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1 Notation

Following the problem definition in Sec. 3.1 we introduce several important no-
tations in Table 1 that are used throughout the paper.

Table 1: Collection of notations used in the paper.

Symbol Description
T The training Set. |T | denotes the size of the training set.

h(x, θ) Feature extractor without the box classifier and regressor.
Clf(., θ) Multi-Layer Perceptron as classifier and regression head (as in Faster-RCNN).
Comb(., θ) Multi-Layer Perceptron as Combinatorial Classifier head.

θ Parameters of the feature extractor.
Sij(θ) Similarity between images i, j ∈ T .
Cb Classes indexed in the base dataset.
Cn Classes indexed in the novel dataset.
C All classes in the input dataset T represented as Cb ∪ Cn.
Ak Target set containing feature representation from a single class k ∈ C.
f(A) Submodular Information function over a set A.

If (A,Q) Mutual information function between set A and Q.
L(θ) Loss value computed over all classes i ∈ C.
Lcomb Combiatorial Objectives in SMILe.

2 Implementation Details

As discussed in the main paper the SMILe framework proposes an architecture
agnostic approach and adopts several backbones - Faster-RCNN [8] and ViT
[4, 6]. We conduct experiments on PASCAL-VOC [3] and COCO [5] datasets.
For VOC, the input batch size to the network (both Faster-RCNN and ViT based
approaches) is set to 16 and 2 in the base training and few-shot adaptation stages
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for Faster-RCNN and ViT based approaches. Our experiments in Tab. 2 of the
main paper applies the combinatorial formulation in SMILe to four different
architectures - FSCE [9], AGCM [1], DiGeo [7] and imTED+PDC [4].

For FSCE and AGCM we train the model for a maximum of 12k iterations
and 6k iterations respectively with an initial learning rate of 0.01 with a batch
size of 16 for VOC and 8 for COCO datasets. For DiGeo and DiGeo+SMILe
we train the model for 15k steps with 200 warmup steps with a batch size of 8
and an initial learning rate of 0.05 for both datasets. The codebase for AGCM
+ SMILe and FSCE + SMILe has been released at https://github.com/
amajee11us/SMILe-FSOD.git. For the DiGeo + SMILe architecture we follow
the authors in [7] and introduce Comb(h, θ) in the distill stage of the training
process. Following the authors in [7] we use abundant samples of the base classes
and K-shot (few-shot) samples of the novel classes and use the same set of hyper-
parameters as released in our codebase at https://github.com/amajee11us/
SMILe-FSOD/tree/digeo.

Due to adoption of ViT [2] based architecture in imTED + PDC and imTED
+ PDC + SMILe architectures, we train the model with a batch size of 2 (as
used in [4]) with an initial learning rate of 1e-4 for a total of 108 epochs with
a step learning rate scheduler. We release the code for training and inferencing
on the PDC + SMILe is released at https://github.com/amajee11us/SMILe-
FSOD/tree/pdc_SMILe.

The Comb(h, θ) architecture is applied only during the few-shot adaption
stage (across architectures) of model training and the input resolution is set to
764 x 1333 pixels for data splits in COCO, while it is set to 800 x 600 pixels for
PASCAL-VOC. For all architecture variants we adopt the Stronger Baseline in-
troduced in FSCE [9] with a trainable Region Proposal Network (RPN) and RoI
Pooling layer alongside increasing the number of RoI proposals to 2048 (dou-
ble the number as compared to [10]). The additional RoI proposal features help
capture the low confidence novel classes in the initial training iterations leading
to faster convergence. Additionally we introduce two hyper-parameters in the
formulation of SMILe, namely η and similarity kernel S, are chosen through
ablation experiments described in Sec. 3. Following existing research [1, 9] we
report the novel class performance for 1, 5, 10 shot settings for VOC and 10,
30 settings for COCO averaged over 10 distinct seeds3. Results from existing
methods are a reproduction of the algorithm from publicly available codebases.

3 Ablation : Hyper-Parameters in SMILe

We perform ablation on various hyper-parameters introduced in SMILe and de-
rive their values which lead to the best possible base and novel class perfor-
mance in the few-shot adaptation stage. For all our experiments we consider
the AGCM [1] architecture as the baseline and train and evaluate the model on
the PASCAL VOC dataset. SMILe introduces two important hyper-parameters,
3 The default seeds for all our experiments were adapted from http://dl.yf.io/fs-
det/datasets/
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Table 2: Ablation study for the key hyper-parameters in SMILe. The chosen values
are underlined and associated performance values are indicated in bold.

Parameter Value mAPbase mAPnovel

Similarity
Kernel (S)

Euclidean 84.7 59.4
Cosine 88.9 61.3
RBF 86.1 59.6

η
(sim. Kernel
= Cosine)

0.0 87.5 59.9
0.2 88.7 60.2
0.5 89.3 62.0
0.8 86.7 61.1
1.0 86.1 58.3

λ

Linter
comb (S =
Cosine,
η=0.5)

0.5 82.1 57.3
0.7 86.4 60.1
1.0 87.4 60.3
1.2 87.4 59.9
1.5 87.1 54.6

similarity kernel S and η. The choice of similarity kernel determines how gradi-
ents are calculated in the objective function and they magnitude of S depends
on the model parameters θ. We chose the cosine similarity (indicated as Cosine
in Tab. 2) metric over others as it achieves the best overall performance. The
hyper-parameter η controls the contribution of Linter

comb over Lintra
comb such that their

overall contributions add up to 1.0 (100%). We vary the value for η between
α = 0.0 to α = 1.0 and record the variation in performance of the novel classes
in Tab. 2. We choose η = 0.5 for our experiments across all datasets.

Additionally, we introduce the hyper-parameter λ specific to SMILe-GCMI
to control the degree of compactness of the feature cluster ensuring sufficient
diversity is maintained in the feature space. Experimental results in Tab. 2 indi-
cates that λ ≥ 1.0 is necessary for Graph-Cut in Lintra

comb to be submodular thus
we adopt λ = 1.0 for our experiments.

4 Proofs for Theorems in SMILe

In this section, we provide the necessary proofs leading to the derivation of the
components of Lcomb namely, Linter

comb and Lintra
comb for different instantiations of

the submodular function f(A, θ) over any given set A. We restate the theorems
as in the main paper for better readability.

4.1 Derivation of SMILe-FLMI

Given If (Q,A) =
∑

i∈Q max
j∈A

Sij(θ) + λ
∑

i∈A max
j∈Q

Sij(θ) and f(A, θ) =∑
i∈T

max
j∈A

Sij(θ) representing the facility-location mutual information function and

facility-location submodular function respectively over sets A and Q then, we de-
rive the expressions for SMILe-FLMI as a summation of Linter

comb(θ) and Lintra
comb (θ)

respectively as depicted in Eq. 6 of the main paper.
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Lets first derive the Lintra
comb from the total information formulation given

f(A, θ) as the underlying submodular function. From the definition of Lintra
comb ,

the objective can be derived as Lintra
comb (θ) =

∑
k∈(Cb∪Cn)

f(Ak, θ). Substituting the

instance of FL f(A, θ) =
∑
i∈V

max
j∈A

Sij(θ) in the equation we get:

Lintra
comb (θ) =

|Cb∪Cn|∑
k=1

f(Ak, θ)

=
∑

k∈(Cb∪Cn)

∑
i∈T

max
j∈Ak

Sij(θ)

=
∑

k∈(Cb∪Cn)

∑
i∈T \Ak

max
j∈Ak

Sij(θ) +
∑

k∈(Cb∪Cn)

∑
i∈Ak

max
j∈Ak

Sij(θ)

Lintra
comb (θ) =

∑
k∈(Cb∪Cn)

∑
i∈T \Ak

max
j∈Ak

Sij(θ) + |T |

Here,
∑

i∈Ak

max
j∈Ak

Sij(θ) is a constant over the set Ak. Hereafter, we provide

the proof for the Linter
comb formulation which can be derived from Linter

comb(θ) =∑
i∈(Cb∪Cn)
j∈Cn:i̸=j

If (Ai, Aj ; θ). Given the Submodular Mutual Information function

If (Q,A) =
∑

i∈Q max
j∈A

Sij(θ) + λ
∑

i∈A max
j∈Q

Sij(θ) over two distinct sets Q and

A, we substitute the value of If in Linter
comb .

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

If (Ak, Al; θ)

=
∑

k∈(Cb∪Cn)

∑
l∈Cn
k ̸=l

[∑
i∈Ak

max
j∈Al

Sij(θ) + λ
∑
i∈Al

max
j∈Ak

Sij(θ)

]

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

[∑
i∈Ak

max
j∈Al

Sij(θ) + λ
∑
i∈Al

max
j∈Ak

Sij(θ)

]

Note that the similarity computed between sets of features depend on the
parameters of the model θ. We parallelized the computation of SMILe-FLMI
in our implementation using vectorized calculations available in the Pytorch
(https://pytorch.org/) library.

https://pytorch.org/
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4.2 Derivation of SMILe-GCMI

From If (Q,A) = 2λ
∑

i∈Q

∑
j∈A Sij(θ) and f(A, θ) =

∑
i∈A

∑
j∈T \A Sij(θ) −

λ
∑

i,j∈A Sij(θ) representing the Graph-Cut (GC) mutual information func-
tion and Graph-Cut submodular function respectively over sets A and Q then,
Linter
comb(θ) and Lintra

comb (θ) we derive the expressions for SMILe-GCMI as a sum-
mation of Linter

comb(θ) and Lintra
comb (θ) respectively as depicted in Eq. 7 in the main

paper.
From the definition of f(A, θ), the SMILe-GCMI (Lintra

comb ) objective can be
derived by substituting the instance of GC f(Ak, θ) in the equation we get:

Lintra
comb (θ) =

∑
k∈(Cb∪Cn)

f(Ak, θ)

=
∑

k∈(Cb∪Cn)

∑
i∈Ak

∑
j∈T

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

=
∑

k∈(Cb∪Cn)

∑
i∈Ak

j∈T \Ak

Sij(θ) +
∑

k∈(Cb∪Cn)

∑
i∈Ak
j∈Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

Here, the term
∑

k∈(Cb∪Cn)

∑
i∈Ak,j∈Ak

Sij(θ) represents a sum of pairwise similarities

over all sets in V. Thus, its value is a constant for a fixed training/ evaluation
dataset. Using this condition and ignoring the constant term, we can show that:

Lintra
comb (θ) =

∑
k∈(Cb∪Cn)

∑
i∈Ak,j∈T \Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

Hereafter, we provide the proof for the Linter
comb formulation which can be de-

rived from Linter
comb(θ) =

∑
i∈(Cb∪Cn)
j∈Cn:i ̸=j

If (Ai, Aj ; θ). Given the Submodular Mutual

Information function If (Q,A) = 2λ
∑

i∈Q

∑
j∈A Sij(θ) over two distinct sets Q

and A, we substitute the value of If in Linter
comb .

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

If (Ak, Al; θ)

=
∑

k∈(Cb∪Cn)

∑
l∈Cn
k ̸=l

[
2λ

∑
i∈Ak

∑
j∈Al

Sij(θ)

]

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

2λ
∑
i∈Ak
j∈Al

Sij(θ)
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From the above formulation, we observe that SMILe-GCMI is computationally
inexpensive as compared to SMILe-FLMI, but our experimental results show
that SMILe-FLMI outperforms SMILe-GCMI. This is predominantly because
the objective function in SMILe-FLMI scales non-linearly with the size of the
set |Ak| inherently modelling the imbalance between the already learnt classes
Cb and the newly added ones Cn.
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Fig. 1: Qualitative results from SMILe: We contrast the performance of AGCM
and FSCE before and after introduction of the Combinatorial formulation introduced
in SMILe. We observe significant confusion and forgetting in SoTA approaches FSCE
and AGCM while introduction of SMILe overcomes most of these pitfalls.

5 Ablation : Qualitative Results from SMILe Against
SoTA

Figure 1 shows qualitative results for our proposed SMILe method on the PAS-
CAL VOC [3]. Due to limited compute resources we conduct experiments on
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FSCE and AGCM approaches before and after introduction of the SMILe ap-
proach. Figure 1(a) shows that introduction of SMILe is resilient to scale (vary-
ing sizes) and occlusion, while Figure 1(c) shows significant base class forgetting
in both FSCE and AGCM. Figure 1(b) shows significant catastrophic forget-
ting in FSCE and AGCM which has also been shown to be overcome by SMILe
while Fig. 1(d) demonstrate resilience against color and texture variations. Over-
all, SMILe handles forgetting and confusion significantly over SoTA approaches
while minimizing the degradation in performance of the base classes.

6 Limitations and Future Work

From the experiments proposed in our paper, we demonstrate the generalizabil-
ity as well as the supremacy of our approach in handling class confusion and
forgetting. Although, significant progress has been demonstrated in overcoming
confusion and forgetting by SMILe some amount of confusion and forgetting
continue to plague this domain. This would definitely be a direction for future
research both in FSOD and in combinatorial representation learning. Further,
SMILe demonstrates success in the 5/10 shot setting, we observe suboptimal
performance in the 1-shot case. This is a plausible direction that the authors
would be studying in depth in the near future. In the current setting, novel
classes need to be first labelled by human annotators before being served to the
SMILe framework. Unfortunately, to rapidly adapt to the open-world setting our
model should be able to generalize to unknown Region-of-Interests, which the
authors would like to study in future research.
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