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Abstract. Weakly Supervised Semantic Segmentation (WSSS) with image-
level supervision typically acquires object localization information from
Class Activation Maps (CAMs). While Vision Transformers (ViTs) in
WSSS have been increasingly explored for their superior performance
in understanding global context, CAMs from ViT still show imprecise
localization in boundary areas and false positive activation. This paper
proposes a novel WSSS framework that targets these issues based on the
information from the frequency domain. In our framework, we introduce
the Magnitude-mixing-based Phase Concentration (MPC) module, which
guides the classifier to prioritize phase information containing high-level
semantic details. By perturbing and mixing the magnitude, MPC guides
the classifier to accentuate and concentrate on the shape information
in the phase, thereby leading to finer distinctions in CAMs boundary
regions. Additionally, inspired by empirical observations that the clas-
sification "shortcut" in the frequency domain can induce false positives
in CAMs, we introduce a Frequency Shortcut Suppression (FSS) mod-
ule. This module aims to discourage the formation of such shortcuts,
thereby mitigating false positives. The effectiveness of our approach is
demonstrated by achieving new state-of-the-art performance on both
PASCAL VOC 2012 and MS COCO 2014 datasets. The code is available
at https://github.com/kwonhoyong3/PCSS-WSSS.

Keywords: Weakly Supervised Semantic Segmentation · Fourier Trans-
form · Shortcut Learning

1 Introduction

Weakly Supervised Semantic Segmentation (WSSS) aims to enhance its utility
by reducing the dependency on human-annotated pixel-level labels in semantic
segmentation. With this goal, WSSS mainly explores methods to generate accu-
rate pseudo-labels using only easily obtainable weak labels such as image-level
labels [1–3,25,26,29,51,60,68,69], scribbles [37,56], and bounding boxes [8,30,43].
Among these methods, leveraging image-level labels has been extensively inves-
tigated, primarily due to the availability of large existing datasets.

Since image-level labels do not provide spatial information of objects, image-
level based WSSS typically involves multiple stages: 1) extract Class Activa-
tion Maps (CAMs) to localize the objects, 2) refine CAMs to generate pseudo
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(a) Image (b) 𝑭𝒓𝒆𝒒.𝑴𝒂𝒔𝒌𝑩𝒊𝒓𝒅 (d) CAM(c) Filtered Image (e) CAM Filtered

Fig. 1: Experimental results verifying the relationship between CAMs and Frequency
Shortcut. The Filtered Image (c) was obtained by removing the Principal Frequency
components (b) related to the class of the Image (a). (d) and (e) are CAMs of images
(a) and (c), respectively, derived from the same ViT trained on clean images.

ground truth (Pseudo-GT), and 3) train a semantic segmentation model using
the Pseudo-GT. As the second and third stages are dependent on the CAMs
from the first stage, our work targets to improve the quality of CAMs. In the
first stage, unlike Convolutional Neural Networks (CNNs) that focus on discrim-
inative regions, Vision Transformer (ViT) [9] stands out in WSSS for its ability
to understand global context through the Multi-Head Self-Attention (MHSA)
mechanism [55].

Despite these advantages over CNN-based CAMs, CAMs from ViT still face
several issues; 1) CAMs exhibit imprecise object boundaries due to lack of spatial
supervision, and 2) CAMs often localize object-unrelated (false positive) regions.
In this paper, we propose two methodologies to address the issues with CAMs.

When humans and ViTs visually assess an object, semantics is predominantly
influenced by shape over texture [4, 24]. While shape and texture information
are intertwined in images, applying Discrete Fourier Transform (DFT) [54] can
help extract the two information into magnitude and phase spectral components.
Inspired by the fact that the phase spectrum encapsulates shape and high-level
semantic information [16, 42], we propose Magnitude-mixing-based Phase Con-
centration (MPC) to encourage models to focus more on the phase and improve
object boundaries in generated CAMs. In MPC, we select a random pair of im-
ages consisting of an anchor image and another arbitrary image. Within the
intermediate layers of a ViT, we merge the magnitude information from the ar-
bitrary image into the magnitude from the anchor image. This results in the
creation of two anchor image features with identical phases but different magni-
tudes. By ensuring that both features are guided by the same weak supervision
and that the generated CAMs are consistent regardless of changes in magni-
tude, we induce the model to focus on the phase. Consequently, MPC enables
the model to concentrate on the crucial information within the phase, leading
to CAMs with more precise boundaries.

While MPC facilitates precise activation near the boundaries, the issue of
activation in object-unrelated regions persists. Interestingly, certain frequency
components have been shown to significantly impact classification during the
training process of ViT, acting as Frequency Shortcut [58]. A frequency short-
cut is a simplicity bias in classification networks, where the network relies on a
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specific frequency rather than semantic content for classification. Additionally,
we empirically observed that models tend to exhibit false positives in the CAMs
of classes attempting to find shortcuts in the frequency domain. To explore the
effects of principal frequency and shortcuts in CAMs, we compare the CAMs
from a clean image and a corresponding image with the principal frequency re-
moved (i.e., filtered image), as shown in Fig. 1. While the CAMs from clean
image (Fig. 1(d)) suffers from false activations, false activations are relieved in
the CAMs from filtered image (Fig. 1(e)). Here, we can verify that certain prin-
cipal frequencies influence the entire image and cause widespread false activation
regardless of the semantics; these can be regarded as shortcut frequencies.

To resolve the false positives induced by frequency shortcuts, we propose
the Frequency Shortcut Suppression (FSS). Initially, we measured the impact
of each frequency on the classification of each class to aggregate a Frequency
Shortcut Potential Map (FSPM). Based on FSPM, we removed the frequency
shortcut components from the image to generate the filtered image. Through
classification on the filtered image and by comparing CAMS generated from the
original image and the filtered image, FSS reduces the reliance of the generated
CAMs to false positive inducing shortcut frequency components. This removal of
shortcut frequency components happens iteratively, with the FSPM constantly
adjusted.

The main contributions of this paper are summarized as follows:

● Through Magnitude-mixing-based Phase Concentration (MPC), we guide ViT
to focus on the meaningful phase information, resulting in precise activation
around boundaries.
● We proposed a Frequency Shortcut Suppression (FSS) module that effectively

reduces false positive activations in CAMs by suppressing shortcut learning in
the Frequency Domain.

To demonstrate the effectiveness of our methodology, we conducted compar-
isons with state-of-the-art WSSS methods on the PASCAL VOC 2012 [11] and
MS COCO 2014 datasets [38], achieving new SoTA performance.

2 Related Works

2.1 Weakly Supervised Semantic Segmentation

Most existing WSSS approaches utilize Class Activation Maps (CAMs) [72] ob-
tained from Convolutional Neural Networks (CNNs) to localize objects when
only image-level labels are provided. However, raw CAMs (i.e. seeds) fail to lo-
calize the whole object with imprecise boundaries. In pursuit of generating more
accurate pixel-level pseudo-labels, research in WSSS aims to propose a method
to improve the quality of raw CAMs or further refine/post-processing the CAMs.
CAMs Quality Improvement To guide CAMs to localize the less discrimi-
native regions, various methods are proposed including online CAMs aggrega-
tion [21] , sub-categories exploration [3], information bottleneck reduction [27]
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and mining cross-image relations [12, 34, 52]. Also, [22, 59, 70] introduce various
auxiliary tasks to regularize CAMs training. Along with these methods, Adver-
sarial Erasing (AE) [25,33,53,67,71] methods, which are based on the erase-and-
find mechanism, are also actively researched to expand CAMs. Apart from tech-
niques aimed at expanding CAMs, contrastive learning-based WSSS [6, 62, 73]
and adversarial learning between classifier-reconstructor [26] are proposed to pro-
duce CAMs with precise object boundaries. Though CNN-based WSSS methods
show promising performance, with the success of Vision Transformer (ViT) in
various vision tasks, several methods [5, 13, 39, 44, 48, 49, 63, 64, 69] are proposed
to migrate the ViT for WSSS. MCTformer [63] introduces multi-class token to
extract class-specific attention map from ViT by improving the TS-CAM [13],
which is designed for weakly-supervised object localization. In the same line,
ViT-PCM [47] proposed a method to extract CAMs based on patch-class map-
ping. Along with these methods, large language model-based WSSS [39, 61, 64]
and token-level contrasting [49] are also introduced. Unlike the prior methods,
our work is the first to utilize frequency domain information to address the issues
with CAMs in ViT-based WSSS.
CAMs Post-processing To obtain high-quality pseudo labels for semantic
segmentation, various approaches are introduced in WSSS based on affinity
learning [1, 2], removing intra-object edges in contours [32], iterative refine-
ments [35, 36]. Besides these methods, Image-matting based refinements [57]
and utilizing unsupervised semantic segmentation model [23] greatly boost the
quality of pseudo labels. As the post-processing methods can be synergistically
applied with methods that generate precise initial seeds (CAMs), this paper
focuses on improving the quality of the CAMs.

2.2 Fourier Transform in Computer Vision

Transforming images from the spatial domain to the frequency domain via the
Fourier Transform enables the separation of information into phase and ampli-
tude components. Early studies [16,42] have shown that while amplitude carries
low-level statistics and texture information, phase encapsulates high-level se-
mantic and shape information. Leveraging this advantage, Fourier Transform
has been applied to a variety of vision tasks such as Exposure Correction [20],
Semantic Segmentation [18], and Learning with noisy label [17]. Along with the
successful application of frequency components, the fields of Domain Adapta-
tion [19, 66] and Generalization [15, 31, 65] have emphasized the importance of
phase for its high-level semantic and structural information. FDA [66] performed
Domain Adaptation by transforming low-level amplitude in the Fourier Domain,
maintaining high-level semantics and structure, building on the understanding
that low-level amplitude contains image style information. [65] highlighted the
significance of the phase component, which carries semantic information, and
proposed Fourier-based data augmentation through Image-level amplitude to
perform Domain Generalization with an emphasis on phase information.

These studies underscore the significant role of the frequency domain in neu-
ral networks. Intriguingly, classification networks engage in shortcut learning
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in the frequency domain [58], identifying specific frequencies for classification.
Since shortcut learning [14] can disrupt semantic capture, research efforts have
been directed towards reducing such effects [40, 46]. SGT [41] analyzed how
vanilla ViT activates areas unrelated to the object due to shortcut learning in
the background regions during the classification process and proposed rectifying
this through saliency maps.

3 Methods

3.1 Preliminary

Vision Transformer for CAMs To propagate the image I into Vision Trans-
former (ViT), it is split into N ×N patches and forms the patch tokens T0

patch ∈
RD×N2

, where D is the embedding dimension. Along with C class tokens T0
cls ∈

RD×C , the patch tokens T0
patch pass through the Vision Transformer (ViT). Con-

sequently, the final class tokens TL
cls ∈ RD×C and patch tokens TL

patch ∈ RD×N2

are derived as outputs, where L represents the number of ViT layers. This pro-
cedure can be formally defined as follows:

Ti
cls,T

i
patch =ViTi(Ti−1

cls ,T
i−1
patch),1 ≤ i ≤ L (1)

where ViTi is ith layer of ViT. The class tokens TL
cls are processed through

average pooling to derive the classification logits yc ∈ RC . Meanwhile, the patch
tokens TL

patch, arranged according to their spatial positions, pass through a con-
volution layer to produce the Class Activation Maps (CAMs) M ∈ RC×N×N .
By applying Global Average Pooling (GAP) to M, we can obtain classifica-
tion logits yp ∈ RC in a patch-level. These two classification logits are super-
vised using a multi-label soft margin loss Lcls with the given classification
labels y. Additionally, following [63], we extract the token-to-token attention
At2t ∈ R(C+N

2
)×(C+N2

) based on multi-head self-attention. From this token-to-
token attention At2t, the class-to-patch attention Ac2p ∈ RC×N2

and patch-to-
patch attention Ap2p ∈ RN2

×N2

can be extracted. These two types of attention
maps are used to refine the CAMs, forming a refined CAMs Mref ∈ RC×N×N .
The aforementioned process can be noted as follows:

Mref = (M⊙Ac2p) ×Ap2p (2)

where ⊙ and × are Hadamard product and matrix multiplication, respectively.
Discrete Fourier Transform Let F denote the Discrete Fourier Transform
(DFT) [54] applied across the spatial dimensions. For a feature map X ∈ RD×H×W ,
the result of applying F to a single channel can be represented as follows:

F(X)(m,n) = ∑
h,w

X(h,w)e−j2π( h
H m+ w

W n), j2 = −1 (3)

Since the absolute value and the angle component of F(X) respectively represent
magnitude and phase components, we denote the magnitude spectrum as ∣F(X)∣
and the phase spectrum as ∠F(X) throughout the paper.
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Fig. 2: Visualization of the proposed framework. The Magnitude-mixing-based Phase
Concentration (MPC) is executed at an intermediate layer. Here, the magnitude of
features from the anchor image I and another arbitrary image İ are mixed to make a
feature with identical phase, but different magnitude. The model is guided to perform
correct classification and derive consistent CAMs Mref from a pair of features. In
the Frequency Shortcut Suppression (FSS), based on the Frequency Shortcut Potential
Map (FSPM), frequency components that have a significant impact on the classification
of classes in I are reduced before being inputted to the ViT. The model is encouraged
to classify correctly and minimize the difference between M and M̂.

3.2 Magnitude-mixing-based Phase Concentration

With the aid of multi-head self-attention, CAMs from ViT are more proficient in
capturing the less-discriminative regions than CNN-based methods. Nonetheless,
they still show imprecise localization along object boundaries due to a lack of
spatial constraint. To improve localization of CAMs, we design the Magnitude-
mixing-based Phase Concentration (MPC) module to extract high-level semantic
and boundary information shown to be present in the phase component of the
frequency domain [16,42].

We consider two ideas in MPC to guide the model to prioritize the phase
component: 1) The model should correctly classify the image even when the
magnitude component is altered. Similarly, 2) the CAMs generated after the
magnitude change should be similar to those obtained before the change. The key
to these two ideas is to change the magnitude while keeping the phase component
intact. Since the magnitude needs to be ’feasible’ yet different, we designed a
magnitude-mixing method. Here, we form a random image pair consisting of an
anchor image I and an arbitrary image İ for perturbation. Let the input class and
patch tokens of I be denoted as [T0

cls,T
0
patch], and those of İ as [Ṫ0

cls, Ṫ
0
patch]. We

then process each set of tokens through the ViT layers, as outlined in Eq. 1, for
1 ≤ i ≤ ℓ, to obtain [Tℓ

cls,T
ℓ
patch] and [Ṫℓ

cls, Ṫ
ℓ
patch] respectively. After reshaping
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Fig. 3: Visualization of Frequency Influence Measurement. For an image I containing
class c, a set of images that each masked at different frequency components using Mf

in the frequency domain of I are inputted into ViT. The classification loss for class c
is calculated as the influence of frequency f on class c. Accumulate the process across
the image set Ic to produce P(c), and repeat for each c. Finally, P is normalized to
obtain the Frequency Shortcut Potential Map (FSPM) for each class.

and aligning Tℓ
patch and Ṫℓ

patch according to their spatial positions, the spectral
magnitude is obtained and perturbed using the following formula:

T̄ℓ
patch = F−1(⟪r∣F(Tℓ

patch)∣ + (1 − r)∣F(Ṫℓ
patch)∣, ∠F(Tℓ

patch)⟫) (4)

where r is the perturbation ratio between the anchor image and arbitrary im-
age, and F−1 is the inverse DFT. Tokens and maps that have been affected by
magnitude-mixing are denoted by a bar on top (i.e. T̄ℓ

patch ). ⟪A,B⟫ is cou-
pling of magnitude A and phase B. As shown in Eq. 4, the phase component of
T̄ℓ

patch remains unchanged as the magnitude is perturbed. After iDFT, the set
of tokens [Tℓ

cls, T̄
ℓ
patch] are reshaped and passed through the remaining layers of

ViT, following Eq. 1 from ℓ < i ≤ L, to produce the output tokens [T̄L
cls, T̄

L
patch].

The class prediction ȳc is obtained from T̄L
cls, while the class prediction ȳp and

refined CAMs M̄ref are generated from T̄L
patch. ȳc and ȳp are used as class pre-

dictions in multi-label soft margin loss to obtain Lmpc-cls. Following the second
idea, the difference between the refined CAMs Mref and M̄ref are minimized
using the following loss:

Lmpc-cams = ∣Mref − M̄ref ∣1 (5)

Ultimately, the MPC is supervised through the following loss:

Lmpc = Lmpc-cls + λ1Lmpc-cams (6)

where λ1 is a hyperparameter to balance the losses. Additionally, the gradient to
Mref from Lmpc-cams is detached to guide M̄ref to follow Mref . This increases
the dependency of the model on the phase information, enabling the model to
better understand the boundary information in the phase component.

3.3 Frequency Shortcut Suppression

Through the MPC module, we have addressed the issues of activation around
the boundary in CAMs. However, the problem of false activations in CAMs
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persists. Various factors contribute to false activations in ViT, such as GAP
for generating classification logits from CAMs and the over-smoothing problem
caused by self-attention of ViT [49]. Interestingly, we experimentally found that
false activations can also arise due to Shortcut Learning in the frequency do-
main [14], which we aim to address. Shortcut Learning during the classification
training process in ViT can negatively impact genuine semantic understand-
ing [40], and such shortcuts can lead to wrong activations [41]. Furthermore, it
has been revealed that Neural Networks can create shortcuts in the frequency
domain [58]. We empirically found a correlation between frequency shortcuts and
false positives in CAMs M. Since Frequency Shortcuts are unrelated to object-
ness, activations caused by frequency shortcuts occur in locations unrelated to
objects. We have resolved over-activation by disrupting the creation of frequency
shortcuts through the Frequency Shortcut Suppression(FSS) module.
Frequency Shortcut Potential Map To implement the FSS, the potential
of specific frequency components to be used as shortcuts in classification needs
to be measured. Inspired by Wang et al . [58], we utilized a Frequency Influence
Measurement (FIM) framework, as depicted in Fig. 3, to assess the impact of
each component. If the classification loss of the model increases significantly for
an image I of class c when information about a certain frequency component f
is removed, it indicates that f has an important role in classifying class c for
the model. Therefore, for each class c, the influence of f on the classification
of the image set Ic corresponding to that class is calculated by accumulating
classification loss. To remove a specific frequency component f from an image,
a Masking map Mf ∈ RH×W is used, where the value for f is set to 0, and
others are set to 1. For an image I, let If = F−1(F(I) ⊙Mf) represent the
image with the f component masked where ⊙ is element-wise multiplication.
The classification logit derived after passing If through a ViT is denoted by yIf .
When P ∈ RC×H×W is frequency influence accumulated map, the influence of the
frequency component f on the classification of class c is calculated as follows:

P(c, f) = ∑
I∈Ic
Lbce(yIf (c),1) (7)

where y(c) and Lbce are probability of class c and binary cross-entropy loss, re-
spectively. P(c) ∈ RH×W ultimately holds the classification influence information
of each frequency for class c, with higher values indicating a significant impact
on classifying class c. P is normalized for each class to create the Frequency
Shortcut Potential Map (FSPM) FS ∈ RC×H×W :

FS(c) = Norm(P(c)), c ∈ {1,2, ...,C} (8)

where Norm is the normalization function that scales each value to fall between
0 and 1.
Frequency Shortcut Suppression We propose the Frequency Shortcut Sup-
pression (FSS) utilizing the FSPM generated through the FIM process. The
FSPM encapsulates information on which frequency components significantly
impact classification at the time of FIM execution, indicating frequencies that
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the model is likely to use as shortcuts. The image without shortcut frequency
can be generated by reducing the magnitude of frequency components based on
the FSPM. Subsequently, the model can be prevented from forming shortcuts
by encouraging it to classify correctly and generate consistent CAMs from the
original and filtered images.

Let an image I contains classes c ∈ CI. The filtered image Î is synthesized
by decreasing the frequency components from I based on the FSPM, making it
challenging for the model to classify through shortcuts:

Î = 1

N
∑
c∈CI

F−1(F(I)⊙ (1 −FS(c))) (9)

where N is the number of classes in CI, and ⊙ denotes the Hadamard product.
The predictions ŷc and ŷp derived from Î via the ViT are trained through a
multi-label soft margin loss Lfss-cls. Additionally, the CAMs M̂ generated from
Î and the CAMs M derived from the original image I are supervised to minimize
their difference:

Lfss-cams = ∣M − M̂∣1 (10)

Assuming the model has learned to use a frequency component f as a shortcut
for classifying class c, the model cannot use this shortcut f for classification
when f is reduced in Î. In the absence of the frequency shortcut f , the model
performs classification based on the semantic understanding of class c, resulting
in activation within areas related to the object. Simultaneously, by reducing the
difference between the two CAMs M and M̂, false positives caused by shortcuts
can be resolved.

The FSS is ultimately supervised through the following loss:

Lfss = Lfss-cls + λ2Lfss-cams (11)

where λ2 is a hyperparameter to balance between the losses.
The final loss of the proposed overall framework is as follows:

Ltotal = Lcls +Lmpc +Lfss (12)

4 Experiments

4.1 Experimental Settings

Datasets Our proposed method was evaluated using the PASCAL VOC 2012
and MS-COCO 2014 datasets, widely utilized for Weakly Supervised Semantic
Segmentation (WSSS). The PASCAL VOC 2012 includes 20 classes of foreground
objects along with a background class, and consists of three subsets (train, val,
test) containing 10582, 1449, and 1456 images, respectively. Meanwhile, the MS-
COCO 2014 is made up of 80 foreground object classes and a background class
and is composed of two subsets (82k train set and 40k val set).
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Table 1: Ablation study of components on the PASCAL VOC 2012 train set. P:
Precision, R: Recall. Values from M are measured under similar R for a fair comparison
of P. The best result is represented in Bold.

(x) M (y) Mref

Lcls Lfss Lmpc P(%) R(%) mIoU(%) P(%) R(%) mIoU(%)
Baseline ✓ 53.2 79.6 45.3 74.5 80.9 63.2

(a) ✓ ✓ 71.3 79.8 59.4 76.5 82.1 65.4
(b) ✓ ✓ 67.1 80.6 55.9 78.8 82.2 67.2
(c) ✓ ✓ ✓ 76.2 80.7 63.9 79.5 84.8 69.5

Evaluation Metric Following prior research [44,63], the mean Intersection over
Union (mIoU) metric is used to assess the quality of generated CAMs and the
performance of semantic segmentation models trained on CAMs-based pseudo-
labels. To measure the quality of CAMs, the mIoU with the most optimal thresh-
old is employed by default. Typically, CAMs are evaluated on the train set,
whereas the performance of the semantic segmentation model is assessed on the
val set. While ground-truth pixel-level labels are accessible for both datasets on
the val set and are analyzed locally, the evaluation for the PASCAL VOC 2012
test set is carried out via the official website.
Implementation Details Our framework utilizes DeiT-S pre-trained on Ima-
geNet [50] as the classification backbone for a fair comparison with ViT-based
WSSS methods [44,63]. The classification network is trained for 60 epochs with
a batch size of 64 and an initial learning rate of 5e-4, using the Adam optimizer.
We adopted the same data augmentation technique as in MCTformer [63], but
with different image resize scales. We crop images to a size of 224×224 for equal
comparison. In the MPC module, r = 0.3 was used as the mixing factor, with
MPC applied at ViT layer ℓ = 8. To measure the influence of each frequency for
FSPM, 100 images were used per class for all classes. Additionally, the FSPM
was updated every three epochs through the FIM process. Min-max normaliza-
tion was utilized in FIM to normalize P, with the highest measured loss per class
serving as the normalization maximum. For balancing each loss relative to Lcls,
λ1 and λ2 were both set to 2. For the semantic segmentation model training
on the PASCAL VOC 2012 dataset, Deeplab-V1 with ResNet38 was employed,
while Deeplab-V2 with ResNet101 was used for the MS COCO 2014 dataset.
Additional training details are in Supplementary Materials.

4.2 Ablation Studies

Component Analysis To demonstrate the significance of each module pro-
posed in our framework, we ablated each component as shown in Tab. 1. Ob-
serving the performance of refined CAMs in Tab. 1-y, introducing the Frequency
Shortcut Suppression (FSS) and Magnitude-mixing-based Phase Concentration
(MPC) led to the gain of 2.2%p and 4.0%p respectively over baseline. Our
method achieved 69.5% mIoU by adopting both components. FSS still resulted
in a gain of 2.3%p in Tab. 1-c compared to Tab. 1-b, implies that FSS and MPC
offer distinct advantages.
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Table 2: Ablation study of ViT layer index that MPC performed. Peak performance
is observed at layer 8, which is represented in Bold.

early layer middle layer late layer
ℓ 3 4 7 8 10 11

mIoU(%) 68.0 68.1 68.6 69.5 67.8 66.4

(a) Image (b) GT (c) Baseline (d) FSS (e) MPC (f) FSS+MPC

Fig. 4: Comparison of refined CAMs Mref between baseline and components in ours.
(a) Image, (b) Ground Truth, (c) Baseline, (d) only FSS, (e) only MPC, (f) ours. The
yellow and red boxes imply effect of FSS and MPC, respectively.

To understand the benefits of FSS in CAMs, we examined the results of
ViT CAMs that are not refined by the attention-map in Tab. 1-x. To conduct a
comparative analysis considering the Precision-Recall tradeoff, thresholds corre-
sponding to similar Recall levels were used. Low precision of baseline M indicates
a significant number of over-activation. Through FSS, we observed a remarkable
improvement in precision(18.1%p) and mIoU(14.1%p) compared to the baseline,
confirming that false positives were successfully resolved (Tab. 1-b).
Ablation Studies of MPC The qualitative comparison between the refined
CAMs of baseline and MPC in Fig. 4-e demonstrates the efficacy of the MPC
by clearly delineating the boundary of the object. Meanwhile, we investigate
the impact of the ratio r in MPC, which is used to preserve the magnitude
information of the anchor feature. In experiments conducted within a search
space below 0.5, there was a minimum gain of 2.3%p when compared to applying
FSS alone, with the best performance observed at r = 0.3

The influence of the layer index ℓ where the MPC is performed was analyzed
by conducting experiments on early, middle, and late layers in Tab. 2. The per-
formance was highest when ℓ was set to 8, with a noticeable decline observed in
layers beyond this point. This tendency supports the knowledge that later layers
of the ViT play a crucial role in capturing high-level semantic information [9].
Introducing changes to the magnitude while preserving the phase information
at these later stages could disrupt the semantic analysis of the model. This dis-
ruption may stem from the difference between the coupled information used in
previous layers and the re-coupled information with the magnitude alteration.
This result shows that MPC applied before when ViT features highly condense to
high-level semantics can encourage the model to capture boundary information
well in the phase spectrum.
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Table 3: (a) True/False Positive Rate (TPR/FPR) of classification where the high-
frequency components following FSPM are retained in images. Metrics are measured
under the early training stage of the Baseline. Bold indicates the shortcut occurred,
and Underline represents that model is trying to make a shortcut. (b) Comparative
analysis of the Precision of CAMs M between baseline and only with FSS. Precision
is evaluated under a similar Recall considering the Precision-Recall trade-off.

bkg aero bike bird boat bottle bus car cat chair cow
(a) Baseline TPR(%) - 58.96 36.43 88.47 53.36 68.46 50.83 79.26 68.35 55.48 17.87

FPR(%) - 00.23 00.41 15.78 00.05 33.74 00.00 01.42 00.53 07.04 00.41
(b) Baseline P(%) 91.9 39.2 24.8 17.3 18.9 58.1 76.5 42.8 80.9 44.9 59.7

w/ FSS P(%) 92.5 52.9 42.2 59.2 33.3 71.1 87.5 62.9 94.1 43.2 90.7

table dog horse mbk person plant sheep sofa train tv total
(a) Baseline TPR(%) 04.76 61.24 79.40 60.26 75.47 41.88 43.61 45.45 92.51 57.23 -

FPR(%) 00.00 01.97 00.64 00.16 05.56 00.15 00.38 00.63 00.68 00.13 -
(b) Baseline P(%) 68.6 66.0 50.4 68.6 58.0 39.9 56.4 79.0 39.2 37.0 53.2

w/ FSS P(%) 89.6 87.5 79.7 78.5 82.7 64.7 92.5 81.2 54.5 56.6 71.3

PASCAL VOC 2012 MS COCO 2014

Fig. 5: Semantic segmentation results on PASCAL VOC 2012 (left) and MS COCO
2014 (right) datasets. From top to bottom: Image, Ours, GT.

Frequency Shortcut Analysis and Result of Suppression In Tab. 3, we
investigated whether shortcut learning occurs during the model training process
in early steps and analyzed the correlation with the improvement in CAMs
precision facilitated by the FSS. To conduct this analysis, classification influence
according to frequency component for each class was first measured using Eq. 7.
Based on this measurement, the classification behavior of the model was analyzed
when only some high frequencies of high-influence components were retained.

A high TPR indicates that class c possesses the principal frequency com-
ponents utilized in the experiment (i.e., bird will be correctly classified as bird
only with the high-influence frequency of bird). This suggests that the model
has identified a straightforward method for classifying class c and is attempting
to find frequency shortcuts. To consider a principal frequency as a shortcut, it
should direct images to the respective class regardless of the actual semantic
content in the image (i.e. car with frequency shortcut of bird will falsely classify
as bird). This is expressed in Tab. 3 through high TPR and FPR, which repre-
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Table 4: Comparison between ours and multi-stage WSSS methods. mIoU(%) is eval-
uated on PASCAL VOC 2012 train set in both CAMs (seed) and Pseudo-GT (Mask).
The backbone and applied post-processing methods (PSA [2], IRN [1]) are listed for a
fair comparison. Bold numbers represent the best performance.

Method Backbone Seed Post Mask
AdvCAM [28] CVPR’21 RN50 55.6 IRN 69.9
OC-CSE [25] ICCV’21 WRN38 56.0 PSA 66.9
ECS [53]ICCV’21 WRN38 56.6 PSA 67.8
CPN [70] ICCV’21 WRN38 57.4 PSA 67.8
AMR [45] AAAI’22 RN50 56.8 PSA 69.7
ReCAM [7] CVPR’22 RN50 54.8 IRN 70.5
SIPE [6] CVPR’22 RN50 58.6 IRN -
PPC [10] CVPR’22 WRN38 61.5 IRN 70.1
AEFT [67] ECCV’22 WRN38 56.0 PSA 71.0
ACR [26] CVPR’23 WRN38 60.3 IRN 72.3
MCT [63] CVPR’22 DeiT-S 61.7 PSA 69.1
USAGE [44] ICCV’23 DeiT-S 67.7 PSA 72.8
Ours DeiT-S 69.5 PSA 73.2

sent the rates in which principal frequencies of images are correctly and falsely
classified to the shortcut respective class c. Examining Tab. 3-a, we can observe
that class bird and bottle exhibit high TPR and FPR, indicating the occurrence
of shortcuts. Meanwhile, classes such as car, horse, and train show high TPR,
suggesting attempts at creating shortcuts.

Tab. 3-b records the class-specific precision of CAMs M for the baseline
model and after the introduction of the FSS. To ensure a fair comparison while
considering the Precision-Recall trade-off, precision was measured at similar lev-
els of Recall. The introduction of FSS to disrupt shortcut creation resulted in
an average increase of 24.0%p in precision for M across classes where the base-
line model had created or attempted to create shortcuts. This increase confirms
that the FSS effectively reduces false positives. Notably, for bird, a class where
shortcuts had occurred, the precision of CAMs surged by 42.1%p, showcasing
the resolve of over-activation in areas unrelated to the object by FSS. Qualita-
tive comparison of refined CAMs Mref before and after the introduction of FSS
in Fig. 4-d further validates the effectiveness of FSS.

4.3 Comparison with State-of-The-Arts

To train the semantic segmentation model, the CAMs generated by our method
were refined using PSA [2] as performed in previous WSSS works [44, 63, 67].
In Tab. 4, we compared the performance of CAMs (Seed) and pseudo-ground-
truth (Mask) on the PASCAL VOC 2012 train set, where our method achieved
the best performance in both categories. Utilizing our high-quality pseudo labels
for training the semantic segmentation model, we compared the results with
other WSSS methods in Tab. 5. Our framework demonstrated superiority by
achieving the highest performance on the PASCAL VOC 2012 val and test sets.
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Table 5: Comparison of semantic segmentation performance with multi-stage WSSS
methods. Performance (mIoU) is evaluated in PASCAL VOC 2012 and MS COCO 2014
datasets. CNN-based methods are represented above the horizontal line, and ViT-based
methods are depicted below the line. Bold represents the best performance.

Method Backbone VOC val VOC test COCO val
AdvCAM [28] CVPR’21 RN101 68.1 68.0 -
OC-CSE [25] ICCV’21 WRN38 68.4 68.2 36.4
ECS [53] ICCV’21 WRN38 66.6 67.6 -
CPN [70] ICCV’21 WRN38 67.8 68.5 -
AMR [45] AAAI’22 RN101 68.8 69.1 -
ReCAM [7] CVPR’22 RN101 68.5 68.4 42.9
SIPE [6] CVPR’22 RN101 68.8 69.7 -
SIPE [6] CVPR’22 WRN38 - - 43.6
AEFT [67] ECCV’22 WRN38 70.9 71.7 44.8
ACR [26] CVPR’23 WRN38 71.9 71.9 45.3
MCT [63] CVPR’22 WRN38 71.9 71.6 42.0
USAGE [44] ICCV’23 WRN38 71.9 72.8 42.7
USAGE [44] ICCV’23 RN101 - - 44.3
Ours WRN38 73.2 73.0 -
Ours RN101 - - 45.7

While ViT-based WSSS works tend to outperform CNN-based works on the
PASCAL VOC 2012 dataset, they showed lower performance on the MS COCO
2014 dataset due to activation overlapping between classes. Nonetheless, our
method achieved the SoTA performance on the MS COCO 2014 dataset by
effectively reducing false positives. Additional CAMs and semantic segmentation
results are in the Supplementary Materials.

5 Conclusion

Weakly Supervised Semantic Segmentation suffers from CAMs that have im-
precise activation around boundary areas and object-unrelated activations. In
this paper, we aim to address these challenges by applying a novel perspective
in the frequency domain, leveraging the Fourier Transform. Firstly, we propose
Magnitude-mixing-based Phase Concentration (MPC), which generates features
with identical phase but different magnitude at the intermediate layer, encourag-
ing the model to capture the same semantics from these features. This approach
leads the model to pay more attention to shape information in the phase, thereby
learning to activate boundaries more clearly. Additionally, we identify the occur-
rence of frequency shortcuts and their association with the over-activation of
CAMs. To resolve this, we introduce Frequency Shortcut Suppression (FSS),
which discourages the creation of frequency shortcuts, successfully resolving
object-unrelated activations. Our experimental results support the utility of
the proposed method, demonstrating its effectiveness in addressing the afore-
mentioned issues in WSSS. Furthermore, we have achieved new state-of-the-art
performance on the PASCAL VOC and MS COCO datasets.
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