
CompGS: Smaller and Faster Gaussian Splatting
with Vector Quantization

K L Navaneet∗ Kossar Pourahmadi Meibodi⋆
Soroush Abbasi Koohpayegani Hamed Pirsiavash

University of California, Davis
{nkadur,kmeibodi,soroush,hpirsiav}@ucdavis.edu

Abstract. 3D Gaussian Splatting (3DGS) is a new method for modeling
and rendering 3D radiance fields that achieves much faster learning and
rendering time compared to SOTA NeRF methods. However, it comes
with a drawback in the much larger storage demand compared to NeRF
methods since it needs to store the parameters for several 3D Gaussians.
We notice that many Gaussians may share similar parameters, so we in-
troduce a simple vector quantization method based on K-means to quan-
tize the Gaussian parameters while optimizing them. Then, we store the
small codebook along with the index of the code for each Gaussian. We
compress the indices further by sorting them and using a method similar
to run-length encoding. Moreover, we use a simple regularizer to encour-
age zero opacity (invisible Gaussians) to reduce the storage and rendering
time by a large factor through reducing the number of Gaussians. We do
extensive experiments on standard benchmarks as well as an existing 3D
dataset that is an order of magnitude larger than the standard bench-
marks used in this field. We show that our simple yet effective method
can reduce the storage cost for 3DGS by 40× to 50× and rendering time
by 2× to 3× with a very small drop in the quality of rendered images.
Our code is available here: https://github.com/UCDvision/compact3d

1 Introduction
Recently, we have seen great progress in radiance field methods to reconstruct a
3D scene using multiple images captured from multiple viewpoints. NeRF [43] is
probably the most well-known method that employs an implicit neural represen-
tation to learn the radiance field using a deep model. Although very successful,
NeRF methods are very slow to train and render. Several methods have been
proposed to solve this problem; however, they usually come with some cost in
the quality of the rendered images.

The Gaussian Splatting method (3DGS) [33] is a new paradigm in learning
radiance fields. The idea is to model the scene using a set of Gaussians. Each
Gaussian has several parameters including its position in 3D space, covariance
matrix, opacity, color, and spherical harmonics of the color that need to be
learned from multiple-view images. Thanks to the simplicity of projecting 3D
⋆ Equal contribution

https://github.com/UCDvision/compact3d

2 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Fig. 1: Inference speed vs. memory comparison. All methods except INGP
achieve comparable PSNR that are reported in Table 1. CompGS, our compressed
version of 3DGS, maintains the speed and performance of 3DGS while reducing its size
to the levels of NeRF based approaches. We achieve around 45× compression and 2.5×
inference speed up with little drop in performance (CompGS-32K). A bit quantized
version of this (Ours-BitQ) compresses it further to a total compression of 65× with
hardly noticeable difference in quality.

Gaussians to the 2D image space and rasterizing them, 3DGS is significantly
faster to both train and render compared to NeRF methods. This results in real-
time rendering of the scenes on a single GPU (ref. Fig. 1). Additionally, unlike
the implicit representations in NeRF, the 3D structure of the scene is explicitly
stored in the parameter space of the Gaussians. This enables many operations
including editing the 3D scene directly in the parameter space.

One of the main drawbacks of the 3DGS method compared to NeRF variants
is that 3DGS needs at least an order of magnitude more parameters compared
to NeRF. This increases the storage and communication requirements of the
model and its memory at the inference time, which can be very limiting in many
real-world applications involving smaller devices. For instance, the large mem-
ory consumption may be prohibitive in storing, communicating, and rendering
several radiance field models on AR/VR headsets.

We are interested in compacting 3DGS representations without sacrificing
their rendering speed to enable their usage in various applications including
low-storage or low-memory devices and AR/VR headsets. Our main intuition
is that several Gaussians may share some of their parameters (e.g. covariance
matrix). Hence, we simply vector-quantize parameters while learning and store
the codebook along with the index for each Gaussian. This can result in a huge
reduction in the storage. Also, it can reduce the memory footprint at the ren-
dering time since the index can act as a pointer to the correct code freeing the
memory needed to replicate those parameters for all Gaussians.

To this end, we use simple K-means algorithm to vector quantize the pa-
rameters at the learning time. Inspired by various quantization-aware learning
methods in deep learning [52], we use the quantized model in the forward pass
while updating the non-quantized model in the backward pass. To reduce the
computation overhead of running K-means, we update the centroids in each iter-

CompGS: Smaller and Faster Gaussian Splatting 3

Fig. 2: Overview of CompGS vector quantization: We compress 3DGS using
vector quantization of the parameters of the Gaussians. The quantization is performed
along with the training of the Gaussian parameters. Considering each Gaussian as a
vector, we perform K-means clustering to represent the N Gaussians in the model
with k cluster centers (codes). Each Gaussian is then replaced by its corresponding
code for rendering and loss calculation. The gradients wrt centers are copied to all the
elements in the corresponding cluster and the non-quantized versions of the parameters
are updated. Only the codebook and code assignments for each Gaussian are stored
and used for inference. To further reduce the storage and inference time, we regularize
opacity in the loss to encourage fully transparent Gaussians. CompGS maintains the
real-time rendering property of 3DGS while compressing it by an order of magnitude.

ation, but update the assignments less frequently (e.g., once every 100 iterations)
since it is costly. Moreover, since the Gaussians are a set of non-ordered elements,
we compress the representation further by sorting the Gaussians based on one of
the quantized indices and storing them using the Run-Length-Encoding (RLE)
method. Furthermore, we employ a simple regularizer to promote zero opacity
(essentially invisible Gaussians), resulting in a significant reduction in storage
and rendering time by reducing the number of Gaussians. Our final model is
40× to 50× smaller and 2× to 3× faster during rendering compared to 3DGS.

2 Related Work
Novel-view synthesis methods: Early deep learning techniques for novel-
view synthesis used CNNs to estimate blending weights or texture-space solu-
tions [17, 27, 56, 62, 70]. However, the use of CNNs faced challenges with MVS-
based geometry and caused temporal flickering. Volumetric representations be-
gan with Soft3D [50], and subsequent techniques used deep learning with volu-
metric ray-marching [29,58]. Mildenhall et al. introduced Neural Radiance Fields
(NeRFs) [43] to improve the quality of synthesized novel views, but the use of a
large Multi-Layer Perceptron (MLP) as the backbone and dense sampling slowed
down the process a lot. Successive methods sought to balance quality and speed,
with Mip-NeRF360 achieving top image quality [4]. Recent advances prioritize
faster training and rendering via spatial data structures, encodings, and MLP ad-
justments [10,18,19,28,45,55,60,67,69]. Notable methods, like InstantNGP [45],
use hash grids and occupancy grids for accelerated computation with a smaller
MLP, while Plenoxels [18] entirely forgo neural networks, relying on Spherical

4 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Harmonics for directional effects. Despite impressive results, challenges in rep-
resenting empty space, limitations in image quality, and rendering speed persist
in NeRF methods. In contrast, 3DGS [33] achieves superior quality and faster
rendering without implicit learning [4]. However, the main drawback of 3DGS
is its increased storage compared to NeRF methods which may limit its usage
in many applications such as edge devices. We are able to keep the quality and
fast rendering speed of 3DGS method while providing reduced model storage by
applying a vector quantization scheme to Gaussian parameters.
Bit quantization: Reducing the number of bits to represent each parameter in
a deep neural network is a commonly used method to quantize models [26,32,35]
that result in smaller memory footprints. Representing weights in 64 or 32-bit
formats may not be crucial for a given task, and a lower-precision quantization
can lead to memory and speed improvements. Dettmers et al. [14] show 8-bit
quantization is sufficient for large language models. In the extreme case, weights
of neural networks can be quantized using binary values. XNOR [53] examines
this extreme case by quantization-aware training of a full-precision network that
is robust to quantization transformations.
Vector quantization: Vector quantization (VQ) [15, 20, 22, 23] is a lossy com-
pression technique that converts a large set of vectors into a smaller codebook
and represents each vector by one of the codes in the codebook. As a result, one
needs to store only the code assignments and the codebook instead of storing
all vectors. VQ is used in many applications including image compression [12],
video and audio codec [38,42], compressing deep networks [11,22], and generative
models [24,54,63]. We apply a similar method to compressing 3DGS models.
Deep model compression. Model compression tries to reduce the storage
size without changing the accuracy of original models. Model compression tech-
niques can be divided to 1) model pruning [25, 26, 64, 66] that aims to remove
redundant layers of neural networks; 2) weight quantization [32, 35, 48], and 3)
knowledge distillation [2,3,9,30,51], in which a compact student model is trained
to mimic the original teacher model. Some works have applied these techniques
to volumetric radiance fields [13, 40, 69]. For instance, TensoRF [8] decompose
volumetric representations via low-rank approximation.
Compression for 3D scene representation methods. Since NeRF relies
on dense sampling of color values and opacity, the computational costs are sig-
nificant. To increase efficiency, methods adopt different data structures such as
trees [65,69], point clouds [49,68], and grids [8,18,45,57,59,60]. With grid struc-
tures training iterations can be completed in a matter of minutes. However, dense
3D grid structures may require substantial amounts of memory. Several methods
have worked on reducing the size of such volumetric grids [8,45,60,61]. Instant-
NGP [45] uses hash-based multi-resolution grids. VQAD [60] replaces the hash
function with codebooks and vector quantization. Another line of work decom-
poses 3D grids into lower dimensional components, such as planes and vectors,
to reduce the memory requirements [8, 31, 61]. Despite reducing the time and
space complexity of the 3D scenes, their sizes are still larger than MLP-based
methods. VQRF [39] compresses volumetric grid-based radiance fields by adopt-

CompGS: Smaller and Faster Gaussian Splatting 5

ing the VQ strategy to encode color features into a compact codebook.
While we also employ vector quantization, we differ from the above ap-

proaches in the method employed for novel view synthesis. Unlike the NeRF
based approaches described above, we aim to compress 3DGS which uses a col-
lection of 3D Gaussians to represent the 3D scene and does not contain grid like
structures or neural networks. We also achieve a significant amount of compres-
sion by regularizing and pruning the Gaussians based on their opacity.
Concurrent works: Some very recent works developed concurrently to ours
[16,21,36,44,46] also propose vector quantization and pruning based methods to
compress 3D Gaussian splat models. LightGaussian [16] uses importance based
Gaussian pruning and distillation and vector quantization of spherical harmon-
ics parameters. Similarly, CGR [36] masks Gaussians based on their volume and
transparency to reduce the number of Gaussians and uses residual vector quanti-
zation for scale and rotation parameters. In CGS [46], highly sensitive parameters
are left non-quantized while the less sensitive ones are vector quantized.

3 Method
Here, we briefly describe the 3DGS [33] method for learning and rendering 3D
scenes and explain our vector quantization approach for compressing it.
Overview of 3DGS: 3DGS models a scene using a collection of 3D Gaussians.
A 3D Gaussian is parameterized by its position and covariance matrices in the
3D space. G(x) = e−

1
2 (x−µ)TΣ−1(x−µ) where x − µ is the position vector, µ is

the position, and Σ is the 3D covariance matrix of the Gaussian. Since the
covariance matrix needs to be positive definite, it is factored into its scale (S)
and rotation (R) matrices as Σ = RSSTRT for easier optimization. In addition,
each Gaussian has an opacity parameter σ. Since the color of the Gaussians
may depend on the viewing angle, the color of each Gaussian is modeled by a
Spherical Harmonics (SH) of order 3 in addition to a DC component.

Given a view-point, the collection of 3D Gaussians is efficiently rendered in a
differentiable manner to get a 2D image by α-blending of anisotropic splats,
sorting, and using a tile-based rasterizer. Color of a pixel is given by C =∑

i ciαi

∏i−1
j=1(1 − αj) where ci is the color of the ith Gaussian and αi is the

product of the value of the Gaussian at that point and its learned opacity σi. At
the training time, 3DGS minimizes the loss between the groundtruth and ren-
dered images in the pixel space. The loss is ℓ1 loss plus an SSIM loss in the pixel
space. 3DGS initializes the optimization by a point cloud achieved by a standard
SfM method and iteratively prunes the ones with small opacity and adds new
ones when the gradient is large. 3DGS paper shows that it is extremely fast
to train and is capable of real-time rendering while matching or outperforming
SOTA NeRF methods in terms of rendered image quality.
Compression of 3DGS:

We compress the parameters of 3DGS using vector quantization aware train-
ing and reduce the number of Gaussians by regularizing the opacity parameter.
Vector quantization: 3DGS requires a few million Gaussians to model a typ-
ical scene. With 59 parameters per Gaussian, the storage size of the trained

6 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

model is an order of magnitude larger than most NeRF approaches (e.g., Mip-
NeRF360 [4]). This makes it inefficient for some applications including edge
devices. We are interested in reducing the number of parameters. Our main
intuition is that many Gaussians may have similar parameter values (e.g., co-
variance). Hence, we use simple vector quantization using K-means algorithm to
compress the parameters. Fig. 2 provides an overview of our approach.

Consider a 3DGS model with N Gaussians, each with a d dimensional pa-
rameter vector. We run K-means algorithm to cluster the vectors into K clusters.
Then, one can store the model using K vectors of size d and N integer indices
(one for each Gaussian). Since N >> K, this method can result in a large com-
pression ratios. In a typical scene, N is a few millions while K is a few thousands.

However, clustering the model parameters after training results in perfor-
mance degradation, hence, we perform quantization aware training to ensure
that the parameters are amenable to quantization. In learning 3DGS, we store
the non-quantized parameters. In the forward pass of learning 3DGS, we quan-
tize the parameters and replace them with the quantized version (centroids)
to do the rendering and calculate the loss. Then, we do the backward pass to
get the gradients for the quantized parameters and copy the gradients to the
non-quantized parameters to update them. We use straight-through estimator
proposed in STE [7]. After learning, we discard the non-quantized parameters
and keep only the codebook and indices of the codes for Gaussians.

Since the number of Gaussians N is typically in millions, cost of performing
K-means at every iteration of training can be prohibitively high. K-means has
two steps: updating centroids given assignments, and updating assignments given
centroids. We note that the latter is more expensive while the former is a simple
averaging. Hence, we update the centroids after each iteration and update the
assignments once every t iterations. We observe that the modified approach
works well even for values of t as high as 500. This is crucial in limiting the
training time of the method.

Performing a single K-means for the whole d dimensional parameters requires
a huge codebook since the different parameters of the Gaussian are not neces-
sarily correlated. Hence, we group similar types of parameters, e.g., all rotation
matrices, together and cluster them independently to learn a separate codebook
for each. This requires storing multiple indices for each Gaussian. In our main
method, we quantize DC component of color, spherical harmonics, scale, and
rotation parameters separately, resulting in 4 codebooks. We do not quantize
opacity parameter since it is a single scalar and do not quantize the position of
the Gaussians since sharing them results in overlapping Gaussians.

Since the indices are integer values, we use fewer number of bits compared
to the original parameters to store each. Moreover, 3DGS models the scene as
a set of order-less Gaussians. Hence, we sort the Gaussians based on one of the
indices, e.g., rotation, so that Gaussians using the same code appear together in
the list. Then, for that index, instead of storing n integers, we store how many
times each code appears in the list, reducong the storage from n integers to k
integers. This is similar to run-length-encoding for data compression.

CompGS: Smaller and Faster Gaussian Splatting 7

Opacity Regularization: Some parameters like position of the Gaussians
cannot be quantized easily, so as shown in Table 6 after quantization, they
dominate the memory(more than 80% of memory). This means quantization
cannot improve the compression any further. One way to compress 3DGS more
is to reduce the number of Gaussians. Interestingly, this reduction comes with a
bi-product that is increase in inference speed. We know that very small values
of opacity (σ) correspond to transparent or nearly invisible Gaussians. Hence,
inspired by training sparse models, we add ℓ1 norm of the opacity to the loss
as a regularizer to encourage zero values for opacity. Therefore, the final loss
becomes: L = L3DGS + λreg

∑N
i σi, where L3DGS is the original loss of 3DGS

with or without quantization and λreg controls the sparsity of opacity. Finally,
similar to the original 3DGS, we remove the Guassians with opacity smaller than
a threshold, resulting in significant reduction in storage and inference time.

4 Experiments

Implementation details: For all our experiments, we use the publicly available
official code repository [1] of 3DGS [33] provided by its authors. There are no
changes in the hyperparameters used for training compared to 3DGS. The Gaus-
sian parameters are trained without any vector quantization till 20K iterations
and K-means quantization is used for the remaining 10K iterations. A standard
K-means iteration involves distance calculation between all elements (Gaussian
parameters) and all cluster centers followed by assignment to the closest center.
The centers are then updated using new cluster assignments and the loop is
repeated. We use just 1 such K-means iteration in our experiments once every
100 iterations till iteration 25K and keep the assignments constant thereafter till
the last iteration, 30K. The K-means cluster centers are updated using the non-
quantized Gaussian parameters after each iteration of training. The covariance
(scale and rotation) and color (DC and harmonics) components of each Gaussian
is vector quantized while position (mean) and opacity parameters are not quan-
tized. Additional results with different parameters being quantized are provided
in Table 9. Unless mentioned differently, we use a codebook of size 4096 for the
color and 16384 (CompGS 16K) for the covariance parameters. The scale pa-
rameters of covariance are quantized before applying the exponential activation
on them. Similarly, quaternion based rotation parameters are quantized before
normalization. For opacity regularization, we use λreg = 10−7 from iterations
15K to 20K along with opacity based pruning every 1000 iterations and remove
regularization thereafter. All experiments were run on a single RTX-6000 GPU.
Datasets: We primarily show results on three challenging real world datasets -
Tanks&Temples [34], Deep Blending [27] and Mip-NeRF360 [4] containing two,
two and nine scenes respectively. Also, we provide results on a subset of the
recently released DL3DV-10K dataset [41] which contains 140 scenes. DL3DV-
10K [41] is an annotated dataset with 10, 510 real-world scene-level videos. Out
of these, 140 scenes have been used to create a novel-view synthesis (NVS) bench-
mark, making it an order of magnitude larger than the typical NVS benchmarks.
We use this NVS benchmark in our experiments. Additionally, we provide re-

8 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Table 1: Comparison with SOTA methods for novel view synthesis. 3DGS [33]
performs comparably or outperforms the best of the NeRF based approaches while
maintaining a high rendering speed during inference. Trained NeRF models are signifi-
cantly smaller than 3DGS since NeRFs are parameterized using neural networks while
3DGS requires storage of parameters of millions of 3D Gaussians. CompGS is a vector
quantized version of 3DGS that maintains the speed and performance advantages of
3DGS while being 40× to 50× smaller. CompGS 32K BitQ is the post-training bit
quantized version of CompGS 32K, in which position parameters are 16-bits, opacity
is 8 bits, and the rest are 32 bits. ∗Reproduced using official code. † Reported from
3DGS [33]. Our timings for 3DGS and CompGS are reported using a RTX6000 GPU
while those with † used A6000 GPU. We boldface entries for emphasis. Please see the
Appendix for results on Deep Blending dataset.

Mip-NeRF360 Tanks&Temples

Method SSIM↑ PSNR↑ LPIPS↓ FPS Mem
(MB)

Train
Time(m) SSIM↑ PSNR↑ LPIPS↓ FPS Mem

(MB)
Train

Time(m)

Plenoxels† [18] 0.626 23.08 0.463 6.79 2,100 25.5 0.719 21.08 0.379 13.0 2300 25.5
INGP-Base† [45] 0.671 25.30 0.371 11.7 13 5.37 0.723 21.72 0.330 17.1 13 5.26
INGP-Big† [45] 0.699 25.59 0.331 9.43 48 7.30 0.745 21.92 0.305 14.4 48 6.59
M-NeRF360† [4] 0.792 27.69 0.237 0.06 8.6 48h 0.759 22.22 0.257 0.14 8.6 48h
3DGS † [33] 0.815 27.21 0.214 134 734 41.3 0.841 23.14 0.183 154 411 26.5
3DGS ∗ [33] 0.813 27.42 0.217 149 778 21.6 0.844 23.68 0.178 206 433 12.2
LigthGaussian [16] 0.805 27.28 0.243 209 42 - 0.817 23.11 0.231 209 22 -
CGR [37] 0.797 27.03 0.247 128 29.1 - 0.831 23.32 0.202 185 20.9 -
CGS [47] 0.801 26.98 0.238 - 28.8 - 0.832 23.32 0.194 - 17.28 -
CompGS 16K 0.804 27.03 0.243 346 18 22.8 0.836 23.39 0.200 479 12 15.6
CompGS 32K 0.806 27.12 0.240 344 19 29.4 0.838 23.44 0.198 475 13 20.6
CompGS 32K BitQ 0.797 26.97 0.245 344 12 29.4 0.832 23.35 0.202 475 8 20.6

sults on a subset of the large scale ARKit [6] dataset, called ARKit-200, which
contains 200 scenes. Details of this dataset is presented in the Appendix.
Baselines: As we propose a method (termed CompGS) for compacting 3DGS,
we focus our comparisons with 3DGS and different baseline methods for com-
pressing it. We consider bit quantization (denoted as Int-16/8/4 in results) and
3DGS without the harmonic components for color (denoted as 3DGS-No-SH) as
alternative parameter compression methods. Bit-quantization is performed using
the standard Absmax quantization [14] technique. Similarly, we consider several
alternative approaches to reduce the number of Gaussians. Densification process
in 3DGS increases the Gaussian count and is controlled by the gradient threshold
(termed grad thresh) parameter and the frequency (freq) and iterations (iters)
until densification is performed. The opacity threshold (min opacity) controls
the pruning of transparent Gaussians. We modify these parameters in 3DGS to
compress the model with as little drop in performance as possible. Additionally,
Table 1 shows comparison with state-of-the-art NeRF approaches [4, 18, 45].
Mip-NeRF360 [4] achieves high performance comparable to 3DGS while Plenox-
els [18] and InstantNGP [45] have high frame-rate for rendering and very low
training time. InstantNGP and Mip-NeRF360 are also comparable in model size
to our compressed model.
Evaluation: For a fair comparison, we use the same train-test split as Mip-
NeRF360 [4] and 3DGS [33] and directly report the metrics for other methods
from 3DGS [33]. We also report our reproduced metrics for 3DGS since we ob-

CompGS: Smaller and Faster Gaussian Splatting 9

Table 2: Comparison of parameter compression methods for 3DGS. We eval-
uate different baseline approaches for compressing the parameters of 3DGS without any
reduction in the number of Gaussians. All memory values are reported as a ratio of
the method with our smallest model. Our K-Means based vector quantization performs
favorably compared to all methods both in terms of novel view synthesis performance
and compression. Not quantizing the position values (Int-x no-pos) is crucial in bit
quantization. Since harmonics constitute 76% of each Gaussian, 3DGS-no-SH achieves
a high level of compression. But CompGS with only quantized harmonics achieves
similar compression with nearly no loss in performance compared to 3DGS .

Mip-NeRF360 Tanks&Temples Deep Blending
Method SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS Mem

3DGS 0.813 27.42 0.217 0.844 23.68 0.178 0.899 29.49 0.246 20.0
3DGS-No-SH 0.802 26.80 0.229 0.833 23.16 0.190 0.900 29.50 0.247 4.8
Post-train K-means 4K 0.768 25.46 0.266 0.803 22.12 0.226 0.887 28.61 0.268 1.7
K-means 4K Only-SH 0.811 27.25 0.223 0.842 23.57 0.183 0.902 29.60 0.246 4.8
K-means 4K 0.804 26.97 0.234 0.836 23.31 0.194 0.904 29.76 0.248 1.7
K-means 32K 0.808 27.16 0.228 0.840 23.47 0.188 0.903 29.75 0.247 1.8

Int16 0.804 27.25 0.223 0.836 23.56 0.185 0.900 29.49 0.247 10.0
Int8 no-pos 0.812 27.38 0.219 0.843 23.67 0.180 0.900 29.47 0.247 5.8
Int8 0.357 14.41 0.629 0.386 12.37 0.625 0.709 21.58 0.457 5.0
Int4 no-pos 0.489 17.42 0.525 0.488 12.94 0.575 0.746 19.90 0.446 3.4
3DGS-No-SH Int16 0.789 26.59 0.237 0.826 23.04 0.198 0.900 29.50 0.248 2.4
K-means 4K, Int16 0.796 26.83 0.239 0.830 23.21 0.199 0.904 29.76 0.248 1.0

serve slightly better results compared to the ones in [33]. We report the standard
evaluation metrics of SSIM, PSNR and LPIPS along with memory or compres-
sion ratio, rendering FPS and training time. The common practice is to report
the average of PSNR across a set of images and scenes. However, this metric
may be dominated by very accurate reconstructions (smaller errors) since it is
based on the geometric average of the errors due to the log operation in PSNR
calculation. Hence, for the larger ARKit dataset, we also report PSNR-AM for
which we average the error across all images and scenes before calculating the
PSNR. In comparing model sizes, we normalize all methods by dividing them
by the size of our method to obtain compression ratio.
Results: Comparison of our results with SOTA novel view synthesis approaches
is shown in Table 1. Our vector quantized method has a comparable perfor-
mance to the non-quantized 3DGS with a small drop on MipNerf-360 and TandT
datasets and a small improvement on the DB dataset. We additionally report
results with post-training bit quantization of our model (CompGS BitQ) where
the position and opacity parameters are quantized to 16 bits and 8 bits respec-
tively. The model memory footprint drastically reduces for CompGS compared
to 3DGS , making it comparable to NeRF approaches. Our models are 65× and
54× smaller than 3DGS models on MipNerf-360 and TandT datasets respec-
tively. This reduces a big disadvantage of 3DGS models and makes them more
practical. The compression achieved by CompGS is impressive considering that
more than two-thirds of its memory is due to the non-quantized position and
opacity parameters (refer table 6). Additionally CompGS maintains the other

10 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Fig. 3: Qualitative comparison of novel view synthesis approaches. We visual-
ize images from different scenes across datasets for SOTA NeRF, 3DGS, our CompGS
and the No-SH variant of 3DGS . All methods based on 3DGS have better reconstruc-
tion of finer details like spokes of the bicycle wheel compared to NeRF approaches.
Both compressed versions CompGS and 3DGS-No-SH are similar in appearance to
3DGS with no additional visually apparent errors.

advantages of 3DGS such as low inference memory usage and training time. while
also increasing its already impressive rendering FPS by 2× to 3×. A
limitation of CompGS compared to 3DGS is the overhead in compute and train-
ing time introduced by the K-means clustering algorithm. This is compensated
in part by the reduced compute and time due to the decrease in Gaussian count.
CompGS 16K variant requires marginally more time than 3DGS while CompGS
32K needs 1.4× to 1.7× more training time. However, this is still orders of mag-
nitude smaller than the high-quality NeRF based approaches like MipNerf-360.
Per-scene evaluation metrics are in Appendix. Note that there are large differ-
ences in reproduced results for 3DGS across various works in the literature. We
observe a median standard deviation of 0.05dB for PSNR when the experiment is
repeated 20 times with several scenes having differences more than 0.4dB across
runs (refer Appendix). One must be careful when analyzing as these variations
are often comparable to differences in performance between methods.

We decouple our compression method into parameter and Gaussian count
compression components and perform ablations on each of them.
Comparison of parameter compression methods: In Table 2, we compare
the proposed vector quantization based compression against other baseline ap-
proaches for compressing 3DGS. Since the spherical harmonic components used
for modeling color make up nearly three-fourths of all the parameters of each
Gaussian, a trivial compression baseline is to use a variant of 3DGS with only
the DC component for color and no harmonics. This baseline (3DGS-No-SH)

CompGS: Smaller and Faster Gaussian Splatting 11

Table 3: Reducing number of Gaussians in 3DGS. We evaluate different base-
line approaches for compressing 3DGS by reducing the number of Gaussians. Gaussian
count is proportional to model size. CompGS performs favorably compared to all meth-
ods both in terms of novel view synthesis performance and compression.

Mip-NeRF360 Tanks&Temples Deep Blending
Method SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

3DGS 0.813 27.42 0.217 3.30M 0.844 23.68 0.178 1.83M 0.899 29.49 0.246 2.80M
Min Opacity 0.802 27.12 0.244 1.46M 0.833 23.44 0.204 780K 0.902 29.50 0.255 1.01M
Densify Freq 0.794 26.98 0.255 1.07M 0.832 23.36 0.206 709K 0.902 29.76 0.258 844K
Densify Iters 0.780 27.02 0.267 1.12M 0.835 23.55 0.194 810K 0.896 29.42 0.264 795K
Grad Thresh 0.769 26.57 0.292 809K 0.825 23.31 0.217 578K 0.900 29.49 0.260 1.01M
Opacity Reg 0.813 27.42 0.227 845K 0.844 23.71 0.188 520K 0.905 29.73 0.249 554K

achieves a high compression with just 23.7% of the original model size but has
a drop in performance. Our K-Means approach outperforms 3DGS-No-SH while
using less than half its memory. We also consider a variant of CompGS with a
single codebook for both SH and DC parameters (termed SH+DC) with a larger
codebook of size of 4096. This has a marginal decrease in both memory and per-
formance compared to default CompGS suggesting that correlated parameters
can be combined to reduce the number of indices to be stored.

Fig. 3 shows qualitative comparison of CompGS across multiple datasets with
both SOTA approaches and compression methods for 3DGS . Both CompGS and
3DGS-No-SH are visually similar to 3DGS, preserving finer details such as the
spokes of the bike and bars of dish-rack. Among NeRF approaches, Mip-NeRF360
is closest in terms of quality to 3DGS while InstantNGP trades-off quality for
inference and training speed.

All the above approaches are trained using 32-bit precision for all Gaussian pa-
rameters. Post-training bit quantization of 3DGS to 16-bits reduces the memory
by half with very little drop in performance. However, reducing the precision
to 8-bits results in a huge degradation of the model. This drop is due to the
quantization of the position parameters of the Gaussians. Excluding them from
quantization (denoted as Int8 no-pos) results in a model comparable to the 32-bit
variant. However, further reduction to 4-bits degrades the model even when the
position parameters are not quantized. Note that bit quantization approaches
offer significantly lower compression compared to CompGS and they are a subset
of the possible solutions for our vector quantization method. Similar to 3DGS,
CompGS has a small drop in performance when 16-bit quantization is used.

Comparison of Gaussian count compression methods: In Table 3, we
compare the proposed opacity regularization method for reducing the Gaus-
sian count with baselines. In these baselines, we modify the 3DGS parameters
to decrease densification and increase pruning and thus reduce the number of
Gaussians. We report the best metrics for each baseline here (refer Appendix for
ablation). Our opacity regularization results in 3.5× to 5× reduction in Gaus-
sian count with nearly identical performance as the larger models. Similar level
of compression is achieved only by the gradient threshold baseline that reduces
densification. However, it results in a large drop in performance.

12 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Table 4: Comparison on ARKit-200 dataset. It contains 200 scenes from the
ARKit [5] indoor scene understanding dataset (see the Appendix for details.). We report
results for just the vector quantized version of CompGS. (left) CompGS achieves a high
level of compression with nearly identical metrics for view synthesis. (right) 3DGS-No-
SH fails to reconstruct well in several images while CompGS is nearly identical to 3DGS
with a large reduction in model size.

Method SSIM PSNR PSNR-AM LPIPS Mem

3DGS 0.909 25.76 20.73 0.226 20.0
3DGS-No-SH 0.905 25.31 20.11 0.234 4.8
CompGS 0.909 25.70 20.73 0.229 1.7

DL3DV-140
Method SSIM↑ PSNR↑ PSNR-AM↑ LPIPS↓ FPS Mem(MB)

3DGS * 0.905 29.06 27.37 0.134 282 291
CompGS 32K 0.895 28.42 26.97 0.149 566 10

Table 5: Results on the 140 scenes NVS benchmark of DL3DV-10K [41] dataset.
Similar to the results on the smaller benchmarks, CompGS compresses 3DGS by nearly
30 times with a small drop in reconstruction quality. * is our reproduced results.

Results on ARKit-200 and DL3DV datasets: Table 4 shows the quantita-
tive and qualitative results on our large-scale ARKit-200 benchmark. Our com-
pressed model achieves nearly the same performance as 3DGS with ten times
smaller memory. Unlike CompGS , the 3DGS-No-SH method suffers a significant
drop in quality. We also report PSNR-AM as the PSNR calculated using arith-
metic mean of MSE over all the scenes in the dataset to prevent the domination
of high-PSNR scenes. Similarly, Table 5 shows the performance of CompGS with
both KMeans quantization and opacity regularization. CompGS achieves nearly
30× compression compared to 3DGS with a small drop in performance.

4.1 Ablations
We analyze our design choices and the effect of various hyperparameters on re-
construction performance and model size.

Table 6: Breakdown of memory usage in
CompGS. We observe that just 4 non-quantized
values of the total 59 values per Gaussian contribute
to 68% and 81% of the total memory in our 16-
bit and 32-bit variants respectively. For the quan-
tized parameters, nearly the entire memory is used
to store the indices.

Non Quant
Quant

Num Params 4 55
Mem (16bit) 68% 32%
Mem (32bit) 81% 19%

k-Means Quantization
Index Codebook

99% 1%
98% 2%

Table 7: Compression perfor-
mance tradeoff. Gaussian count
decreases drastically with heavy
regularization but also results in
some drop in performance on
Mip-NeRF360 dataset. We choose
λreg = 10−7 as default.

λreg(×10−7) SSIM PSNR LPIPS #Gauss

0.5 0.808 27.17 0.234 1.21M
1.0 0.806 27.12 0.240 845K
2.0 0.801 26.98 0.253 536K
3.0 0.794 26.83 0.266 390K

CompGS: Smaller and Faster Gaussian Splatting 13

Table 8: Performance and train-
ing time trade-off. Depending on
user’s needs, it is possible to ob-
tain models with fast training or
high performance. The hyperparam-
eters of vector quantization - num-
ber of K-Means iterations (iters), K-
Means index assignment frequency
(freq) and codebook size (#codes)
can be varied to obtain the desired
point on the curve. They offer a
good trade-off, with huge decrease in
training time with minor changes in
performance. Results are shown on
MipNerf-360.

Iters Freq #Codes SSIM PSNR Time

1 100 8K 0.802 26.94 19.3
3 100 8K 0.802 26.94 20.9
5 100 8K 0.802 26.95 22.5
10 100 8K 0.802 26.95 26.5

5 50 8K 0.803 27.00 28.7
5 200 8K 0.799 26.76 19.4
5 500 8K 0.783 26.15 18.1

5 100 4K 0.800 26.84 19.6
5 100 16K 0.804 27.05 28.9
5 100 32K 0.806 27.12 42.4

Table 9: Effect of quantization on different
Gaussian parameters. Each Gaussian in 3DGS
is parameterized using position (pos), scale, ro-
tation (rot) and color (DC and harmonics SH).
We analyze the effect of quantizing combinations
of these parameters on the view synthesis perfor-
mance. SH+DC denotes that a single codebook is
used for both SH and DC. Position values can-
not be quantized without greatly affecting model
performance. The rest of the parameters can be
simultaneously combined to obtain a high degree
of compression without much loss in quality.

Quantized Train Truck
Params SSIM↑ PSNR↑ SSIM↑ PSNR↑ Mem

3DGS 0.811 21.99 0.878 25.38 20.0
3DGS-No-SH 0.798 21.40 0.871 24.92 4.8

Variants of CompGS

Pos 0.673 19.81 0.730 21.65 19.0
SH 0.809 21.88 0.876 25.27 4.8
SH, DC 0.806 21.68 0.875 25.24 3.8
Rot(R) 0.808 21.83 0.876 25.32 18.7
Scale(Sc) 0.809 21.79 0.877 25.30 19.0
SH,R 0.805 21.67 0.874 25.20 3.5
SH,Sc 0.806 21.63 0.875 25.18 3.8
SH,Sc,R 0.801 21.64 0.872 25.02 2.6
SH+DC,Sc,R 0.797 21.41 0.868 24.89 1.6
SH,DC,Sc,R 0.801 21.64 0.871 24.97 1.7
SH,DC,Sc,R Int16 0.790 21.49 0.869 24.93 1.0

Memory break-down of CompGS: In Table 6, we show the contribution of
various components to the final memory usage of CompGS . Out of 59 parameters
of each Gaussian, we quantize 55 parameters of color and covariance while the
3 position and 1 opacity parameters are used as is. However, the bulk of the
stored memory (68% and 81% for 16- and 32-bits) is due to the non-quantized
parameters. For the quantized parameters, nearly all the memory is used to store
the cluster assignment indices with less than 2% used for the codebook.
Trade-off between performance, compression, and training time: Com-
pressing the Gaussian parameters comes with a trade-off, particularly between
performance and training time. In our method, the size of codebook, frequency
of code assignment and number of iterations in code computation control this
trade-off. Similarly, regularization strength can be modified in Gaussian count
reduction to obtain a trade-off between performance and compression. We show
ablations on these hyperparameters in Tables 7 and 8. CompGS offers great flex-
ibility, with different levels of compression and training time without sacrificing
much on performance.
Parameter selection for quantization: Table 9 shows the effect of quantiz-
ing different subsets of the Gaussian parameters on the Tanks&Temples dataset.
Quantizing the position parameters significantly reduces the performance on
both the scenes. We thus do not quantize position in any of our other experi-

14 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

Fig. 4: Effect of codebook length. We
vary codebook size while quantizing one of
the paramteres (SH, DC, Rotation, Scale).

Dataset Mip-NeRF360
Method SSIM↑ PSNR↑ LPIPS↓

3DGS 0.815 27.21 0.214
3DGS ∗ 0.813 27.42 0.217
CompGS 4k 0.804 26.97 0.234
CompGS Shared Codebook 0.797 26.64 0.242

Fig. 5: Effect of shared codebook.
A frozen codebook trained on one scene
(‘Counter’ scene) generalizes well to all
other scenes in MipNerf-360 dataset. Only
code assignments are learnt during training.

ments. Quantizing only the harmonics (SH) of color parameter is nearly identical
in size to the no-harmonics (3DGS-No-SH) of 3DGS . Our SH has very little
drop in metrics compared to 3DGS while 3DGS-No-SH is much worse off without
the harmonics. As more parameters are quantized, the performance of CompGS
slowly reduces. The combination of all color and covariance parameters still re-
sults in a model with good qualitative and quantitative results.

Effect of codebook size: Fig. 4 shows the effect of codebook size for quantiza-
tion of different Gaussian parameters on the Tanks&Temples dataset. The DC
component of color has the smallest drop in performance upon quantization and
achieves results similar to the non-quantized version with as few as 128 cluster
centers. The harmonics (SH) components of color lead to a much bigger drop
at lower number of clusters and improve as more clusters are added. Note that
CompGS with only SH components is nearly the same size as 3DGS-No-SH but
has better performance (23.43 for ours vs. 23.14 for 3DGS-No-SH). The covari-
ance parameters (rotation and scale) have a drop in performance at a codebook
size of 1024 but improve as the codebook size is increased.
Generalization of codebook across scenes We train our train our method
on a single scene (‘Counter’) of the Mip-NeRF360 dataset. We then freeze the
codebook and calculate only assignments for the rest of the eight scenes in the
dataset and report the averaged performance metrics over all scenes (Fig. 5).
Interestingly, we observe that the shared codebook generalizes well across all
scenes with a small drop in performance compared to learning a codebook for
each scene. Sharing learnt codebook can further reduce the memory requirement
and can help speed up the training of CompGS. The quality of the codebook
can be improved by learning it over multiple scenes.
Conclusion: 3D Gaussian Splatting efficiently models 3D radiance fields, out-
performing NeRF in learning and rendering efficiency at the cost of increased
storage. To reduce storage demands, we apply opacity regularization and K-
means-based vector quantization, compressing indices and employing a compact
codebook. Our method cuts the storage cost of 3DGS by almost 45×, increases
rendering FPS by 2.5× while maintaining image quality across benchmarks.

CompGS: Smaller and Faster Gaussian Splatting 15

Acknowledgments: This work is partially funded by NSF grant 1845216 and
DARPA Contract No. HR00112190135 and HR00112290115.

References

1. Official code repository of 3d gaussian splatting for real-time radiance field render-
ing. https://github.com/graphdeco-inria/gaussian-splatting 7

2. Abbasi Koohpayegani, S., Tejankar, A., Pirsiavash, H.: Compress: Self-supervised
learning by compressing representations. Advances in Neural Information Process-
ing Systems 33, 12980–12992 (2020) 4

3. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? arXiv preprint
arXiv:1312.6184 (2013) 4

4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022) 3, 4, 6, 7, 8

5. Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y., Fu, P., Gebauer, T.,
Joffe, B., Kurz, D., Schwartz, A., Shulman, E.: Arkitscenes - a diverse real-world
dataset for 3d indoor scene understanding using mobile rgb-d data. In: NeurIPS
(2021), https://arxiv.org/pdf/2111.08897.pdf 12

6. Baruch, G., Chen, Z., Dehghan, A., Feigin, Y., Fu, P., Gebauer, T., Kurz, D.,
Dimry, T., Joffe, B., Schwartz, A., Shulman, E.: ARKitscenes: A diverse real-
world dataset for 3d indoor scene understanding using mobile RGB-d data. In:
Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1) (2021), https://openreview.net/forum?id=tjZjv_
qh_CE 8

7. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013) 6

8. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
European Conference on Computer Vision. pp. 333–350. Springer (2022) 4

9. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. pp. 742–751 (2017)
4

10. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile
architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 16569–16578 (2023) 3

11. Cho, M., Vahid, K.A., Fu, Q., Adya, S., Del Mundo, C.C., Rastegari, M., Naik,
D., Zatloukal, P.: edkm: An efficient and accurate train-time weight clustering for
large language models. arXiv preprint arXiv:2309.00964 (2023) 4

12. Cosman, P.C., Oehler, K.L., Riskin, E.A., Gray, R.M.: Using vector quantization
for image processing. Proceedings of the IEEE 81(9), 1326–1341 (1993) 4

13. Deng, C.L., Tartaglione, E.: Compressing explicit voxel grid representations: fast
nerfs become also small. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. pp. 1236–1245 (2023) 4

14. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339 (2022) 4,
8

https://github.com/graphdeco-inria/gaussian-splatting
https://arxiv.org/pdf/2111.08897.pdf
https://openreview.net/forum?id=tjZjv_qh_CE
https://openreview.net/forum?id=tjZjv_qh_CE

16 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

15. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE transactions
on acoustics, speech, and signal processing 37(10), 1568–1575 (1989) 4

16. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: Lightgaussian: Un-
bounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245 (2023) 5, 8

17. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: Deepstereo: Learning to predict
new views from the world’s imagery. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5515–5524 (2016) 3

18. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5501–5510 (2022)
3, 4, 8

19. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14346–14355 (2021) 3

20. Gersho, A., Gray, R.M.: Vector quantization and signal compression, vol. 159.
Springer Science & Business Media (2012) 4

21. Girish, S., Gupta, K., Shrivastava, A.: Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. arXiv preprint arXiv:2312.04564 (2023) 5

22. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv preprint arXiv:1412.6115 (2014) 4

23. Gray, R.: Vector quantization. IEEE Assp Magazine 1(2), 4–29 (1984) 4
24. Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D., Yuan, L., Guo, B.:

Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10696–
10706 (2022) 4

25. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International conference on machine learning. pp.
1737–1746. PMLR (2015) 4

26. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015) 4

27. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG) 37(6), 1–15 (2018) 3, 7

28. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Bak-
ing neural radiance fields for real-time view synthesis. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5875–5884 (2021)
3

29. Henzler, P., Mitra, N.J., Ritschel, T.: Escaping plato’s cave: 3d shape from adver-
sarial rendering. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 9984–9993 (2019) 3

30. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015) 4

31. Huang, B., Yan, X., Chen, A., Gao, S., Yu, J.: Pref: Phasorial embedding fields for
compact neural representations. arXiv preprint arXiv:2205.13524 (2022) 4

32. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2704–2713 (2018) 4

CompGS: Smaller and Faster Gaussian Splatting 17

33. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (ToG) 42(4),
1–14 (2023) 1, 4, 5, 7, 8, 9

34. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13
(2017) 7

35. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1806.08342 (2018) 4

36. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3d gaussian representation
for radiance field. arXiv preprint arXiv:2311.13681 (2023) 5

37. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3d gaussian representation
for radiance field. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 21719–21728 (2024) 8

38. Lee, Y.Y., Woods, J.W.: Motion vector quantization for video coding. IEEE Trans-
actions on Image Processing 4(3), 378–382 (1995) 4

39. Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields
to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4222–4231 (2023) 4

40. Li, L., Shen, Z., Wang, Z., Shen, L., Tan, P.: Streaming radiance fields for 3d video
synthesis. Advances in Neural Information Processing Systems 35, 13485–13498
(2022) 4

41. Ling, L., Sheng, Y., Tu, Z., Zhao, W., Xin, C., Wan, K., Yu, L., Guo, Q., Yu, Z.,
Lu, Y., et al.: Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
vision. arXiv preprint arXiv:2312.16256 (2023) 7, 12

42. Makhoul, J., Roucos, S., Gish, H.: Vector quantization in speech coding. Proceed-
ings of the IEEE 73(11), 1551–1588 (1985) 4

43. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In:
Proceedings of the European Conference on Computer Vision (ECCV) (2020),
http://arxiv.org/abs/2003.08934v2 1, 3

44. Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3d scene represen-
tation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299 (2023)
5

45. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022) 3, 4, 8

46. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3d gaussian splat-
ting for accelerated novel view synthesis. arXiv preprint arXiv:2401.02436 (2023)
5

47. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3d gaussian splat-
ting for accelerated novel view synthesis. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 10349–10358 (2024) 8

48. Nooralinejad, P., Abbasi, A., Koohpayegani, S.A., Meibodi, K.P., Khan, R.M.S.,
Kolouri, S., Pirsiavash, H.: Pranc: Pseudo random networks for compacting deep
models. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 17021–17031 (2023) 4

49. Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as
points: A differentiable poisson solver. Advances in Neural Information Processing
Systems 34, 13032–13044 (2021) 4

50. Penner, E., Zhang, L.: Soft 3d reconstruction for view synthesis. ACM Transactions
on Graphics (TOG) 36(6), 1–11 (2017) 3

http://arxiv.org/abs/2003.08934v2

18 Navaneet*, Pourahmadi Meibodi*, Abbasi Koohpayegani and Pirsiavash

51. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quan-
tization. arXiv preprint arXiv:1802.05668 (2018) 4

52. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks (2016) 2

53. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV. Lec-
ture Notes in Computer Science, vol. 9908, pp. 525–542. Springer (2016). https:
//doi.org/10.1007/978-3-319-46493-0_32, https://doi.org/10.1007/978-3-
319-46493-0_32 4

54. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems 32 (2019) 4

55. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14335–14345 (2021) 3

56. Riegler, G., Koltun, V.: Free view synthesis. In: Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XIX 16. pp. 623–640. Springer (2020) 3

57. Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y., Geiger, A.: Voxgraf: Fast 3d-aware
image synthesis with sparse voxel grids. Advances in Neural Information Processing
Systems 35, 33999–34011 (2022) 4

58. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.:
Deepvoxels: Learning persistent 3d feature embeddings. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2437–
2446 (2019) 3

59. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5459–5469 (2022) 4

60. Takikawa, T., Evans, A., Tremblay, J., Müller, T., McGuire, M., Jacobson, A.,
Fidler, S.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference
Proceedings. pp. 1–9 (2022) 3, 4

61. Tang, J., Chen, X., Wang, J., Zeng, G.: Compressible-composable nerf via rank-
residual decomposition. In: Advances in Neural Information Processing Systems
(2022) 4

62. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. Acm Transactions on Graphics (TOG) 38(4), 1–12 (2019) 3

63. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning.
Advances in neural information processing systems 30 (2017) 4

64. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on
cpus (2011) 4

65. Wang, L., Zhang, J., Liu, X., Zhao, F., Zhang, Y., Zhang, Y., Wu, M., Yu, J., Xu, L.:
Fourier plenoctrees for dynamic radiance field rendering in real-time. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 13524–13534 (2022) 4

66. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. arXiv preprint arXiv:1608.03665 (2016) 4

67. Wu, X., Xu, J., Zhu, Z., Bao, H., Huang, Q., Tompkin, J., Xu, W.: Scalable neural
indoor scene rendering. ACM Transactions on Graphics (TOG) (2022) 3

https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32

CompGS: Smaller and Faster Gaussian Splatting 19

68. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 5438–5448 (2022) 4

69. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5752–5761 (2021) 3, 4

70. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appear-
ance flow. In: Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. pp. 286–301.
Springer (2016) 3

	CompGS: Smaller and Faster Gaussian Splatting with Vector Quantization

