
low standard deviation gradient values for faster convergence and improved gen-
eralization, we introduce ZiCo++, a novel proxy. ZiCo++ enhances network ex-
pressive capacity by optimizing the mean and minimizing the standard deviation
of Fisher information of activations across input samples. Additionally, to address
the issue of the final score’s heavy reliance on the number of layers in ZiCo, we
incorporate a layer decay mechanism during score aggregation in ZiCo++. The
mathematical formulation is as follows:

ZiCo
++ ≜

n−1∑
i=1

ZiCo
++
i +

N−1∑
i=n

1

i − n + 1
ZiCo

++
i + ZiCo

++
N s.t.

ZiCo
++
i ≜ log

 ∑
ω∈θl

E
[
(∇ωL (Xi, yi; zi) ∗ zi)

2
]√

Var
(
(∇ωL (Xi, yi; zi) ∗ zi)

2
)


(2)

where ZiCo++
i and ZiCo++

N denote the ZiCo++ score of i_th and the last layer,
respectively. n is a tunable parameter representing the starting layer for layer
decay, such that n is constrained by n ≤ min_depth ∗ 4 + 1, with min_depth
denoting the minimal depth defined in the search space. In our experiments,
we set min_depth = 4 and n = 6 to preserve the ZiCo++ score for the first
embedding and the last projection layer, as well as for the first block containing
two MSA layers and two MLP layers.

3.3 Search Space Design

A transformer architecture contains an encoder and decoder, but for our clas-
sification task, we focus on encoder-only transformers. Typically, a transformer
encoder consists of a series of blocks, each containing a multi-head self-attention
(MSA) and a multi-layer perceptron (MLP) module. Therefore, the search space
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should account for four key elements: embedding dimension (embed_dim), num-
ber of blocks (depth), number of attention heads (num_heads), and MLP em-
bedding ratio (mlp_ratio) for each block. These components significantly impact
model performance.

Components depth embed_dim num_heads mlp_ratio

Choices (4, 10, 1) (32, 240, 16) (3, 6, 1) (1, 6, 1)

Table 1: The search space across all datasets. It includes depth, embed_dim,
num_heads, and mlp_ratio, with values indicating initial, final, and intervals. Differ-
ent numbers of heads and MLP ratios are utilized for each block. Notably, the total
number of layers equals depth ∗ 4 + 2.

Drawing inspiration from the effectiveness of manually crafted models pro-
posed by [12, 38], we define our search space in Table 1. We randomly sample
2000 subnetworks from the search space for our experiments.

4 Experimental Setup

Datasets We conduct experiments on five well-established HSI datasets:
i. Indian Pines [10]: 224 spectral bands, 145×145 spatial resolution, 16 classes,

695 training, and 9k testing samples.
ii. Houston2013 [37]: 144 spectral bands, 349 × 1905 spatial resolution, 15

classes, 2k training, and 12k testing samples.
iii. Pavia University (PaviaU) [10]: 103 spectral bands, 610 × 340 spatial reso-

lution, 9 classes, 3k training, and 40k testing samples.
iv. Kennedy Space Center (KSC) [10]: 176 spectral bands, 518 × 620 spatial

resolution, 13 classes, 195 training, and 5k testing samples.
v. Salinas scene [10]: 224 spectral bands, 512×217 spatial resolution, 16 classes,

800 training, and 53k testing samples.

Indian Pines and Salinas contain mostly agricultural vegetation, and the re-
maining three datasets consist of non-agricultural vegetation, such as roads and
buildings. More details are presented in Section 7.2 in our supplementary mate-
rial. For data-dependent search proxies, we randomly sample a batch of training
data with a batch size of 64, consistent with the batch size used for retraining.

Metrics We evaluate architecture performance with test Overall Accuracy (OA),
indicating correctly predicted samples over all samples. Spearman correlation (ρ)
measures the correlation between proxy scores and final test OA after training
all sampled networks. We also compare Search Time (ST) and proposed Model
Size (MS) for each proxy, calculated using the following equation from [29]:

MS(a, b, c, d) = 1, 539d+ a
(
4d+ 256cd+ 192c+ 5d+ 7, 680 + 2bd2 + bd+ d

)
+ 2d+# class × (d+ 1)

Here, a, b, c, and d represent the depth, MLP ratio, number of heads, and
embedding dimension, respectively. #class is the number of classes in the dataset.
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5 HyTAS Analysis

This section presents experiments to answer the following research questions:

– RQ1: How do proxies perform on HSI classification?
– RQ2: What factors influence Hyperspectral image transformer performance?
– RQ3: What factors influence the proxy scores?
– RQ4: Are proxies complementary?

5.1 RQ1: How Do Proxies Perform on HSI Classification?

Previous studies have shown the varying performance of proxies under different
search space constraints [15,33]. To address RQ1, we conduct experiments under
full and constrained search space conditions.

Full Search Space We compare proxies across all (2000) subnetworks sam-
pled from the entire search space on five datasets. We include two reference
results: SpectralFormer as the human-crafted transformer, and Oracle as the
upper bound. Results are presented in Table 2. We make four observations:

Dataset Indian Pines Houston2013 PaviaU KSC Salinas

Proxy OA MS ρ OA MS ρ OA MS ρ OA MS ρ OA MS ρ

#Flops 0.79 26.3 0.69 0.86 26.3 0.66 0.89 26.3 0.71 0.89 26.3 0.82 0.91 26.3 0.94
GradNorm 0.81 26.8 0.71 0.86 29.8 0.70 0.90 29.8 0.62 0.90 29.2 0.84 0.92 29.8 0.87
SNIP 0.81 26.8 0.70 0.87 29.9 0.66 0.89 26.3 0.69 0.89 28.1 0.83 0.93 26.8 0.94
GraSP 0.42 0.62 -0.67 0.78 0.94 -0.63 0.78 0.62 -0.67 0.47 0.62 -0.79 0.39 1.23 -0.88
Synflow 0.79 7.35 0.60 0.84 7.35 0.53 0.90 7.35 0.73 0.87 7.35 0.71 0.92 7.35 0.91
LogSynflow 0.79 7.35 0.60 0.84 7.35 0.52 0.90 7.35 0.73 0.87 7.35 0.68 0.92 7.35 0.89
Fisher 0.81 16.3 0.61 0.87 18.5 0.64 0.90 29.3 0.61 0.89 28.1 0.79 0.92 9.83 0.92
JacobCov 0.82 11.9 0.58 0.88 21.4 0.72 0.84 5.63 0.40 0.90 29.8 0.70 0.90 13.7 0.52
NASWOT 0.79 26.3 0.69 0.87 23.1 0.71 0.89 23.1 0.62 0.89 26.3 0.83 0.91 26.3 0.87
T-CET 0.79 26.3 0.63 0.86 26.3 0.71 0.89 26.3 0.38 0.89 26.3 0.74 0.94 29.9 0.65
CRoZe 0.79 26.3 0.46 0.87 26.7 0.54 0.84 26.4 0.18 0.89 29.3 0.55 0.91 28.1 0.42
DSS 0.80 25.9 0.60 0.84 7.35 0.53 0.89 9.89 0.73 0.89 10.6 0.72 0.92 29.8 0.91
ZiCo 0.81 26.8 0.52 0.86 26.3 0.62 0.84 25.6 0.26 0.89 26.3 0.63 0.91 26.3 0.50
ZiCo++ 0.81 25.6 0.73 0.86 29.3 0.75 0.84 25.6 0.62 0.89 29.3 0.83 0.94 29.3 0.86
SpectralFormer 0.79 0.48 - 0.85 0.48 - 0.85 0.48 - 0.86 0.48 - 0.89 0.48 -
Oracle 0.85 8.42 - 0.89 9.23 - 0.91 3.20 - 0.91 8.43 - 0.96 20.5 -

Table 2: Comparison of search results among proxies, presenting test Overall Accuracy
(OA) and corresponding model size (MS) determined by each proxy, as well as their
Spearman correlation (ρ) between proxy scores and final test OA after training. The
evaluation is conducted over a search space of 2000 subnets across five HSI datasets.
MS values are scaled by 106. T-CET is computed with SNIP and NASWOT [35].
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• The effectiveness of proxies varies across datasets. JacobCov achieves the
highest OA for Indian Pines, Houston2013, and KSC datasets, while Grad-
Norm and T-CET demonstrate the highest OA of 0.90 and 0.94 for the
PaviaU and Salinas datasets, respectively.

• Some proxies may yield high OA but exhibit low Spearman correlation. For
instance, JacobCov achieves the highest OA for three datasets but with
considerably lower Spearman correlations compared to the best ones, em-
phasizing the importance of considering both OA and Spearman correlation
for comprehensive assessment.

• ZiCo++ does not outperform ZiCo in terms of OA across all datasets except
for Salinas. However, it significantly exceeds ZiCo in Spearman correlation
across all datasets, achieving the highest Spearman correlation among all
proxies for the Indian Pines and Houston datasets.

• Apart from OA, model size, and ρ, searching efficiency is crucial for evalu-
ating proxies. Table 3 compares search times of all proxies. Except for ZiCo
and CRoZe, the search times for the other proxies are remarkably similar.
ZiCo’s extended search time can be attributed to the computation of scores
across individual samples, requiring gradient calculations for each sample
rather than utilizing batch mean gradients.

Proxy GradNorm SNIP Synflow Fisher JacobCov NASWOT CRoZe DSS ZiCo ZiCo++

Search time (h) 0.12 0.12 0.12 0.20 0.12 0.14 0.38 0.17 0.84 0.14

Table 3: Comparison of search times for each proxy across a search space of 2000
subnets on the Indian Pines dataset.

Constrained Search Space We visualize Spearman correlations and proposed
OA across varying model size constraints in Fig. 3. The depicted range represents
the minimum and maximum model sizes within the search space. For instance,
the range from 0 to 0.5e7 signifies model sizes from 0 to 5M, and from 0.5e7 to
1e7, it represents sizes from 5M to 10M. We make three observations:

• The Spearman correlation between proxies and OA decreases with increasing
model size, indicating higher efficacy of proxies for smaller models.

• The Oracle OA increases for models smaller than 5M and remains relatively
stable thereafter, with the optimal OA observed at 5M.

• Most proxies favor complex models and struggle when simpler models are
more effective, suggesting their limited capability to filter out underperform-
ing models.

Takeaway 1 : Most proxies can identify a transformer with better accuracy
than the human-crafted counterpart, SpectralFormer. However, the proposed
architectures are more complex than necessary, when compared to the oracle.
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Fig. 3: Spearman correlation and proxy-proposed OA across different model size con-
straints on the Indian Pines dataset.

5.2 RQ2: What Factors Influence Hyperspectral Image Transformer
Performance?

In RQ1, we show that proxies identify a highly accurate, yet complex model.
However, is this an optimal Hyperspectral transformer? To answer this, in this
section, we analyze the relationship between the performance and the architec-
tural factors. We have three key observations:

• Fig. 4 presents the Spearman correlation between OA and: depth (depth),
embedding dimension (embed_dim), number of heads (num_heads), and
MLP ratio (mlp_ratio). Notably, factors such as the number of heads and
MLP ratio show minimal correlation with overall model performance across
all datasets. Conversely, the influence of depth and embedding dimension
varies across datasets, with embedding dimension exhibiting particularly
high correlations across all datasets, reaching 0.91 on Salinas dataset.

• Fig. 4 presents average head embedding dimension (mean_head_dim), av-
erage MLP dimension (mean_mlp_dim), sum of all head dimensions
(sum_head_dim), sum of all MLP dimensions (sum_mlp_dim), and model
size. Notably, average head dimension and average MLP ratio exhibit OA im-
pacts similar to the embedding dimension, while total head dimension and
total MLP ratio aggregate influence from both embedding dimension and
depth. However, for datasets like PaviaU, where OA relies solely on embed-
ding dimension, the impact of total head dimension diminishes. Conversely,
for datasets like Indian Pines, Houston2013, and KSC, where OA correlates
with both embedding dimension and depth, Spearman correlation of total
head dimension increases. This suggests that if proxy scores correlate solely
with one factor, they may not be robust indicators.

• In Fig. 5, we visualize the highest OA of different values of each component
across all datasets. Optimal embedding dimension and depth vary across
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datasets. As an example, in Indian Pines, OA increases with the embedding
dimension, peaking at embed_dim = 128 and remaining stable thereafter.
Similarly, depth = 8 results in the highest OA, with no further improvements
observed when increasing the depth to 9 or 10. Additionally, the impact of the
average number of heads and the average MLP ratio on model performance
is showcased in the right two subplots, where mean number of heads of 4−5
and mean MLP ratio of 3− 4 yield relatively stable and high OA.
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Takeaway 2 : Across datasets, embedding dimension and depth exhibit
consistent sensitivity, though with slight variations. Furthermore, while larger
models generally achieve better performance, optimal networks do not necessar-
ily have to be the largest or most complex ones.
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5.3 RQ3: What Factors Influence the Proxy Scores?

To answer this question, we analyze the sensitivity of proxy scores to architecture
components, input data, and module types separately.

Sensitivity to Architectural Components We examine Spearman corre-
lations between proxy scores and each component on Indian Pines dataset in
Fig. 6. Additionally, Spearman correlations between OA and each component
are shown in the last column as a comparison. Depth and embedding dimen-
sion significantly impact scores of most proxies. Specifically, #Flops, SNIP, and
GradNorm display a strong correlation (over 0.95) with the sum of heads’ dimen-
sions, surpassing the correlation with OA. Furthermore, Synflow, LogSynflow,
and DSS show perfect correlation with embedding dimension and minimal cor-
relation with depth due to taking sign of model parameters, which also exceeds
the correlation with OA. Interestingly, removing sign operations improves the
performance of Synflow, LogSynflow, and DSS. Details are shown in Section 7.3
in our supplementary material. These discrepancies in the correlation between
OA and proxy scores result in a performance gap between proxies and oracle
results.
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Fig. 6: Spearman correlations between proxy scores and architecture components on
Indian Pines dataset.

Sensitivity to Input Data Considering Synflow, LogSynflow, NASWOT, and
DSS are data-agnostic, we explore the sensitivity of remaining proxies to input
data. To investigate this, we conduct search experiments using one batch of
random input data across the remaining proxies. The results, presented in Table
4, reveal that performing the search with random inputs yields outcomes very
similar to those obtained with the Indian Pines dataset. This suggests that the
majority of the proxies exhibit negligible dependency on specific input data.

Furthermore, we compare OA, SNIP, and GradNorm scores from the same
models between PaviaU and Indian Pines datasets in Fig. 7. The plots of SNIP
and GradNorm indicate a perfect correlation between scores across different
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Proxy OA ρ

Indian Pines Random Input Indian Pines Random Input

GradNorm 0.81 0.81 0.71 0.71
SNIP 0.81 0.81 0.70 0.69 (-0.01)
GraSP 0.42 0.44 (+0.02) -0.67 -0.70 (-0.03)
Fisher 0.81 0.82 (+0.01) 0.61 0.55 (-0.06)
JacobCov 0.82 0.79 (-0.03) 0.58 0.68 (+0.1)
ZiCo 0.81 0.79 (-0.02) 0.52 0.52

Table 4: Comparison between searching with a batch of Indian Pines inputs and
random inputs.

datasets, suggesting that the proxies are largely independent of the input data.
However, the plot of OA shows significant variation between the two datasets,
indicating that the same architecture yields very different performances depend-
ing on the dataset. This finding further emphasizes the gap between proxies and
model performance.
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Fig. 7: Comparisons of OA, SNIP, GradNorm of same subnetworks between PaviaU
and Indian Pines datasets.

Sensitivity to Module Type (MSA vs. MLP) Given the distinct structures
of MSA and MLP modules within a transformer architecture, we hypothesize
that the effectiveness of the two modules for proxy scores might differ signifi-
cantly. To validate our assumption, we separately compute DSS, Synflow, and
SNIP scores for MSA and MLP modules. Our analysis reveals a significant score
scale difference between MSA and MLP. For instance, for DSS scores, MSA
(2472 ± 259) is notably higher than MLP (268 ± 366), indicating the predomi-
nant contribution of MSA modules to final proxy scores, with minimal influence
from MLP modules. To address this imbalance, we apply a logarithmic transfor-
mation to both module scores. The transformed results demonstrate comparable
scores for MSA and MLP modules across all three proxies. Detailed scores are
presented in Section 7.4 in our supplementary material.

Furthermore, we assess the effectiveness of scores with and without loga-
rithmic transformation, as shown in Table 5. The origin score is represented as
origin_score = msa_score +mlp_score, and the new score is represented as
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logarithm_score = log(msa_score×mlp_score), where msa_score represents
the cumulative score of all MSA layers, and mlp_score denotes the cumulative
score of all MLP layers. The results indicate improvements with the logarithmic
transformation, particularly for Synflow and DSS proxies.

Dataset SNIP GradNorm Synflow DSS

origin logarithm origin logarithm origin logarithm origin logarithm

Indian Pines 0.70 0.70 0.71 0.71 0.69 0.72 0.69 0.70
Houston2013 0.66 0.65 0.70 0.70 0.68 0.73 0.67 0.69
PaviaU 0.69 0.70 0.62 0.64 0.69 0.63 0.70 0.69
KSC 0.83 0.82 0.84 0.84 0.82 0.86 0.82 0.84
Salinas 0.94 0.94 0.87 0.90 0.93 0.90 0.94 0.94

Table 5: Comparison of Spearman correlations between proxy scores and OA, with
and without logarithmic transformation.

Takeaway 3 : Proxies exhibit a higher correlation with embedding dimen-
sion and depth than actual model performance, suggesting limited sensitivity to
input data. Enhancing proxies’ robustness may involve integrating more input
information and decreasing sensitivity to individual architecture components.
Furthermore, assessing scores independently for MSA and MLP modules, or em-
ploying distinct metrics for each, could improve proxy performance.

5.4 RQ4: Are Proxies Complementary?

Motivation. Our results indicate that TAS proxies are fast but may lack relia-
bility, with search performance varying across datasets. Therefore, TAS proxies
solely remain problematic. Some studies have employed proxies for pre-filtering
or combined them with other search methods, such as one-shot search, evolution-
ary algorithms, or Bayesian optimization [33,34]. Here, we propose an alternative
approach to leverage proxies for enhancing search performance.

Setup. We seek to forecast a network’s performance using its architectural struc-
ture and proxy scores. By retraining all sampled networks and collecting their
proxy scores, we explore the feasibility of predicting a model’s OA, alongside ex-
ploring the number of training samples needed for accurate predictions. We ap-
ply a default Random Forest model, with inputs comprising 2000 samples. Each
sample represents a subnetwork sampled from the search space, encompassing at-
tributes such as depth, embed_dim, num_heads, mlp_ratio, and various proxy
scores including SNIP, GradNorm, Synflow, DSS, ZiCo, and Fisher scores. The
target variable is OA, derived from the Indian Pines dataset. Detailed settings
are presented in Section 7.5 in our supplementary material.

Results. Fig. 8 displays the test outcomes. The left subplot presents the pre-
dicted OA alongside the actual OA for 1950 networks trained on 50 networks.
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The Spearman correlation between actual and predicted OA reaches 0.80, sur-
passing the best correlation obtained from proxies by 9%. Additionally, the right
subplot demonstrates a correlation improvement with an increase in the number
of training networks. Each result represents the mean and standard deviation
across five runs with random seeds. Notably, the correlation rises to 0.78, a 6%
increase over the untrained scenario, with only 20 networks trained. It is worth
noting that training the Random Forest model takes less than one minute with
a training size of 0.5x, making the cost almost negligible compared to training
the original subnetworks with actual input data.
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Fig. 8: Predicting subnetworks’ performance using Random Forest model.

Takeaway 4 : Proxies, while not entirely reliable on their own, can com-
plement other architecture search methods to improve search efficiency or serve
as training data for models predicting network performance to improve search
accuracy.

6 Conclusion

In this study, we introduced HyTAS: a benchmark for Hyperspectral Image
Transformer Architecture Search. We defined a search space comprising 2000 Hy-
perspectral image transformers and evaluated 12 proxies across five HSI datasets.
Our key observations are as follows: Most proxies can identify a transformer
surpassing the human-crafted architecture, SpectralFormer, within 10 minutes.
However, there’s a significant performance gap between proxies and optimal
results, driven by preferences for larger and more complex models, minimal de-
pendence on input data, and disparities between MSA and MLP modules. Our
proposed proxy, ZiCo++, demonstrates superior performance compared to ZiCo
and other proxies. Furthermore, proxies can enhance the prediction of subnet-
works’ performance when used as input data. These findings encourage the TAS
community to explore new methods for improving search quality and efficiency.
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