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1 Contents

This supplemental material contains the following:

1. A figure showing the negative logarithm of the normalized histograms of dot
products between feature vectors of query images and those of all gallery
images from each of the four datasets we experimented with in the main
paper. These are shown in Fig. 2. Compare with Fig. 2 of the main paper
where normalized histograms are shown.

2. A comparison of the techniques Our-Sum and Our-Max proposed in this
paper to recent group testing based NN search methods such as [10, 14, 20]
is presented in Sec. 2.

3. A discussion regarding the limitation of using the recent advances in the
compressed sensing literature to the NN search problem is presented in Sec. 3.

4. Statistics for the average number of points pruned away in each round of
binary splitting in our method on each of the four databases, are presented
in Fig. 3 for Our-Sum and Fig. 4 for Our-Max. Notice that for both the
proposed algorithms (Our-Sum and Our-Max) there is nearly no pruning
encountered during the initial rounds. But as the adaptive tests continue,
negative tests are encountered in further rounds, and hence pools get pruned
away. Surprisingly, most negative tests for Our-Max are encountered in the
last round in contrast to that for Our-Sum.

5. Our numerical experiments, illustrated in Fig. 5 reveal that P (qty ≤ ρ)
increases with λ and decreases as L increases. This tallies with intuition,
and supports the hypothesis that a larger number of pools will be pruned
away in a given round if there is more rapid decrease in the probability of
dot product values from 0 to 1.

6. A theoretical analysis of the Our-Max algorithm is presented in Sec. 4.
7. The hyper-parameters for various competing algorithms are presented in

Sec. 5.
8. Details of augmentation to images for generating queries in a streaming

setting are presented in Sec. 6 and Fig. 7.
9. A comparison of softmax features (on top of VGGNet features) versus VG-

GNet features in terms of retrieval precision and retrieval recall is presented
in Table 1 and Sec. 7.
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10. Experiments with a low similarity value, i.e. ρ (=0.3), and experiments on a
dataset with 12-million points are presented in Sec. 8.

Fig. 1: Schematic of our GT algorithm for NN search

Fig. 2: Negative logarithm of normalized histograms of dot products between feature
vectors of query images (10K in number) and those of all gallery images of MIRFLICKR,
ImageNet, IMDB-Wiki and InstaCities (left to right, top to bottom). Compare to Fig. 2
of the main paper.
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Fig. 3: Histograms of the number of pools pruned in every round of binary splitting
for the Our-Sum method, for MIRFLICKR, ImageNet, IMDB-Wiki and InstaCities (left
to right, top to bottom), all for ρ ≥ 0.7.

Fig. 4: Histograms of the number of pools pruned in every round of binary splitting for
the Our-Max technique for MIRFLICKR, ImageNet, IMDB-Wiki and InstaCities (left to
right, top to bottom), all for ρ ≥ 0.7.
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Fig. 5: The probability that the dot product of a query vector q with a pool created
from L participating vectors, falls below ρ = 0.7, as a function of λ for L ∈ {8, 16, 32}.

2 Comparison to other Group Testing Methods for NN
Search

The oldest work on GT for NN search was presented in [20]. In this method,
the original data vectors are represented as a matrix F ∈ RN×d. The pools are
represented as a matrix Y ∈ Rm×d obtained by pre-multiplying F by a ran-
domly generated balanced binary matrix A of size m×N where m < N . Given
a query vector q, its similarity with the jth pool is computed, yielding a score
vyj = qtY j , where Y j is the jth group vector (and the jth row of Y ). This is
repeated for every j ∈ [m]. Let Pi be the set of pools in which the ith vector,
i.e. fi, belongs. Then, a likelihood score Li ≜

∑
j∈Pi

vyj is computed for every
vector. The vector from F with the largest likelihood score (denote this vector
by fk0) is considered to be one of the nearest neighbors of q. Next, the value
qtfk0 is computed and the pool-level similarity scores for all pools containing
fk0 are updated to yield new scores of the form vyj = vyj − qtfk0. Thereafter,
all likelihood scores are updated. This process is called back-propagation in [20].
Again, the vector from F with the highest likelihood is identified and this proce-
dure is repeated some R times, and finally a sort operation is performed in order
to rank them. In [20], it is argued that the time complexity of this procedure is
O(d(m + R)). However, this is an approximate search method, and there is no
guarantee that the R neighbors thus derived will indeed be the nearest ones. As
a result, a large number of false positives may be generated by this method.

The work in [14] clusters the collection D into disjoint groups such that the
members of a group are as orthogonal to each other as possible. As a result, the
similarity measure qtyj between q and a group vector yj is almost completely
dominated by the similarity between q and exactly one member of the group. A
careful sparse coding and decoder correction step is also used, and the sparsity
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of the codes plays a key role in the speedup achieved by this method. However,
this method is again an approximate method and heavily relies on the near-
orthogonality of each group.

The work in [10] randomly distributes the collection D of N vectors over
some B cells. This is independently repeated R times, creating a grid of B ×R
cells. Within each cell, we have a collection of participating members Mr,b and
a corresponding group test Cr,b. The group test is essentially a binary classifier
which determines whether Mr,b contains at least one member which is similar to
the query vector q. This is an approximate query, with a true positive rate p and
false positive rate q. It is implemented via a distance-sensitive bloom filter [9,15],
which allows for very fast querying. The bloom filter is constructed with m
binary arrays, with some L concatenated hash functions used in each array.
For all positive tests Cr,b, a union set of all their members is computed. This
is repeated R times to create R candidate sets, and the intersection of these R
sets is created. Each union can contain many false positives, but this intersection
filters out non-members effectively. Precise bounds on p, q are derived in [10], and
the time complexity of a single query is proved to be O(N1/2+γ log3 N) where
γ ≜ log s|K|/(log s|K|+1 − log s|K|) where s|K| stands for the similarity between
q and the Kth most similar vector in D. The query time is provably sub-linear
for queries for which γ < 1/2. This is obeyed in data which are distributed as
per a Gaussian mixture model with components that have well spread out mean
vectors and with smaller variances. But for many distributions, this condition
could be violated, leading to arbitrarily high query times in the worst case. This
method, too, produces a large number of false negatives and false positives.

Compared to these three afore-mentioned techniques, our method is exact,
with the same accuracy as exhaustive search. The methods [10, 14, 20] require
hyper-parameters (R for [20], sparse coding parameters in [14], B,R,m,L in
[10]) for which there is no clear data-driven selection procedure. Our method,
however, requires no parameter tuning. In experiments, we have observed a speed
up of more than ten-fold in querying time with our method as compared to
exhaustive search on some datasets. Like [20], and unlike [10, 14], our method
does have a large memory requirement, as we require all pools to be in memory.
Some techniques such as [10] require the nearest neighbors to be significantly
more similar than all other members of D (let us call this condition C1). Our
method does not have such a requirement. However, our method will perform
more efficiently for queries for which a large number of similarity values turn
out to be small, and only a minority are above the threshold ρ (let us call this
condition C2). In our experimental study on diverse datasets, we have observed
that C2 is true always. On the other hand, C1 does not hold true in a large
number of cases, as also reported in [10, Sec. 5.3].
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3 A Discussion on using Compressed Sensing Techniques
for NN Search

Sec. 3 of the main paper describes three recent papers [10, 14, 20] which apply
the principles of group testing to near neighbor search, and compares them to
our technique. In this section, we describe our attempts to apply the latest
developments from the compressed sensing (CS) literature to this problem. Note
that CS and GT are allied problems, and hence it makes sense to comment on
the application of CS to near neighbor search.

Consider that the original data vectors are represented as a matrix F ∈
RN×d. The pools are represented as a matrix Y ∈ Rm×d obtained by pre-
multiplying F by a randomly generated balanced binary matrix A of size m×N
where m < N . We considered the relation vy = Avx, where vy ∈ Rm contains
the dot products of the query vector q with each of the pool vectors in Y ∈ Rm×d,
i.e. vy = Y q. Likewise vx ∈ RN contains the dot products of the query vector
q with each of the vectors in the collection D, i.e. vx = Fq. The aim is to
efficiently recover the largest elements of vx from A,vy. Since algorithms such
as Lasso [13] are of an iterative nature, we considered efficient non-iterative
algorithms from the recent literature for recovery of nearly sparse vectors [21,
Alg. 8.3]. These are called expander recovery algorithms. Theorem 8.4 of [21]
guarantees recovery of the k largest elements of vx using this algorithm, but the
bounds on the recovery error are too high to be useful, i.e. ∥v(k)

x − vx,est∥∞ ≤
δ ≜ ∥vx − v(k)

x ∥1. Here, the vector v(k)
x is constructed as follows: the k largest

elements of vx are copied into v(k)
x at the corresponding indices, and all other

elements of v(k)
x are set to 0. Clearly, for most situations, δ will be too large to be

useful. Indeed, in some of our numerical simulations, we observed δ to be several
times larger than the sum of the k largest elements of vx, due to which Alg. 8.3
from [21] is rendered ineffective for our application. Moreover, for Theorem 8.4
of [21] to hold true, the matrix A requires each item in D to participate in a very
large number of pools, rendering the procedure inefficient for our application.
Given these restrictive conditions, we did not continue with this approach.

4 Theoretical Analysis for Our-Max

In Sec. 4 of the main paper, we have presented a theoretical analysis of the ex-
pected number of dot product computations required for Our-Sum, which is the
binary splitting procedure using summations for pool creation. A similar analysis
for estimating the number of dot products required for Our-Max using solely
the distribution assumption on dot products (truncated normalized exponential
or TNE) is challenging. Consider a pool vector y =

∑K
i=1 fi created by the

summation of K participating vectors {fi}Ki=1. In Our-Sum, the dot product
between the query vector q and the pool vector y is exactly equal to the sum of
the dot products between q and individual members of the pool. Hence an analy-
sis via the central limit theorem or the truncated Erlang distribution is possible,
as explained in Sec. 5 of the main paper. For Our-Max, the pool vector y is
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constructed in the following manner: ∀j ∈ {1, 2, ..., d}, yj = maxi∈{1,2,...,K}fi,j
where fi,j stands for the jth element of vector fi. The dot product qty is an up-
per bound on max

i∈{1,2,...,K}q
tfi (assuming that all values in q and in each fi are

non-negative). One can of course use the TNE assumption of the individual dot
products qtfi and use analytical expressions for the maximum of TNE random
variables. However the fact that qty is an upper bound on max

i∈{1,2,...,K}q
tfi

complicates the analysis as compared to the case with Our-Sum. Hence, it is
difficult to determine an expected number of dot-products per query for Our-
Max, but it is possible to determine an upper bound on this quantity. This can
be done as described below.

Let Xi ≜ qtfi. Let DP denote the similarity of the query vector q with the
pool vector y, and let P denote the set of vectors that participated in that pool.
We can bound DP with a constant c such that DP ≤ c · maxi∈P (Xi) (see later
in this section regarding the value of c). Let n := |P |. Then using this bound,
we have the following relation:

pn(ρ) = P [DP < ρ] ≥ P [c · maxi∈P (Xi) < ρ] ≥ [FX (ρ/c)]n, (1)

where the last inequality is based on order statistics, and where FX(.) denotes the
CDF of the TNE. From the main paper, recall that Qk stands for the expected
number of pools in round k. Using the recursive relation for Qk in terms of Qk−1,
we have the following:

Qk ≤ 2(1− [FX (ρ/c)]N/2k−2

)Qk−1. (2)

Using this, an upper bound on E(ρ) can be obtained in the following manner:

E(ρ) ≜ 1 +

⌈log2 N+1⌉∑
i=2

Qi. (3)

Notice there is no 1
2 factor (in contrast to E(ρ) for Our-Sum) here. This is

because even after splitting, the similarity needs to be calculated for both the
divided pools unlike in the Our-sum algorithm. The constant c can be the-
oretically as large as the dimension of the dataset (that is, d = 1000 for the
datasets used here), giving a very loose upper bound. However, in order to ob-
tain a sharper upper bound, we find the distribution of c for each pool in a given
dataset and use the 90 percentile value (denoted by c90) to evaluate the bound.
Details for this are provided next.
Distribution of ratios

(
c = DP

maxi∈P (Xi)

)
: Any upper bound on the expected

number of dot products required by Our-Max is dependent on the constant
c. Although, theoretically c can be as large as the dimension of the database
vectors, the distribution of c for each dataset studied and 90 percentile value
of c (i.e., c90) can be used to obtain the upper bounds on E[ρ]. Fig. 6 shows
the distribution of c for the datasets used in our experiments. Here below, we
mention the c90 values for various datasets used in evaluating the theoretical
upper bound reported in Table 2 of the main paper.
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– MIRFLICKR: c90 ≈ 10.
– ImageNet: c90 ≈ 7.
– IMDB-Wiki: c90 ≈ 10.
– InstaCities: c90 ≈ 11.

Clearly, these values are significantly lower than d, which facilitates better upper
bounds, albeit with some probability of error.

Fig. 6: Histograms showing distribution of the ratio c = DP
maxi∈P (Xi)

for pools in
datasets MIRFLICKR, ImageNet, IMDB-Wiki and InstaCities (left to right, top to bot-
tom). The histograms are computed over ∼ 1000 queries, with 100 bins per histogram.

5 Hyper-parameters for the algorithms

In order to arrive at comparable values of precision and recall of other algorithms
as compared to our proposed algorithms, we performed experiments with many
hyper-parameters for each algorithm. Below are the hyper-parameters we used
for various experiments with the competing methods. Note that in order to select
the set of hyperparameters for each algorithm, we chose the one which gives high
recall without significantly increasing time. So there can be other hyperparam-
eter sets for an algorithm with higher recall but at the cost of disproportionate
increase in query time. Both streaming and non-streaming setting uses the same
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set of hyperparameters for each algorithm, except Flann-R (details mentioned
below).

1. Flinng [10]: For each dataset, we ran this code with different hyper-parameters
B ∈ {212, 213, · · · , 218, 219}, m ∈ {22, 23, · · · , 210}, R ∈ {2, 3, 4}, L = 14 as
recommended in the suppl. mat. of [10] (see Sec. 3 of the main paper for
their precise meaning) and chose the result that yielded the best recall.

2. Falconn [7]: Number of tables = {100, 150, 200, 250, 300}, Number of probes
= {40, 50, 70, 100}. Parameters used for reporting : (250, 70) respectively

3. Ivf from the Faiss package [1, 8]: Number of lists = {32, 64, 128}, Number
of probes = {2, 16}. Parameters used for reporting : (32, 16) respectively

4. Hsnw from the Faiss package [1]: M = 32, Efconstruction = {32, 64}, Ef-
search = {2}×Number of neighbors to retrieve, i.e. K. Parameters used for
reporting : (32, 2) respectively

5. Scann [2,12]: Number of leaves = {1, 2}×
√

Number of elements in the dataset,
Number of leaves to search = {1/2, 1/4, 1/8} × Number of leaves, Reorder
number of neighbors = {4, 8, 16} × K. Parameters used for reporting : (2,
1/4, 16) respectively

6. Flann [6, 17]: We used AutotunedIndexParams with high target precision
(0.85) and other parameters set to their default values. For IMDB-Wiki
dataset, we used KDTreeIndexParams(32), for building the index with 32
parallel kd-trees and SearchParams(128) during search phase. This was
done because AutotunedIndexParams took long time to build index (more
than 20 hours) on IMDB-Wiki dataset. For streaming setting, due to excess
time taken by AutotunedIndexParams (leading to high Index Build Time),
we used KDTreeIndexParams(16), for building the index with 16 parallel
kd-trees and SearchParams(256).

7. Falconn++ [3,19]: We used the parameters suggested in examples of Fal-
conn++, with number of random vectors = 256, number of tables = 350,
α = 0.01, Index Probes (iProbes) = 4, Query Probes (qProbes) = min(40k, 2·
max(k among all queries). But we have different values of k for each query
which can be as large as N/10. Hence, in order to prevent qProbes from
exceeding the size of dataset, we cap it to 2 · max(k among all queries)).

6 Image Augmentations

In order to create queries suitable for the streaming environment for plagiarism
detection, images from the database underwent specially tailored augmentations.
The augmentations included artifacts that are somewhat subtle and which do not
alter the image content very signficantly, but are designed to trick the detection
system: Gaussian blur (with kernel size 3×3), color jitter (in hue, saturation and
value), horizontal flip, downscaling of images and image rotation (by 3 degrees).
Figure 7 shows an example of these augmentations.



10 H. Shah et al.

ImageNet
Precision ↑ Recall ↑

Feature↓, ρ → 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Softmax 0.7 0.73 0.76 0.81 0.74 0.70 0.66 0.60
Penultimate 0.66 0.85 0.96 0.99 0.2 0.07 0.015 0.001

ImageDBCorel
Precision ↑ Recall ↑

Feature↓, ρ → 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Softmax 0.95 0.96 0.97 0.98 0.32 0.27 0.23 0.18
Penultimate 0.99 1 1 1 0.29 0.11 0.028 0.01

ImageDBCaltech
Precision ↑ Recall ↑

Feature↓, ρ → 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Softmax 0.58 0.66 0.73 0.82 0.32 0.29 0.25 0.21
Penultimate 0.89 0.97 0.99 0.99 0.19 0.08 0.03 0.02

Table 1: Comparison of the retrieval accuracy (precision and recall) using cosine
distance with (i) softmax features of VGGNet (1000 dimensional) and (ii) penultimate
VGGNet features (4096 dimensional) for different values of cosine distance threshold
ρ ∈ {0.6, 0.7, 0.8, 0.9}. Note the higher recall of softmax features.

Fig. 7: Example of augmentations performed on an image from the ImageNet dataset
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7 Comparison of VGG16 features

In this section, we provide a comparison between features extracted from penul-
timate layer of VGG16 (4096 dimensional) and the features extracted after the
last layer (i.e. after applying the softmax functions leading to a 1000 dimensional
feature vector as there are 1000 classes involved). For comparison, we use a set-
ting akin to [16], in which database images which are similar to a given query
image are retrieved. However, instead of retrieving a fixed number of images
(k), we have performed range-based retrieval with different similarity thresholds
(ρ = {0.6, 0.7, 0.8, 0.9}) on ImageNet [4], ImageDBCaltech (Caltech101) [11] and
ImageDBCorel [18]. Table 1 shows the retrieval recall and retrieval precision val-
ues for the aforementioned datasets. Note that we define retrieval precision
= # (images retrieved belonging to the same class as the query image) / #
(images retrieved), and retrieval recall = # (images retrieved belonging to the
same class as the query image) / # (images in the database having the same
class as the query image). Note that the retrieval precision and retrieval recall as
defined here pertain to identification of the class labels. These are different from
the precision and recall reported in the main paper, which are based on near
neighbors retrieved by a possibly approximate near neighbor search algorithm,
in comparison to an exhaustive nearest neighbor search. Note that though the
main algorithm proposed by our paper is fully accurate, the other algorithms
we have compared to (i.e., [5, 10, 17]) perform only approximate near neighbor
search. Observe from Table 1 that the recall rates for penultimate features no-
ticeably lag behind those of softmax features, indicating that softmax features
are better suited for plagiarism detection and other applications requiring high
recall.

8 Other Experiments

Here we present results on two experiments with a static database: (i) One on
retrieval with low similarity values, i.e. ρ = 0.3, and (ii) One on the complete
ImageNet Database containing 12 million data-points. These results are reported
in Table 2.
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