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The supplementary materials contain the following content: Sec. A. Training
Details on MS COCO, Sec. B. Discussions regarding FSPM, Sec. C. Importance
of Image Pair in MPC, and Sec. D. Visualization Results.

A Training Details: MS COCO

Setting for CAMs Our framework was trained on the MS COCO dataset for
13 epochs using the Adam optimizer with an initial learning rate of 5e-4 and a
batch size of 64. Similar to the procedure on the PASCAL VOC 2012 dataset,
the same data augmentation techniques as MCTformer [7] were applied, with
the image resize scale set to (0.6-1.2). The loss balance hyperparameters λ1

and λ2 were both set to 0.4. For the COCO dataset, the classification accuracy
in the initial epochs is considerably lower in contrast to the PASCAL dataset.
Therefore, the CAM-level losses of MPC and FSS are applied after the accuracy
reaches a certain level (after 3 epochs). The Frequency Shortcut Potential Map
(FSPM) was updated every three epochs as in the PASCAL dataset.

Setting for Semantic Segmentation For a fair comparison with the prior
WSSS works [3–5] and SoTA ViT-based WSSS approach [6], we trained the
DeepLab-V2 with the ResNet101 backbone using our high-quality pseudo labels.
The training was conducted using an SGD optimizer with a momentum of 0.9,
an initial learning rate of 5e-5, and a batch size of 10.

B Discussions regarding FSPM

B.1 Obtaining FSPM

For the Frequency Shortcut Suppression (FSS) in our framework, it is necessary
to generate the Frequency Shortcut Potential Map (FSPM) as shown in Fig. A1.
The Frequency Influence Measurement (FIM) for creating the FSPM continu-
ously assesses the impact of each frequency component on the classification accu-
racy by masking them. As for the masking process, since frequency components
in similar locations in the frequency domain tend to have similar periods and
directions of progression, we measured them by masking on a patch basis. When
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Fig.A1: Visualization of FSPM measured in PASCAL VOC 2012. The frequency
components in brighter areas have a higher influence on classification.

Table A1: Ablation study of the FSPM update period. Bold number implies the best
performance.

Period (epoch) w/o FSS 1 2 3 4 5 6 7 8
mIoU(%) 67.2 67.7 68.2 69.5 68.0 67.3 67.7 67.5 67.5

Discrete Fourier Transform (DFT) is applied to input with real numbers, the out-
put is Hermitian-symmetric, where the negative-frequency components are the
complex conjugates of the positive-frequency components at point symmetry po-
sitions. To completely mask the frequency component, masking is performed in
a point-symmetric fashion to ensure the conjugates are also masked.

Since the FSPM is calculated by masking each patch, which could poten-
tially require considerable resources, a quantitative comparison was conducted to
demonstrate consumed resources or times. On the PASCAL VOC 2012 dataset,
training of our method takes 140 seconds per epoch, and FIM takes 340 seconds
in a single TITAN RTX GPU using a batch size of 64. Considering the FIM is
obtained once every three epochs, the process only requires an additional com-
putational time of 0.8 times compared to the training time for each epoch. As
the FIM process does not require backward propagation and the need to store
gradients, the computation of FIM does not impose much burden on memory.
Additionally, as our DFT-based method does not require the saving of weights
or parameters, it requires the same number of parameters as our baseline (MCT-
former [7]). Lastly, as our MPC module and FSS modules are applied only at
training, the running cost is the same as the baseline in the inference phase.
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Table A2: Comparison of Magnitude modification methods. ×N means that the mag-
nitude component of the feature is scaled by N .

Method MPC (a) Gaussian Noise (b) × 0.3 × 0.5 × 2.0
mIoU(%) 67.2 62.2 62.7 62.6 59.0

B.2 Update Period of FSPM

An ablation study was conducted to determine the optimal epoch period for
updating the FSPM, with the results presented in Tab. A1. It was found that
the maximum gain from the FSS occurs when the period is set to 3. When
the period is too short, frequent updates to FSPM may prevent the suppres-
sion module from optimizing and being fully effective. Likewise, as the period
increases, FSS loses its value as the model may attempt to find new shortcuts in
a suppressed situation using the updated FSPM. The lack of frequent updates
to FSPM can make it challenging to fully disrupt the shortcut learning of the
model. Nevertheless, obtaining a gain of 0.8-2.3%p near the optimal period (2-4)
supports the effectiveness of the FSS in disrupting the shortcut learning of the
model.

C Importance of Image Pair in MPC

To validate the importance of sourcing magnitude information from another im-
age, an ablation study was conducted using an arbitrary source of information
composed of random Gaussian values instead of the real image. An image size
tensor filled with random Gaussian values was generated and used as input to
the ViT with an identical setting in Tab. 1-b of the main paper. This led to a
vicious cycle with a tendency for the model to increasingly activate incorrect
locations as training progressed. Furthermore, we conducted experiments by re-
placing the magnitude derived from another image, |F(Ṫℓ

patch)|, in Eq. 4 of the
main paper with Gaussian noise, as shown in Tab. A2-a. The results yielded a
62.2% mIoU, indicating that magnitude modification by Gaussian noise is inef-
fective. Additionally, instead of using magnitudes derived from another image,
we performed magnitude modification using only the magnitude derived from
the anchor image, |F(Tℓ

patch)|, by scaling it by factors of 0.3, 0.5, and 2.0. As
illustrated in Tab. A2-b, all cases exhibited poor performance, underscoring the
importance of magnitude modification using another image. These outcomes
highlight the necessity of providing magnitude with valid statistics from real
images.

D Visualization Results

D.1 PASCAL VOC 2012

CAMs In Fig. A2, we present a qualitative comparison of the CAMs Mref

between the baseline and our framework. All samples were selected from the
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PASCAL VOC 2012 train set. Clear activation around the boundaries of objects
in Mref from our framework implies the effectiveness of the MPC. Particularly,
whereas the baseline fails to localize the Dog class of the sixth row, ours suc-
cessfully utilizes the high-level semantic information in the phase to accurately
activate along the boundaries of the Dog. Furthermore, the effect of the FSS
is demonstrated through the reduction of false positives in the Tv-monitor, as
indicated in the fourth row.
CAMs with FSS To support the effectiveness of FSS, we present a qualitative
comparison of the CAMs M between the baseline and ours with only FSS ap-
plied, shown in Fig. A3. The tendency that M from the baseline exhibits object
non-related over-activation throughout the image is observable. Particularly, at
Bird in the second row, where the classification model has found a frequency
shortcut, a strong activation across the entire image is shown. By employing
FSS to suppress the frequency shortcut learning, the model focuses on object-
ness when generating M, resulting in the reduction of false positive activation.
Semantic Segmentation Following the prior WSSS works [6–8], we refined
CAMs using PSA [2] to generate high-quality pseudo labels that achieved new
state-of-the-art performance. These pseudo labels are used to train a semantic
segmentation model, achieving new SoTA mIoU performance on both the val
and test set. Our semantic segmentation results on the PASCAL VOC 2012 val
set are displayed in Fig. A4. The segmentation performance on the test set,
validated through the official online server, can be found here.

D.2 MS COCO 2014

CAMs To further validate the superiority of our method, experiments were also
conducted on the MS COCO dataset. As the MS COCO dataset contains a large
number of classes and complex scenes, obtaining precise CAMs solely with weak
signals poses a challenge. Nevertheless, as can be seen in Fig. A5, our method
manages to capture the precise boundaries of objects and effectively separates
objects from each other as in the fourth and fifth rows.
Semantic Segmentation We applied the IRN [1] to our CAMs to gener-
ate pseudo labels and used them to train a semantic segmentation model. We
achieved new state-of-the-art performance on the MS COCO val set, and the
qualitative results are shown in Fig. A6.

http://host.robots.ox.ac.uk:8080/anonymous/4HMVCG.html
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Fig.A2: Comparison of CAMs (Mref ) on PASCAL VOC 2012 train set. (a) Image,
(b) Ground Truth, (c) Mref of baseline, (d) Mref of ours.
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Fig.A3: Comparsion of CAMs (M) on PASCAL VOC 2012 train set. (a) Image, (b)
Ground Truth, (c) M of baseline, (d) M of ours only with FSS.
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Fig.A4: Visualization of semantic segmentation results on PASCAL VOC 2012 val
set. (a) Image, (b) Ground Truth, (c) Ours.
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Fig.A5: Visualization of CAMs on MS COCO 2014 train set. (a) Image, (b) Ground
Truth, (c) Our CAMs.
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(a) (b) (c)

Fig.A6: Visualization of semantic segmentation results on MS COCO 2014 val set.
(a) Image, (b) Ground Truth, (c) Ours with image.
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