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Abstract. Brain-inspired Spiking Neural Networks (SNNs) have bio-
plausibility and low-power advantages over Artificial Neural Networks
(ANNs). Applications of SNNs are currently limited to simple classifi-
cation tasks because of their poor performance. In this work, we focus
on bridging the performance gap between ANNs and SNNs on object
detection. Our design revolves around network architecture and spiking
neuron. First, the overly complex module design causes spike degrada-
tion when the YOLO series is converted to the corresponding spiking
version. We design a SpikeYOLO architecture to solve this problem
by simplifying the vanilla YOLO and incorporating meta SNN blocks.
Second, object detection is more sensitive to quantization errors in the
conversion of membrane potentials into binary spikes by spiking neu-
rons. To address this challenge, we design a new spiking neuron that
activates Integer values during training while maintaining spike-driven
by extending virtual timesteps during inference. The proposed method
is validated on both static and neuromorphic object detection datasets.
On the static COCO dataset, we obtain 66.2% mAP@50 and 48.9%
mAP@50:95, which is +15.0% and +18.7% higher than the prior state-
of-the-art SNN, respectively. On the neuromorphic Gen1 dataset, we
achieve 67.2% mAP@50, which is +2.5% greater than the ANN with
equivalent architecture, and the energy efficiency is improved by 5.7×.
Code: https://github.com/BICLab/SpikeYOLO

Keywords: Spiking neural network · Object detection · Spike-driven ·
Neuromorphic vision · Neuromorphic computing

1 Introduction

Brain-inspired SNNs are known for their low power consumption [46,48]. Spiking
neurons incorporate spatio-temporal information and emit spikes when the
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membrane potentials exceed a threshold [36]. Thus, spiking neurons trigger
sparse additions only when they receive a spike and are otherwise idle. This
spike-driven enables SNNs to exhibit obvious low-power advantages over ANNs
when deployed on neuromorphic chips [7,37,41,61]. However, the negative impact
of complex neuronal dynamics and spike-driven nature is that SNNs are difficult
to train and have limited task performance and application scenarios [13].

For example, most applications of SNN algorithms in computer vision are
limited to simple image classification tasks [9, 14, 20, 25, 27, 31, 33, 42, 54, 60].
Another more commonly used and challenging computer vision task, object
detection, is rarely explored in SNNs. In 2020, Spiking-YOLO [29] provided the
first object detection model in deep SNNs, exploiting the method of converting
ANN to SNN with thousands of timesteps. In 2023, EMS-YOLO [50] became
the first work to use direct training SNNs to handle object detection. Recently,
the direct training Meta-SpikeFormer [58] can process the object detection in a
pre-training and fine-tuning manner for the first time. However, the performance
gap between these works and ANNs is significant. In this work, we aim to bridge
this gap and demonstrate the low-power of SNNs and their unique advantages in
neuromorphic applications. We achieve this goal through two efforts.

First, we design a new architecture, SpikeYOLO, which combines the macro
design of YOLO with the micro design of the SNN module. Simply replacing the
artificial neurons in the YOLO series [1,43,52] with spiking neurons generally does
not work. Existing solutions include establishing the equivalence between ANN
activation and spike firing rate [29], or improving the residual design [50]. We
argue that another potential reason is that the module design in the YOLO series
is too complex, which is effective in ANNs, but not suitable for SNNs. We observe
that after the complex YOLO modules are converted into the corresponding
spiking versions, there is a phenomenon of spike degradation in which the deep
layers almost no longer emit spikes. Therefore, we tend to simplify the design
in SpikeYOLO. We only retain the macro architecture in YOLOv83 while using
the simple meta SNN block in Meta-SpikeFormer [58] as the basic module and
performing micro design.

Second, we design a novel spiking neuron, Integer Leaky Integrate-and-Fire
(I-LIF), to reduce the quantization error of SNNs. Spike-driven is the key to
low-power, while exploiting only binary signals will drop performance, especially
in challenging object detection. Numerous studies have attempted to mitigate this
problem, such as attention-based membrane optimization [63], ternary spike [18],
information max [19], converting quantized ANNs [26], optimal ANN2SNN [2].
However, direct training based on optimization strategies can only alleviate
errors; the optimal approximation of ANN2SNN requires large timesteps, and
it is difficult to exploit the temporal information. In contrast, the idea of the
proposed I-LIF is to use integer-valued activations to drop quantization errors and
convert them into spikes during inference by extending the virtual timesteps. The
features of I-LIF are: 1) Integer-valued training improves performance and is easy
to train; 2) Integer activation during training can be equivalent to spike-driven

3https://github.com/ultralytics/ultralytics
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in inference that there is only sparse addition; 3) The temporal dynamics of LIF
are reserved, capable of processing neuromorphic object detection.

The proposed method is validated on both static COCO [35] and neuromorphic
Gen1 [8] object detection datasets. The performance we report on both datasets far
exceeds the existing best models in SNNs. In addition, we explore the performance
changes after the mutual conversion of ANN and SNN with the same architecture.
The main contributions of this work are:

– SpikeYOLO. We explore suitable architectures in SNNs for handling object
detection tasks and propose SpikeYOLO, which simplifies YOLOv8 and
incorporates meta SNN blocks. This inspires us that the complex modules in
ANN may not be suitable for SNN architecture design.

– I-LIF Spiking Neuron. We propose an I-LIF spiking neuron that combines
integer-valued training with spike-driven inference. The former is used to
reduce quantization errors in spiking neurons, and the latter is the basis of
the low-power nature of SNNs.

– Performance. The proposed method achieves outstanding accuracy with
low power consumption on object detection datasets, demonstrating the
potential of SNNs in complex vision tasks. On the COCO dataset, we obtain
66.2% mAP@50 and 48.9% mAP@50:95, which is +15.0% and +18.7%
higher than the prior state-of-the-art SNN, respectively. On the Gen1 dataset,
SpikeYOLO is +2.5% better than ANN models with 5.7× energy efficiency.

2 Related Works

SNN Training Method. Training methods have restricted the development
of SNN for a long time. To make SNNs deeper, two training methods have
been developed. ANN2SNN substitutes the ReLU function with spiking neurons,
aiming to mimic the continuous activation by controlling the firing rate of
spiking neurons [3, 10, 49]. It can achieve high performance but often requires
long timesteps and is difficult to process sequence tasks that exploit the spatio-
temporal dynamic nature of SNNs. In contrast, another directly training an
SNN leverage gradient surrogate to circumvent the non-differentiability of binary
spikes [39,55]. Direct training is more flexible and requires fewer timesteps, but
its performance usually suffers compared to ANNs of the same architecture. In
this work, we focus on utilizing directly trained SNNs to process object detection
due to its more flexibility in architectural design.

SNN Architecture Design. The architecture of SNNs can be roughly
divided into two categories: CNN-based and Transformer-based SNNs. Spiking
ResNet has long dominated the SNN field because residual learning [22] can
address the performance degradation of SNNs as they become deeper. Typical
spiking ResNet includes vanilla spiking ResNet [68], SEW-ResNet [14], and MS-
ResNet [27]. The main difference between them is the location of shortcuts and
the ability to achieve identity mapping [23]. Recently, the Transformer [12,51]
architecture has become popular [21,38,58,60,66,67,67,69] in the SNN field and
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has refreshed the performance upper bound. The SpikeYOLO we designed draws
on the idea of the meta SNN block in Meta-SpikeFormer [58] and merges it with
the YOLOv8 architecture.

Quantization Errors in SNNs. Spiking neurons quantize continuous mem-
brane potentials with complex spatio-temporal dynamics into binary spikes.
Obviously, quantization error will limit the performance of SNNs. In ANN2SNN,
the reduction of quantization error is relatively simple, which can be achieved by
increasing the timestep [2]. In direct training, adjusting the relationship between
membrane potential distribution and threshold is the main solution, such as
attention mechanism [63] optimizes membrane potential distribution to reduce
noise spikes; information max [19] is derived from the information entropy angle
to optimize spike firing. However, optimization cannot change the inherently
quantized error nature of binary spikes. The solution of this work is to use integer
values to reduce quantization errors during training and convert them to binary
spikes to ensure spike-driven inference.

Object Detection. Object detection is a challenging yet pivotal task. Exist-
ing object detection frameworks can be simply categorized into: two-stage frame-
works (RCNN series [16,17,45]) and single-stage frameworks (YOLO [1,43,52],
Detr [4, 70] series). The former generate region proposals before determining
precise object locations and classifications, whereas the latter directly ascertain
these elements, offering a swifter, more streamlined solution. The object detection
task has always been difficult for SNNs, and there are few related works. Cur-
rent works include ANN2SNN-based YOLO [29,65] and directly-trained spiking
YOLO [50,58]. Their performance is poor, and it isn’t easy to meet the needs of
real scenarios.

3 Methods

We exploit SpikeYOLO to process both static and neuromorphic object detection
datasets. We first introduce how network inputs are unified. Then, the details of
SpikeYOLO architecture and I-LIF spiking neuron are presented, respectively.

3.1 Network Input

The input of SNNs can be denoted as X ∈ RT×C×H×W , where T is the timestep,
C is the channel, H ×W denote the spatial resolution.

Static Image. To leverage the spatio-temporal capabilities of SNNs, it is
common practice that static images are repeated and utilized as input for each
timestep T . This is called direct input encoding [30,56], where the first layer of
spiking neurons in the network encodes the continuous values of the input into
spike signals.

Neuromorphic Event Stream. Neuromorphic data (also known as event-
based vision) are generated by a Dynamic Vision Sensor (DVS), which only
generates spikes when the logarithmic change in light intensity at a pixel surpasses
a predefined threshold. An event-based stream is characterized as (xn, yn, tn, pn),
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Fig. 1: The overall architecture of SpikeYOLO. We designed two SNN blocks, SNN-
Block-1 and SNN-Block-2, and kept other architectures remain as YOLOv8. SNN-Block-1
employs standard convolution within its ChannelConv (·) component, whereas SNN-
Block-2 utilizes re-parameterization convolution. That is, the difference between the
two is the channel mixer module. In the low and high stages, we use SNN-Block-1 and
SNN-Block-2, respectively. The spiking neuron is I-LIF, which activates integer values
during training while converting them to binary spikes during inference.

with each event capturing spatial coordinates(x, y), timestamp t and polarity p,
where p ∈ {−1, 1} indicates whether light intensity has increased or decreased.
Neuromorphic vision offers several advantages [15, 61], such as low resource
requirements, high temporal resolution, and high robustness. The spike-driven
nature of SNN makes it naturally suitable for processing event streams. The
general strategy for neuromorphic pre-processing is to aggregate the event stream
within a fixed time window into a frame format [57, 59, 62]. In this work, we
follow this operation. Specifically, the total input window length is T × dt, where
dt and T are temporal resolution and timestep, respectively.

3.2 SpikeYOLO Architecture

Overview. SpikeYOLO integrates the macro design of the YOLOv8 with the
micro design of Meta-SpikeFormer [58]. The motivation is that we observe complex
computations within YOLO’s modules result in spike degradation [27] upon
direct conversion to the SNN version. Consequently, we maintain the overarching
design principles of the YOLO architecture while incorporating the inverted
residual structure [47] and re-parameterization convolution [11] design of the
Meta-SpikeFormer for detailed aspects.
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Network Output. In object detection, the network outputs the class and
position of each object based on the input image sequence X = {Xt}Tt=1. Suppose
the input image sequence has N goals, the output B = {Bn}Nn=1 can be calculated:

B = Model (X) , (1)

where each Bn = {fn, cn, xn, yn, wn, hn} contains information about degree of
confidence fn, class Cn, center coordinates (xn, yn) and target size (wn, hn).
Model (·) refers to the proposed SpikeYOLO architecture.

Macro Design. Fig. 1 shows the overview of SpikeYOLO, a variation of the
YOLO framework that is more suitable for the feature extraction scheme of SNNs.
Specifically, YOLOv8 is a classic single-stage detection framework that partitions
the image into numerous grids, with each grid responsible for predicting a target
independently. Some classic designs, such as the feature pyramid network [34]
in YOLOv8, play a crucial role in facilitating efficient feature extraction and
fusion. By contrast, its feature extraction module, such as C2F, performs repeated
feature extraction from the same set of feature maps. This module can enhance
feature extraction in ANNs but does not work well in SNNs. As a compromise,
we preserve the classic Backbone/Neck/Head architecture in YOLOv8 while
incorporating strategies from the meta SNN block in Meta-SpikeFormer.

Micro Design. Meta-SpikeFormer [58] is the current state-of-the-art architecture
in SNNs, which explores the meta design of SNN and consists of CNN-based
and Transformer-based SNN blocks. The meta block comprises a token mixer
module and a channel mixer module. The difference between CNN-based and
Transformer-based SNN blocks lies in the token mixer, which are spike-driven
convolution and spike-driven self-attention, respectively. In this work, we mainly
redesign the channel mixer module for the object detection task. As shown in
Fig. 1, SNN-Block-1 and SNN-Block-2 are designed to extract low-stage and
high-stage features, respectively.

The meta SNN block in [58] can be written as:

U ′ = U + SepConv (U) , (2)

U ′′ = U ′ +ChannelConv (U ′) , (3)

where U ∈ RT×C×H×W is the layer input, SepConv (·) is an inverted separable
convolution module [47] with 7× 7 kernel size in MobileNetv2 to capture global
features, followed by a 3 × 3 depthwise convolution for further spatial feature
fusion. Sepconv (·) can be expressed as:

SepConv (U) = Convdw2 (Convpw2 (SN (Convdw1 (SN (Convpw1 (SN (U))))))) , (4)

where Convdw1 (·) and Convdw1 (·) are depthwise convolutions, Convpw1 (·)
and Convpw1 (·) are pointwise convolutions [5]. SN(·) is the spiking neuron layer.
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ChannelConv (·) is the channel mixer, which facilitates inter-channel information
fusion. We redesign ChannelConv (·) in object detection task.

For SNN-Block-1, it is written as:

ChannelConv1 (U ′) = Conv (SN (Conv (SN (U ′)))) , (5)

where Conv (·) is a standard convolution with expansion ratio r = 4. In con-
trast, addressing high-stage features, SNN-Block-2 employs a re-parameterization
convolution to minimize parameter count, which can be described as:

ChannelConv2 (U ′) = RepConv (SN (RepConv (SN (U ′)))) , (6)

RepConv (U ′) = Convpw2 (Convdw1 (Convpw1 (U
′))) , (7)

where RepConv (·) is the re-parameterization convolution [11] with kernel size
3× 3, it can be re-parameterizated to a standard convolution during inference.

3.3 I-LIF Spiking Neuron

Spiking neurons propagate information in both spatial and temporal domains,
and they mimic the spiking communication scheme of biological neurons. However,
there are inherent quantization errors in converting the membrane potential of
spiking neurons into binary spikes, which severely limits the representation of
the model. Recently, Fast-SNN [26] achieves high-performance conversion with
small timesteps by converting quantized ANNs into SNNs. This inspires us to
“why not train directly with integer values", which can significantly reduce the
quantization error. We just need to be careful to ensure that the inference is
spike-driven. So, we came up with the idea of I-LIF.

LIF. Leaky Integrate-and-Fire (LIF) spiking neuron [36] is the most popular neu-
ron to construct SNNs due to its balance between bio-plausibility and computing
complexity. The dynamics of LIF with soft reset is:

U [t] = H [t− 1] +X [t] , (8)

S [t] = Θ (U [t]− Vth) , (9)

H [t] = β (U [t]− S [t]) , (10)

where t denotes the timestep, U [t] is the membrane potential that integrates
the temporal information H [t− 1] and spatial information X [t]. Θ (·) is the
Heaviside step function which equals 1 for x ≥ 0 and 0 otherwise. If U [t] exceeds
the firing threshold Vth, spiking neuron fire a spike S [t] and U [t] will subtract it
subsequently. Otherwise, H [t] will remain unchanged. And, U [t] decays to H [t]
by a factor of β, which denotes the decay constant. For simplicity, we focus on
Eq.9 and denote the spiking neuron layer as SN(·), with its input as membrane
potential tensor U and its output as spike tensor S.
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Fig. 2: Comparison of I-LIF and LIF. Binary spikes are emitted by LIF during both
training and inference processes, which results in quantization errors. I-LIF emits integer
values during the training process to reduce quantization errors, and converts them into
binary spikes during inference to make the network only perform sparse addition.

I-LIF. We propose the Integer Leaky Integrate-and-Fire (I-LIF) neuron to
reduce the quantization error. As shown in Fig. 2, I-LIF emits integer values
while training, and converts them into 0/1 spikes when inference. Specifically, in
I-LIF, Eq.9 is rewritten as:

S [t] = Clip (round(U [t]), 0, D) , (11)

where round(·) is a round symbol, Clip (x,min,max) denotes that clipping x
to [min,max], D is a hyperparameter indicating the maximum emitted integer
value by I-LIF.

Training Stage. Eq.11 is not a continuous function, making its derivative
a step function, potentially causing training instability. Previous studies have
introduced several surrogate gradient functions, which primarily address binary
spike outputs. We consistently utilize rectangular windows as the surrogate
function. For simplicity, We retain gradients solely for neurons activated in the
[0, D] range, nullifying all others.

Inference Stage. Introducing integer value necessitates additional MACs
(Multiply-Accumulation operations), potentially diminishing the energy efficiency
of SNNs. Thus, converting integer values to binary spikes is essential. Fig. 3
shows an example of how integer values convert to binary spikes by extending
virtual timesteps during inference. Specifically, the input to the spiking neuron
at l+ 1 layer can be described as X l+1 [t] = W lSl [t]. We extend the T time step
to T ×D, and convert the integer value Sl [t] to a spike sequence {Sl [t, d]}Dd=1,
which satisfied:

D∑
d=1

Sl [t, d] = Sl [t] . (12)



SpikeYOLO 9

1 2 3
t

1 2 3 4 5 6
t

membrane 
potential

1 2 3

1 2 3 4 5 6

t

2.1

0.7
0.3t

1.9
1.2
0.4

training

inference t

t
1 2 3

1 2 3 4 5 6

t

2.6

0.9
1.4

t

t

ILIF

ILIF

ILIF

ILIF

ILIF

ILIF

Vth Vth Vth

Fig. 3: An example of how the proposed I-LIF works. We assume T = 3,D = 2, and
show the corresponding binary spike sequences of integer value during inference. The
membrane potential in [0.5, 1.5) are quantized to 1, while those in [1.5, 2.5) are quantized
to 2. membrane potential that > 2.5 are also quantized to 2 due to the maximum
integer value D = 2. Subsequently, the membrane potential will be subtracted from the
integer value. The training spike with a value of 2 will be converted into two binary
spikes by extending virtual timesteps during inference.

Thus, the neuron’s input at l + 1 layer is reformulated as:

X l [t] = W l
D∑

d=1

Sl [t, d] . (13)

Given that matrix multiplication functions as linear operators, we establish:

W l
D∑

d=1

Sl [t, d] =

D∑
d=1

(W lSl [t, d]). (14)

Therefore, the input of the neuron at l+1 layer can be computed by:

X l [t] =

D∑
d=1

(W lSl [t, d]). (15)

The spike sequence Sl [t, d] only contains 0/1, so all MACs can be converted
into sparse ACs(Accumulation operations), which can ensure spike-driven when
inference.

4 Experiments

We evaluate the proposed method on COCO 2017 val [35] and neuromorphic
Gen1 [8] datasets. The mean Average Precision(mAP) at IOU=0.5(mAP@50), the
average mAP between 0.5 and 0.95(mAP@50:95), and energy cost are reported
for each model. Specifically, the power of ANNs and SNNs can be calculated as:

EANN = O2 × Cin × Cout × k2 × EMAC , (16)
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Table 1: Results on COCO 2017 val [35]. T ×D means that we set up T timesteps,
and each timestep is expanded D times. In prior SNNs and ANNs, D defaults to 1.

Architecture Model Param Power
T ×D

mAP@ mAP@
(M) (mJ) 50(%) 50:95(%)

ANN
PVT [53] 32.9 520.3 1 59.2 36.7
DETR [4] 41.0 197.8 1 62.4 42.0
YOLOv5 4 21.2 112.5 1 64.1 45.4

ANN2SNN
Spiking-Yolo [29] 10.2 - 3500 - 25.7

Bayesian Optim [28] 10.2 - 5000 - 25.9
Spike Calib [32] 17.1 - 512 45.4 -

Directly-trained
SNN

EMS-YOLO [50] 26.9 29.0 4 50.1 30.1
Meta-SpikeFormer 34.9 49.5 1 44.0 -
(MaskRCNN) [58] 75.0 140.8 1 51.2 -
Meta-SpikeFormer 16.8 34.8 1 45.0 -

(YOLO) [58] 16.8 70.7 4 50.3 -

SpikeYOLO(Ours)

13.2 23.1 1× 4 59.2 42.5
23.1 18.4 1× 1 52.7 36.1
23.1 34.6 1× 4 62.3 45.5
23.1 67.6 4× 1 55.7 38.7
23.1 134.7 4× 4 63.3 46.3
48.1 68.5 1× 4 64.6 47.4
68.8 84.2 1× 4 66.2 48.9

ESNN = (T ×D)× fr ×O2 × Cin × Cout × k2 × EAC , (17)

where O is the feature output size, Cin and Cout denotes the number of input
channel and output channel, k is the kernel size, fr denotes the average spike
firing rate, T is the timestep, D is the upper limit of integer activation during
training. We follow the most commonly used energy consumption evaluation
method in the SNN field [40,63,64]. All operations assume a 32-bit floating-point
implementation on 45nm technology, where EMAC = 4.6pJ and EAC = 0.9pJ [24].
As can be seen from Eq. 16 and 17, SNN’s low power comes from its sparse
addition operation. The fewer spikes, the sparser the computation.

4.1 COCO 2017 val Dataset

Experimental Setup. As a predominant static dataset for object detection,
COCO 2017 val [35] comprises 80 classes split into 118K training and 5K validating
images. In all experiments, we set decay factor β = 0.25, learning rate to 0.01,
and adopt SGD optimizer. The models are trained for 300 epochs with a batch
size of 40 on 4 NVIDIA V100 GPUs. Mosaic data augmentation [1] technique is
employed. The network structure is given in the supplementary material. Note,

4https://github.com/ultralytics/yolov5
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Table 2: Ablation studies of architectural design. We first convert YOLOv8 directly
into the corresponding spiking version. Then we convert the SpikeYOLO designed in
this work into the corresponding ANN version.

Architecture Model Param Power
T ×D

mAP@ mAP@
(M) (mJ) 50(%) 50:95(%)

ANN → SNN YOLOv8 25.8 183.5 1 67.2 50.2
Spiking YOLOv8 25.8 7.2 1× 1 46.8 31.3

SNN → ANN SpikeYOLO (Ours) 23.1 18.4 1× 1 52.7 36.1
YOLO 23.1 314.1 1 65.0 48.1

in our method, inference timestep is reported as T × D, e.g., 1 × 4 denotes
T = 1, D = 4.

Main Results are shown in Table 1. The proposed SpikeYOLO significantly
improves the performance upper bound of the COCO dataset in SNNs. We
obtain 66.2% mAP@50 and 48.9% mAP@50:95, which is +15.0% and +18.7%
higher than the prior state-of-the-art SNN [58], respectively. SpikeYOLO also
has significant advantages over existing SNNs in terms of parameters and power:
SpikeYOLO vs. EMS-YOLO [50]: Param, 23.1M vs. 26.9M; mAP@50, 62.3%
vs. 50.1%; mAP@50:95, 45.5% vs. 30.1%; Power, 33.2mJ vs. 29.0mJ. Moreover,
the performance gap between SNNs and ANNs is significantly narrowed. For
example, under similar parameters, the performance of SpikeYOLO and YOLO
v5 are comparable, and the energy efficiency is 3.3×.

Ablation Studies of Architectural Design. We simplify YOLOv8 for
SNN and incorporate meta SNN blocks. As shown in Table 1, this architectural
improvement enables the accuracy of spikeYOLO at T = 1 and D = 1 to reach
52.7%, better than the prior state-of-the-art SNN. We are also interested in
the question “whether the architectures in SNNs and ANNs can be used directly
interchangeably?". We conduct the experiments in Table 2. We observe that
directly converting the ANN architecture into the corresponding SNN brings
significant performance degradation. The special architectural design of SNNs
can improve its representation.

Ablation Studies of Quantization Error. Integer-valued training is de-
signed to reduce quantization error in SNNs. The larger D is, the smaller the
quantization error is. In Table 1, we fixed the parameters to 23.1M. When T = 1
and T = 4, we expand D = 1 to D = 4, respectively, and the accuracies of
mAP@50 are increased by +9.6% and +7.6%. In contrast, if we fix D = 1 and
increase T = 1 to T = 4, the performance improvement of mAP@50 is only 3%.
These results show that quantization error has a greater impact on performance
than the setting of timesteps. And, in terms of power, increasing D is more
cost-effective than increasing T . For instance, when 1× 1 changes to 1× 4, power
increases by 88%; while 1× 1 changes to 4× 1, power improves by 267%.

4.2 Gen1 Automotive Detection Dataset
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GTT=1, D=4, 68.8MT=1, D=4, 23.1MT=1, D=1, 23.1M

Fig. 4: The object detection results on the COCO dataset. The first two columns
compare the effect of maximum integer value D on performance for the same structure.
The second and third columns compare the effect of the size of the model on performance.

Experimental Setup. As a large neuromorphic object detection dataset, Gen1
[8] encompasses 39 hours of open road and various driving scenarios, captured
using an ATIS sensor with a resolution of 304×240 pixels. The dataset is organized
into training, validation, and testing subsets. The bounding box annotations of
pedestrians and cars(over 255,000) were manually labeled. For each annotation,
we process the event-based stream 2.5 seconds before its occurrence, dividing it
into T slices for model input. We train the model for 50 epochs and maintain
other hyperparameters same as the COCO 2017 dataset.

Main Results on Gen1 dataset are shown in Table 3. The proposed SpikeY-
OLO notably elevates the performance benchmark for the Gen1 dataset in SNNs.
We achieve 67.2% mAP@50 with 23.1M parameters, which outperforms the prior
state-of-the-art SNN model by +8.2%. For example, when T = 5, SpikeYOLO
vs. EMS-YOLO [50]: Param, 13.2M vs. 14.4M; mAP@50, 66.0% vs. 59.0%;
mAP@50:95, 38.5% vs. 31.0%. In contrast to the COCO dataset, Gen1 contains
temporal information that is more suitable for SNN processing. We conduct
experiments on the performance of SNN and ANN with the same architecture.
We observe that SpikeYOLO’s mAP@50 accuracy is +2.5% higher than the
corresponding ANN, and shows a 5.7× energy efficiency. This indicates that
SNN has attractive potential in processing neuromorphic data.

Ablation Studies of Quantization Error. Both T and D significantly
influence outcomes when processing neuromorphic datasets. Table 4 gives a com-
prehensive ablation study on SpikeYOLO with 23.1M parameters that evaluate
the effects of varying T and D. We observe some interesting experimental results.
First, boosting the timestep T will bring improvement in accuracy and power.
For instance, with the set of D = 1, extending T = 1 to T = 4 yields a +6.7%
increase in mAP@50, and the power will increase by 3.7×. But further extending
T = 4 to T = 8 results in a marginal increase of only +0.7% and significantly
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Table 3: Results on the Gen1 dataset [8]. * We convert 23.1M of SpikeYOLO into
ANN with the same architecture.

Architecture Model Param Power
T ×D

mAP@ mAP@
(M) (mJ) 50(%) 50:95(%)

ANN YOLOv3-tiny [44] 10.2 5.1 1 44.5 -
SpikeYOLO* 23.1 78.5 1 64.7 39.7

SNN

EMS-YOLO [50]
6.2 1.2 5 54.7 26.7
9.3 2.0 5 56.5 28.6
14.4 3.4 5 59.0 31.0

VGG-11+SDD 12.6 11.1 1 - 17.4
MobileNet-64+SSD 24.3 5.7 1 - 14.7

DenseNet121-24+SSD [6] 8.2 3.9 1 - 18.9
Spiking-Yolo [29] 7.9 102.3 500 44.2 -

Tr-Spiking-Yolo [65] 7.9 0.9 5 45.3 -

SpikeYOLO(Ours)
13.2 11.0 5× 1 66.0 38.5
23.1 19.7 5× 1 66.4 38.9
23.1 12.9 4× 2 67.2 40.4

Table 4: The influence of T and D on Gen1. We set SpikeYOLO (23.1M) as the
baseline and vary T and D for each study.

Method T ×D Power(mJ) mAP@50(%) mAP@50:95(%)

SpikeYOLO

1× 1 4.0 59.3 33.1
1× 4 3.9 (-0.1) 65.1 (+5.8) 38.9 (+5.8)
2× 1 8.1 63.6 36.5
2× 2 7.8 (-0.3) 66.1 (+2.5) 39.0 (+2.5)
2× 4 7.1 (-1.0) 67.0 (+3.4) 40.1 (+3.6)
4× 1 14.8 66.0 38.4
4× 2 12.9 (-1.9) 67.2 (+1.2) 40.4 (+2.0)
8× 1 27.0 66.7 39.3

increases energy cost. Second, We were surprised to see that by expanding D at
a fixed T , the performance will be improved, while the power will be dropped.
For example, 2 × 1 vs. 2 × 2 vs. 2 × 4: mAP@50, 63.6% vs. 66.1% vs. 67.0%;
Power, 8.1mJ vs. 7.8mJ vs. 7.1mJ. This trend is completely different from
SpikeYOLO’s performance in COCO, where the increase of D will bring
more energy cost. We argue that this phenomenon is because SNN exhibits
various spike firing for dense/sparse data.

4.3 Architecture Ablation Experiments

Re-parameterization Design. As shown in Table 5, if we remove re-parameteri-
zation by adding neurons into inverted separable convolutions, the mAP@50 and
mAP@50:95 will decrease 1.7% and 1.8% respectively.



14 Luo et al.

Table 5: Ablation studies of architecture design. We set T ×D = 1× 4 and modify
just one point of baseline to test how the parameters, power and performance vary.

Method Param(M)mAP@50(%)mAP@50:95(%)

SpikeYOLO(Baseline) 23.1 62.3 45.5
Remove re-parameterization 23.1 60.6 43.7

SNN-Block-1 → SNN-Block-2 19.9 61.2 44.7
SNN-Block-2 → Transformer Block 24.5 61.0 44.2

Anchor-free head → Anchor-based head 21.2 59.5 39.7

SNN Block Design. Including a 3 × 3 standard convolution within the
initial stages of convolution blocks is crucial. As shown in Table 5, substituting
SNN-Block-1 for SNN-Block-2 leads to a reduction in performance of around 1%.
Moreover, we try to replace high-stage SNN-Block-2 with meta Transformer-based
SNN block, just like Meta-SpikeFormer [58]. We find that there is little to no
performance gain by doing this and that the parameters increase. Therefore, only
spiking CNN blocks are exploited in our SpikeYOLO.

Detection Head. The detection mechanisms within YOLO are categorized
into anchor-based heads(e.g., YOLOv5) and anchor-free heads(e.g., YOLOv8).
The former directly predicts each bounding box’s dimensions, whereas the latter
estimates the probability distribution of each bounding box. Previous EMS-
YOLO [50] and Meta-SpikeFormer [58] employ anchor-based heads. SpikeYOLO
exploits the anchor-free head because of its higher accuracy (see Table 5).

5 Conclusion

This work significantly narrows the performance gap between SNNs and ANNs on
object detection tasks. We achieve this through network architecture and spiking
neuron design. The proposed SpikeYOLO architecture abandons the complex
module design in the vanilla YOLO series and exploits simple meta spike blocks
to build the model. Then, the I-LIF spiking neuron capable of integer-valued
training and spike-driven inference is proposed to drop quantization errors. We
improve the upper bound of the SNN domain’s performance on the COCO
dataset by +15.0% (mAP@50) and +18.7% (mAP@50:95), respectively. On the
neuromorphic Gen1 dataset, SpikeYOLO achieves better performance and lower
power than ANN of the same architecture. Furthermore, we investigate the
performance of equivalent architecture ANNs and SNNs in different datasets,
and the results show that the redesigned SNN architecture performed better.
This work enables SNNs to handle complex object detection and can inspire the
application of SNNs in more visual scenarios.
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