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Abstract. Confusion and forgetting of object classes have been chal-
lenges of prime interest in Few-Shot Object Detection (FSOD). To over-
come these pitfalls in metric learning based FSOD techniques, we in-
troduce a novel Submodular Mutual Information Learning (SMILe 3)
framework for loss functions which adopts combinatorial mutual informa-
tion functions as learning objectives to enforce learning of well-separated
feature clusters between the base and novel classes. Additionally, the
joint objective in SMILe minimizes the total submodular information
contained in a class leading to discriminative feature clusters. The com-
bined effect of this joint objective demonstrates significant improvements
in class confusion and forgetting in FSOD. Further we show that SMILe
generalizes to several existing approaches in FSOD, improving their per-
formance, agnostic of the backbone architecture. Experiments on pop-
ular FSOD benchmarks, PASCAL-VOC and MS-COCO show that our
approach generalizes to State-of-the-Art (SoTA) approaches improving
their novel class performance by up to 5.7% (3.3 mAP points) and 5.4%
(2.6 mAP points) on the 10-shot setting of VOC (split 3) and 30-shot set-
ting of COCO datasets respectively. Our experiments also demonstrate
better retention of base class performance and up to 2× faster conver-
gence over existing approaches agnostic of the underlying architecture.

1 Introduction

Recent advances in Deep Neural networks (DNNs) have enabled models to learn
discriminative feature representations from large-scale image benchmarks. Un-
fortunately, these architectures fail to adapt to few-shot settings tasked to rec-
ognize novel objects over existing ones with few examples, closely resembling
human-like perception. Although recent research has shown significant promise
in few-shot image recognition [10, 12, 33, 35, 36], Few-Shot Object Detection
(FSOD) remains a challenge with recent works [27, 28, 37, 38] highlighting two
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Fig. 1: Functionality of components in Lcomb proposed in the SMILe (ours) frame-
work, (a) Linter

comb promotes separation between Cb and Cn while (c) Lintra
comb promotes

intra-class compactness.

major challenges - Class Confusion and Catastrophic Forgetting. Class confu-
sion, as highlighted in [29] manifests itself through mis-prediction of instances
belonging to a newly learnt (novel) class, as one or more instances of the al-
ready learnt (base) classes. Authors in [1, 38] attribute this to the sharing of
visual information between classes resulting in increased inter-class bias due
to overlapping feature clusters as shown in Fig. 1(a). Catastrophic forgetting
refers to the gradual degradation in the performance of already learnt classes in
the quest to learn the novel ones, as shown in Fig. 2(a), seldom overfitting to
rare classes [29, 38]. Further, large feature diversity (intra-class variance)
among base classes lead to formation of non-discriminative feature clusters as
shown in Fig. 1(b), aggravating the existing inter-class bias in the feature space.
Unlike existing approaches (refer Sec. 2) which target either confusion or forget-
ting, our paper presents a unified approach to tackle both these challenges in
FSOD.Although, recent approaches [1,28,34] attempt to tackle these challenges
through contrastive learning strategies, such approaches have been limited by
their capability to overcome either inter-class bias or intra-class variance [30,38]
and poor generalization to longtail settings [30] (FSOD being a extreme case).

In this paper, we introduce a combinatorial viewpoint in FSOD consider-
ing each object class i ∈ [1, C] in the dataset T as a set Ai of samples, where
T = {A1, · · ·AC}, facilitating the application of combinatorial functions as learn-
ing objectives. We aim to overcome the aforementioned challenges through rep-
resentation learning in the low-data regime by adopting this formulation through
the SMILe: Submodular Mutual Information Learning framework, wherein we
introduce novel, set-based combinatorial objective functions for FSOD as shown
in Fig. 3. SMILe introduces a joint objective formulation Lcomb (Eq. (3))
based on two popular flavors of submodular information functions -
Submodular Mutual Information [22] (SMI) and Total Submodular In-
formation [11] targeting the root causes of confusion and forgetting in FSOD.
At first, SMILe is the first to introduce pairwise SMI functions If in representa-
tion learning which model the common (overlapping) information between two
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Fig. 2: Resilience to Catastrophic forgetting and faster convergence in
SMILe over SoTA approaches. (a) shows that combinatorial losses in SMILe are ro-
bust to catastrophic forgetting, while (b) shows that objectives in SMILe results in
faster convergence over SoTA FSOD methods (AGCM and DiGeo).

sets. Minimizing If through the joint objective Lcomb reduces feature overlap
between base and novel classes alleviating inter-class bias in the model towards
abundantly sampled classes as shown in Fig. 1(b). We extend this property
of SMI functions to the novel classes minimizing the inter-cluster overlap be-
tween few-shot classes, promoting learning of discriminative features from just
few samples. Secondly, SMILe preserves the diversity within each class by mini-
mizing the total submodular information contained within each set as shown in
Fig. 1(c), minimizing the impact of forgetting. This formulation closely follows
the observation in [30] which models cooperation [15] between instances in a
set by minimizing a submodular function over a set, to preserve representative
features. The unified objective Lcomb introduced in SMILe models both these
necessary properties through a weighted sum of two distinct objectives Linter

comb

and Lintra
comb as shown in Fig. 3 balancing the tradeoff between inter-cluster sep-

aration and intra-cluster compactness respectively. This allows us to introduce
a family of loss functions which inherently eliminates confusion and forgetting
as shown in Tab. 5. We conduct our experiments on two popular FSOD bench-
marks, PASCAL-VOC [6] and MS-COCO [26] for several few-shot settings and
demonstrate the following contributions of SMILe:

– SMILe introduces a novel set-based combinatorial viewpoint in
FSOD by applying combinatorial Mutual Information based objective to
discriminate between base and novel classes, in conjunction with submodular
total information to minimize intra-class variance as the objective function.

– SMILe generalizes to existing approaches in FSOD, irrespective of
the underlying architecture demonstrating up to 5.7% improvement in
novel class performance (Tab. 2) over the baseline FSOD approach.

– SMILe demonstrates up to 2× faster convergence (Fig. 2(b)) over existing
SoTA approaches resulting in faster generalization to unknown object classes.

– Finally, SMILe demonstrates up to 11% and 3.5% reduction in class
confusion and catastrophic forgetting while achieving SoTA perfor-
mance on popular FSOD benchmarks like PASCAL-VOC (by 5.7% on split
2, 10-shot setting) and MS-COCO (5.4% on 30-shot setting).
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2 Related Work

Few-Shot Object Detection (FSOD): Classical FSOD approaches utilize
finetuning [3] or distance metric learning [17] to adapt features to novel classes.
Recent methods employ meta-learning techniques [16,40,41] with episodic train-
ing to learn class-specific features. Meta-Reweight [16] and Meta-RCNN [41] use
additional feature extractors, while Add-Info [40] leverages feature differences
between support and query images. Techniques like [43] enhance class-specific
features through information sharing, and CME [24] aims to reduce class con-
fusion. Attention mechanisms [7,44] are used to identify discriminative features.
However, meta-learning approaches are resource-intensive and may fail to gen-
eralize to significantly different novel classes. Metric learning strategies like Fs-
Det [37], FSCE [34], and SRR-FSD [45] offer better generalization without ad-
ditional overheads. PNPDet [42] partially addresses catastrophic forgetting and
class confusion. GFSD [8] proposes a Bias-Balanced RPN to mitigate overfitting
in metric learners.

Recent approaches like [18,32] adopt weak supervision from unlabelled data
or low confidence predictions in RoI pooling layers to generalize to novel classes.
These methods often use abundant samples from base classes [28] to prevent
catastrophic forgetting, adding computational overhead in low-shot settings. Vi-
sion transformers [4] have been adopted in FSOD through methods like imTED
[27] and PDC [23], with reduced computational overhead by using pre-trained
attention heads. Alternatively, DiGeo [28] and PDC [23] learn the geometry or
difference in distributions of RoI proposals [13] between object classes to over-
come forgetting and confusion. However, these approaches rely on contrastive
learning objectives [20] that struggle to learn discriminative feature embeddings
due to adoption of pairwise similarity metrics. Our work, SMILe, aims to im-
prove the feature learning capacity of existing SoTA approaches, irrespective of
their underlying architectures.
Submodular Functions and Combinatorial Objectives : Submodular func-
tions are recognized as set functions with an inherent diminishing returns char-
acteristic. Defined as a set function f : 2V → R operating on a ground-set V,
a function is termed submodular if it adheres to the condition f(X) + f(Y ) ≥
f(X∪Y )+f(X∩Y ),∀X,Y ⊆ V [11]. These functions have garnered considerable
attention in research, particularly in fields like data subset selection [22], active
learning [21], and video summarization [19,22] through their ability in modeling
concepts such as diversity, relevance, set-cover and representation. A subclass
of submodular functions, namely Submodular Mutual Information (SMI) func-
tions introduced in [22] model the similarity and diversity between pairs of object
classes establishing itself as a powerful tool to model inter-class bias. Recently,
Majee et al. [30] introduces these set-based combinatorial functions as objectives
in representation learning and demonstrates their capability in overcoming inter-
class bias (by minimizing the similarity between nonidentical object classes) and
intra-class variance (maximizing the similarity between instances of the same
object class). However, these functions are yet to be studied in the the context
of few-shot learning. We introduce novel instances of SMI based objectives in
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Fig. 3: Overview of our SMILe framework highlighting the application of Mutual
Information function based objectives in SMILe for the fine-tuning stage of Few-Shot
Object Detection.

SMILe to minimize inter-class bias between base and novel classes. To the best
of our knowledge we are the first to introduce novel SMI based combinatorial
objectives in conjunction with total information based combinatorial functions
through SMILe in a quest to minimize confusion and forgetting in few-shot ob-
ject detection.

3 Method

3.1 Problem Definition : Few-Shot Object Detection

We define a few-shot learner h(x, θ) as shown in Fig. 3 that receives input
data x from base classes Cb ∈ [1, |Cb|] and novel classes Cn ∈ [1, |Cn|] such
that C = {Cb ∪ Cn} and {Cb ∩ Cn} = ∅. Here, θ denotes the learnable pa-
rameters. The training data can be divided into two distinct parts, base Dbase

and novel Dnovel such that, T = {Dbase ∪ Dnovel} and {Dbase ∩ Dnovel} = ∅.
SMILe introduces a paradigm shift in FSOD by imbibing a combi-
natorial viewpoint, where the base dataset, Dbase = [Ab

1, A
b
2, · · · , Ab

|Cb|], con-
taining abundant training examples from Cb base classes and the novel dataset,
Dnovel = [An

1 , A
n
2 , · · · , An

|Cn|] containing only K-shot (|An
i | = K for i ∈ [1, Cn])

training examples from Cn novel classes. The objective of the few-shot learner
h(x, θ) is to learn discriminative representation from classes in Dnovel without
degradation in performance on classes in Dbase. Following FSCE [34] we adopt
a two-stage training strategy. In the base training stage we train h(x, θ) on
abundant samples in Dbase, allowing the model to generalize on the domain of
Dbase. The few-shot adaptation stage adapts h(x, θ) to previously unseen K-
shot data by fine-tuning on data samples from Dbase ∪Dnovel where |Ak| = K
for k ∈ {Cb ∪Cn}. The goal of SMILe is to overcome class confusion and forget-
ting in FSOD resulting from elevated inter-class bias and intra-class variance as
observed in [1,29,38]. The final model h(x, θ) obtained after two training stages
is evaluated on Dtest containing unseen data samples from both Cb ∪ Cn.
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3.2 The SMILe Framework

Adopting a combinatorial viewpoint as disclosed earlier allows us to employ
submodular combinatorial functions as learning objectives to tackle confusion
and forgetting in FSOD. As discussed in Sec. 2, minimizing a Submodular func-
tions naturally models cooperation [15] while maximizing it models diversity [25]
due to their inherent diminishing marginal returns property. SMILe adopts the
aforementioned properties of submodular functions to define a novel family of
combinatorial objective (loss) functions Lcomb(θ) which enforces orthogonality
in the feature space when applied on Region-of-Interest (RoI) features in FSOD
models. The loss function Lcomb(θ) can be decomposed into two major com-
ponents - Linter

comb minimizes inter-class bias between base and novel classes and
Lintra
comb maximizes intra-class compactness within abundant classes.

For Linter
comb , SMILe explores a sub-category of combinatorial functions, namely

Submodular Mutual Information (SMI) which can be defined as If (Ai, Aj) =
f(Ai) + f(Aj) − f(Ai ∪ Aj) [11, 22], and models the common information be-
tween two sets Ai and Aj , ∀i, j ∈ T . Results in [11, 22] portray If (Ai, Aj ; θ) as
a measure of the degree of similarity between object classes Ai and Aj . Adopt-
ing this definition of SMI, Linter

comb minimizes the SMI between the base Cb

and the novel Cn classes, ensuring sufficient inter-cluster separation
(by minimizing inter-class bias) as shown in Eq. (1). Linter

comb further minimizes
the mutual information between classes in Cn, minimizing inter-cluster
overlaps between the novel classes. This is visually depicted in Fig. 1(b) and has
been shown to be effective in mitigating class confusion in FSOD through our
experiments in Sec. 4.

Linter
comb(θ) =

∑
b∈Cb
n∈Cn

If (Ab, An; θ) +
∑

i,j∈Cn
i ̸=j

If (Ai, Aj ; θ) =
∑

i∈(Cb∪Cn)
j∈Cn:i ̸=j

If (Ai, Aj ; θ)

(1)

In addition to confusion which stems from inter-class bias, SMILe aims at
mitigating catastrophic forgetting [29] in FSOD which has been attributed to
large intra-class variance among abundant object classes in [1,38]. In coherence to
the combinatorial formulation in SMILe we achieve this through Lintra

comb which
minimizes the Total Submodular Information, defined as Sf (A1, · · · , A|C|) =∑|C|

k=1 f(Ak; θ), over sets Ak ∈ T , given a submodular function f(Ak; θ). As
discussed earlier, minimizing the submodular information models cooperation
which asserts that minimizing Linter

comb promotes learning of discriminative feature
clusters, penalizing abundant classes to have large feature variance in the em-
bedding space as shown in Fig. 1(c). Although submodular functions have been
studied in the field of representation learning to minimize intra-class variance
in [30], but primarily differs from SMILe in modeling a longtail recognition task
by minimizing the total submodular correlation, which models gain in informa-
tion when new features are added to a set. The formulation of Lintra

comb has been
shown in Eq. (2) where we minimize the total submodular information
within samples in each class in Cb ∪ Cn and our experiments in Tab. 5
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show the effectiveness of Lintra
comb in boosting base class performance asserting the

mitigation of catastrophic forgetting.

Lintra
comb (θ) =

∑
b∈Cb

f(Ab, θ) +
∑
n∈Cn

f(An, θ) =
∑

k∈(Cb∪Cn)

f(Ak, θ) (2)

Ablating on the choice of the submodular function f and SMI functions If we
introduce several instances of SMILe objectives as discussed in Tab. 1.

Encapsulating the aforementioned formulations of Linter
comb and Lintra

comb in SMILe
we define a joint objective Lcomb(θ) which tackles both the challenges of confu-
sion and forgetting. We thus define Lcomb(θ) in Eq. (3) which is the weighted
algebraic sum of Linter

comb and Lintra
comb with the weighting factor η.

Lcomb(θ) =(1− η)Lintra
comb (θ) + ηLinter

comb(θ)

=
∑

i∈Cb∪Cn

[
(1− η)f(Ai, θ) + η

∑
j∈Cn
i̸=j

If (Ai, Aj ; θ)

]
(3)

Note, that the combinatorial objective Lcomb(θ) is applied on output features
from the RoI Pooling layers in proposal-based [31,38] architectures. To promote
adoption of SMILe agnostic of the backbone architecture we introduce
a combinatorial head Zcomb = Comb(h, θ) which projects the RoI features to
128-dimensional feature vectors [20], Zcomb on which Lcomb(θ) is applied during
the few-shot adaptation stage.

Finally, we summarize the total classification loss in SMILe as depicted in
Eq. (4) as the sum over all three objectives: the classification head LClf , the
box regression head Lbbox and the combinatorial head Lcomb(θ). Note that the
objectives proposed in SMILe apply only to Comb(h, θ) while the RoI classifica-
tion and regression heads are unchanged. This follows the observations in [28,38]
which warrants the boost in performance originating from learning robust feature
representations for each RoI predicted by the model.

Lcls(θ) = LClf (θ) + Lbbox(θ) + Lcomb(θ) (4)

3.3 Instantiations of Linter
comb and Lintra

comb in the SMILe Framework

Given a submodular function f(A) and a Submodular Mutual Information (SMI)
function If (A,Q) over sets A and Q, we derive two instances Linter

comb and Lintra
comb

objectives in SMILe. Depending on the choice of f(A) we define two instances:
Facility-Location Mutual Information (SMILe-FLMI) and Graph-Cut Mutual
Information (SMILe-GCMI). Inherently, both objectives adopt the cosine sim-
ilarity metric Sij(θ) as used in SupCon [20] which can be defined as Sij(θ) =

ZT
combi

·Zcombj

||Zcombi
||·||Zcombj

|| to compute similarity between sets in the learning objective.
Although the similarity kernel used in SMILe is computed in a pairwise fash-
ion, objectives defined under Lcomb use it to only compute feature interactions
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Table 1: Summary of various instantiations of SMILe highlighting the
components of the combinatorial objective, Linter

comb and Lintra
comb .

Objective Instances of Linter
comb(θ) Instances of Lintra

comb (θ)

SMILe-GCMI (ours)
∑

k∈(Cb∪Cn)
l∈Cn:k ̸=l

2λ
∑

i∈Ak

∑
j∈Al

Sij(θ)
∑

k∈Cb∪Cn

∑
i∈Ak

∑
j∈T \Ak

Sij(θ)− λ
∑

i,j∈Ak
Sij(θ)

SMILe-FLMI (ours)
∑

k∈(Cb∪Cn)
l∈Cn:k ̸=l

∑
i∈Ak

max
j∈Al

Sij(θ) + λ
∑

i∈Al
max
j∈Ak

Sij(θ)
∑

k∈Cb∪Cn

∑
i∈T \Ak

max
j∈Ak

Sij(θ)

between samples, differing from existing approaches in aggregation of
pairwise similarities to compute total information and mutual infor-
mation over classes in T .

SMILe-FLMI based objective is derived from the Facility-Location
Mutual Information (FLMI) [22] function, expressed as If (Q,A) =∑

i∈Q max
j∈A

Sij(θ) + λ
∑

i∈A max
j∈Q

Sij(θ) and minimizes the maximum simi-

larity (most similar) between sets Q and A. Given the facility-location (FL)
submodular function f(A, θ) =

∑
i∈T

max
j∈A

Sij(θ) over the set A, we can derive

Linter
comb(θ) and Lintra

comb (θ) shown in Eq. (5) as the SMILe-FLMI objective. Note
that Linter

comb(θ) is applied between object classes in Cb ∪ Cn and Cn while
Lintra
comb (θ) is applied over all classes in Cb ∪ Cn.

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

∑
i∈Ak

max
j∈Al

Sij(θ) + λ
∑
i∈Al

max
j∈Ak

Sij(θ),

Lintra
comb (θ) =

∑
k∈Cb∪Cn

∑
i∈T \Ak

max
j∈Ak

Sij(θ)

(5)

Minimizing the Linter
comb objective function ensures that the sets Al ∈ Cn and

Ak ∈ Cb ∪ Cn are disjoint by minimizing the similarity between features in Ak

and the hardest negative (
∑

i∈Ak
maxj∈Al

Sij(θ) for k ∈ Cb ∪ Cn and l ∈ Cn)
feature vectors in Al. Further, Linter

comb enforces sufficient separation between the
novel classes themselves to promote learning of disjoint feature clusters even with
few-shot data overcoming confusion. Additionally, Lintra

comb minimizes the total in-
formation contained in each set Ak ∈ (Cb ∪Cn). This objective retains discrimi-
native feature information from each class in T reducing the impact of forgetting.

SMILe-GCMI based objective described in Eq. (6) minimizes the pairwise
similarity of feature vectors between a positive set Ak ∈ Cb ∪ Cn and the
sets in Al ∈ Cn while maximizing the similarity between features in each set
Ak ∈ Cb ∪ Cn. Given two sets Q and A, [22] defines the Graph-Cut SMI to
be If (Q,A) = 2λ

∑
i∈Q

∑
j∈A Sij(θ), where the Graph-Cut function over a set

A is given by f(A, θ) =
∑

i∈A

∑
j∈T \Ak

Sij(θ) − λ
∑

i,j∈A Sij(θ). Given the
Graph-Cut and the Graph-Cut SMI functions, we derive Linter

comb(θ) and Lintra
comb (θ)



SMILe: Submodular Mutual Information Learner 9

shown in Eq. (6) as the SMILe-GCMI objective. Similar to SMILe-FLMI, the
Linter
comb(θ) is applied between object classes in Cb ∪Cn and Cn while Lintra

comb (θ) is
applied over all classes in Cb ∪ Cn.

Linter
comb(θ) =

∑
k∈(Cb∪Cn)
l∈Cn:k ̸=l

2λ
∑
i∈Ak

∑
j∈Al

Sij(θ),

Lintra
comb (θ) =

∑
k∈Cb∪Cn

∑
i∈Ak

∑
j∈T \Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

(6)

Although objectives in SMILe-FLMI and SMILe-GCMI are tasked with similar
functions, the Linter

comb in SMILe-GCMI minimizes the pairwise similarity between
sets in Cb ∪ Cn and Cn rather than the most similar set in SMILe-FLMI.
Further, the Lintra

comb in SMILe-GCMI scales linearly with size of Ak as described
in [30]. This does not allow the model to substantially improve performance on
learning discriminative feature representations for classes in both Cb and Cn as
the |Ak| = K (number of shots) thus failing to outperform the model trained
using SMILe-FLMI.

The detailed derivations of the aforementioned instances are included in the
Supplementary material. Our experiments in Sec. 4.4 elucidates the fact that
SMILe-FLMI is a better choice to overcome forgetting and confusion in FSOD.

4 Experiments

We evaluate models in SMILe by adopting standard evaluation criterion
in FSOD [16, 37] and report the Mean Average Precision (mAP ) at 50%
Intersection Over Union (IoU) for all our experiments.

4.1 Experimental Setup

Datasets We evaluate our proposed SMILe approach on two few-shot object
detection datasets - and PASCAL-VOC [5] and MS-COCO [26] datasets.

PASCAL-VOC [5] dataset consists of 20 classes, out of which 15 are considered
as base and 5 as novel classes. The novel classes are chosen at random giving
rise to three data splits namely, split-1 (bird, bus, cow, motorbike, sofa), split-2
(aeroplane, bottle, cow, horse, sofa) and split-3 (boat, cat, motorbike, sheep,
sofa). Following previous works [16], we use the combined VOC 07+12 datasets
for training and evaluate our models on the complete validation set of VOC
2007 for 1, 5, and 10 shot settings.

MS-COCO [26] dataset consists of 80 classes, out of which 60 are considered
as base and 20 as novel classes. Following existing approaches in FSOD [41] we
randomly select 5k samples from (Dbase ∪ Dnovel) to use as the validation set
while the remaining samples are used to generate random 10 and 30-shot splits
for training of the MS-COCO 2014 dataset. The key difference between VOC
and COCO is the large intra-class variance and class-imbalance in COCO.
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Table 2: Quantitative analysis on PASCAL-VOC dataset: Few-shot object
detection performance (mAPnovel) on novel class splits of PASCAL-VOC dataset. We
tabulate results for K=1, 5, 10 shots from various SoTA techniques in FSOD. * indicates
that the results are averaged over 10 random seeds. † indicates a meta-learning strategy
(N-way, K-shot training).

Method Learner
Type

Backbone Split 1 Split 2 Split 3

K=1 5 10 1 5 10 1 5 10
† Meta-RCNN [41] Meta FRCN-R101 19.9 45.7 51.5 10.4 34.8 45.4 14.3 41.2 48.1
†Meta-Reweight [16] Meta YOLO V2 14.8 33.9 47.2 15.7 30.1 40.5 21.3 42.8 45.9
†MetaDet [38] Meta FRCN-R101 18.9 36.8 49.6 21.8 31.7 43.0 20.6 43.9 44.1
†Add-Info [40] Meta FRCN-R101 24.2 49.1 57.4 21.6 37.0 45.7 21.2 43.8 49.6
†CME [24] Meta YOLO V2 17.8 44.8 47.5 12.7 33.7 40.0 15.7 44.9 48.8
PNPDet [42] Metric DLA-34 18.2 - 41.0 16.6 - 36.4 18.9 - 36.2
FsDet w/ FC [37] Metric FRCN-R101 36.8 55.7 57.0 18.2 35.5 39.0 27.7 48.7 50.2
FsDet w/ cos [37] Metric FRCN-R101 39.8 55.7 56.0 23.5 35.1 39.1 30.8 49.5 49.8
Retentive-RCNN [9] Metric FRCN-R101 40.1 53.7 56.1 21.7 37.0 40.3 30.2 49.7 50.1
FSCE [34] Metric FRCN-R101 41.0 57.4 57.8 27.3 44.4 49.8 40.1 53.2 57.7
FSCE + SMILe (ours) Comb. FRCN-R101 41.2 57.9 61.1 29.2 44.6 50.5 41.3 55.6 59.0
AGCM [1] Metric FRCN-R101 40.3 58.5 59.9 27.5 49.3 50.6 42.1 54.2 58.2
AGCM + SMILe (ours) Comb. FRCN-R101 40.9 59.7 62.0 31.9 49.5 52.3 42.6 56.4 61.4
DiGeo [28] Metric FRCN-R101 36.0 54.1 60.9 20.7 42.8 47.1 27.5 47.3 52.9
DiGeo + SMILe(ours) Comb. FRCN-R101 36.1 56.6 62.3 26.5 44.1 47.3 33.1 51.9 56.4
imTED [27] Metric ViT-B 31.9 71.9 77.0 22.7 52.2 57.7 12.6 69.6 72.8
imTED + PDC [23] Metric ViT-B 36.6 73.1 77.1 15.5 51.8 56.0 18.9 67.9 72.8
PDC + SMILe (ours) Comb. ViT-B 36.6 75.2 77.9 27.1 52.7 58.3 15.1 70.0 74.7

Implementation Details The SMILe framework adopts a architecture
agnostic approach and adopt several backbones including Faster-RCNN [31]
and ViT [27]. For VOC, the input batch size to the network is set to 16 and
2 in the base training and few-shot adaptation stages for Faster-RCNN and
ViT based approaches. The input resolution is set to 764 x 1333 pixels for data
splits in COCO, while it is set to 800 x 600 pixels for PASCAL-VOC. The
hyper-parameters used in the formulation of SMILe, namely η and similarity
kernel S, are chosen through ablation experiments described in Sec. 4.4. Results
from existing methods are a reproduction of the algorithm from publicly
available codebases. All our experiments are performed on 4 NVIDIA GTX
1080 Ti GPUs with additional details in the supplementary material and code
released at https://github.com/amajee11us/SMILe-FSOD.git.

4.2 Results on Few-Shot PASCAL VOC Dataset

Table 2 records the results obtained from our SMILe framework on novel splits of
the PASCAL-VOC dataset and contrasts it against SoTA FSOD techniques. We
adopt four SoTA approaches FSCE [34], AGCM [1], DiGeo [28] and imTED [27],
covering several backbone architectures Faster-RCNN + FPN (FSCE, AGCM
and DiGeo) alongside ViT (imTED, PDC) and introducing SMILe (M+SMILe)
approach into existing architectures M . For Faster-RCNN based architectures
(FSCE) we show a maximum of 5.7% (3.3 mAP points) improvement while for
FPN based arcitectures (AGCM and DiGeo) we show a 3.5% (2.1 mAP points

https://github.com/amajee11us/SMILe-FSOD.git
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for AGCM+SMILe) improvement. It is interesting to note that unlike FSCE and
AGCM, DiGeo uses abundant samples from Cb alongside few-shot samples in Cn

(with upsampling) during finetuning introducing a large inter-class bias. SMILe
outperforms DiGeo by up to 2.3 mAP points (split 2, 10-shot) showing the re-
silience of SMILe towards imbalance, thus overcoming confusion in FSOD. Addi-
tionally, for recently introduced transformer based architectures (imTED + PDC
[23]) SMILe outperforms the existing SoTA with a maximum improvement of 4.9
mAP points (split 2, 5-shot) thus establishing SMILe as the SoTA on few-shot
splits of VOC. Note, that the choice of objective functions Linter

comb and Lintra
comb for

this experiment has been determined to be SMILe+FLMI through an ablation on
the different instances in SMILe as described in Sec. 4.4. Finally, Fig. 2(b) shows
that introduction of SMILe framework to existing SoTA approaches
leads to rapid convergence on the novel classes up to 2x over existing
SoTA. This is significant for mission critical tasks like autonomous driving where
the model is required to rapidly learn novel objects to reduce turn-around time.

4.3 Results on Few-Shot MS-COCO Dataset

Similar to the results in PASCAL VOC we demonstrate the results of our
SMILe framework on MS-COCO dataset. In contrast to VOC, COCO presents
an extremely imbalanced setting with a long-tail distribution within Dbase itself
making it really hard for FSOD approaches to achieve SoTA through primitive
objective functions. Following the ablation experiments in Sec. 4.4 we adopt the
SMILe+FLMI objective (best performing) to conduct the experiments on 20
few-shot classes of MS-COCO dataset. We show that SMILe generalizes existing
SoTA approach (imTED + PDC) for COCO dataset by 5.4% (2.6 mAP points,
30-shot setting). This further establishes the generalizability of our approach
over varying data distributions (VOC and COCO) while achieving SoTA in
FSOD tasks.

4.4 Ablation Study

We conduct ablation experiments on the 10-shot split of VOC (split 1) with
hyper-parameters η = 0.5, cosine similarity metric and λ = 1.0. Ablations for
hyper-parameters are detailed in the supplementary material.

Components of SMILe Instantiations in SMILe consists of two main com-
ponents - Linter

comb and Lintra
comb . We consider three baselines FSCE, AGCM and

DiGeo which follow the Faster-RCNN/FPN backbone for this experiment. First,
we introduce Lintra

comb by adopting the FL based objective as determined through
ablation experiments below. This objective models intra-class variance and en-
sures reduction in intra-class variance characterized by boost in base class perfor-
mance. Secondly, following the SMILe-FLMI formulation in Eq. (5) we introduce
Linter
comb during the few-shot adaptation stage. Applying this objective minimizes
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Table 3: Performance of SMILe on MS COCO dataset : Our SMILe objectives
demonstrate better generalizability while outperforming SoTA FSOD approaches on
novel class performance mAP50 (novel).

Method mAP mAP50 mAP75 mAP mAP50 mAP75

10-shot 30-shot
Meta-Reweight [16] 5.6 12.3 4.6 9.1 19.0 7.6
Meta-RCNN [41] 8.7 19.1 6.6 12.4 25.3 10.8
TFA w/cos [37] 10.0 - 9.3 13.7 - 13.4
Add-Info [40] 12.5 27.3 9.8 14.7 30.6 12.2
MPSR [39] 9.8 17.9 9.7 14.1 25.4 14.2
FSCE [34] 11.9 - 10.5 16.4 - 16.2
FADI [2] 12.2 22.7 11.9 16.1 29.1 15.8
CME [24] 15.1 24.6 16.4 16.2 - -
FCT [14] 17.1 30.2 17.0 21.4 35.5 22.1

imTED-B [27] 22.5 36.6 23.7 30.2 47.4 32.5
imTED-B+PDC [23] 23.4 38.1 24.5 30.8 47.3 33.5

PDC + SMILe (ours) 25.8 40.1 26.1 31.0 49.9 33.6

Table 4: Ablation on various components of the proposed SMILe approach.

Method Baseline f(Ai) If (Ai, Aj) mAPbase mAPnovel(Lintra
comb ) (Linter

comb)
FsDet w/ cos - - - 23.6 39.8

FSCE

✓ 86.1 57.8
✓ ✓ 89.6 60.1
✓ ✓ 88.3 61.0
✓ ✓ ✓ 89.8 61.1

AGCM

✓ 87.6 58.0
✓ ✓ 88.6 61.3
✓ ✓ 88.9 61.8
✓ ✓ ✓ 89.3 61.8

DiGeo

✓ 90.5 60.9
✓ ✓ 92.3 61.7
✓ ✓ 91.4 62.0
✓ ✓ ✓ 92.6 62.3

the inter-class bias between Cb ∪Cn and Cn, thus improving novel class perfor-
mance significantly. Nevertheless, we see a slight drop in base class performance
due to forgetting prevalent in FSOD tasks. Finally, we combine both instanti-
ations in SMILe into one single objective as in Eq. (3) with η = 0.5 and show
that SMILe improves both base and novel class performance emerging as the
best choice for FSOD. To demonstrate generalization, we perform this experi-
ment on several SoTA approaches as baseline and show that the results discussed
in aforementioned section holds. We summarize all the results in Tab. 4.

Choice of Combinatorial functions in Lcomb SMILe introduces several
instances of Lintra

comb and Linter
comb . To clearly understand the contributions of each

of these instances we conduct experiments tabulated in Tab. 5 and determine the
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Table 5: Ablation on the choice of Submodular Information function If and Submod-
ular Information function f for Lcomb in SMILe.

Model f(A, θ) If (Ai, Aj) mAPbase mAPnovel

DiGeo [28]
- - 87.9 57.4

GC GCMI 92.6 60.9
FL FLMI 93.1 62.3

FSCE [34]
- - 86.1 57.8

GC GCMI 87.4 60.3
FL FLMI 89.8 61.1

best performing formulation which generalizes to existing FSOD architectures.
Unlike other ablation experiments in Sec. 4.4, we conduct our experiments on
DiGeo which introduces an extremely imbalanced scenario by using abundant
samples in Dbase. We conclude that SMILe-FLMI which considers the Facility-
Location based objective as Lintra

comb and Facility-Location Mutual Information
based objective as Linter

comb as the best performing instantiation. This result follows
the formulation in Eq. (5) where FL naturally models intra-class compactness
in class-imbalanced settings [30] while FLMI penalizes the classes in Cb to learn
overlapping feature representations with the classes in Cn. We use SMILe-
FLMI for all benchmark experiments in Sec. 4.2 and Sec. 4.3.

Robustness to Catastrophic Forgetting One of the most significant chal-
lenges in FSOD is the elimination of catastrophic forgetting which manifests as
the degradation in the performance of classes in Cb while learning classes in Cn.
This primarily occurs due to the lack of discriminative feature representations
from instances in Dbase during the few-shot adaptation (stage 2) stage. We plot
the change in base class performance as the training progresses in existing SoTA
methods AGCM and DiGeo against number of training iterations in Fig. 2(a). At
first, we contrast the change in base class performance mAPbase between AGCM
and AGCM+SMILe and observe that AGCM overfits on the few-shot samples
in Dbase reducing the performance on Cbase as the training progresses. AGCM
+ SMILe on the other hand better retains the performance on base classes with
∼3.5% better retention in base class performance. Interestingly, DiGeo is able to
retain most of the base class performance with a very small degradation over the
roofline (a model trained with only the base classes until convergence). Our Di-
geo+SMILe approach outperforms Digeo by demonstrating base class
performance even higher than the roofline establishing the supremacy of
Lcomb in overcoming inter-class bias and intra-class variance resulting in robust-
ness against catastrophic forgetting.

Overcoming Class Confusion Figure 4 highlights the supremacy of the pro-
posed SMILe framework in mitigating class confusion through confusion matrix
plots. We compare the confusion between classes in Cb∪Cn of SoTA approaches
AGCM and DiGeo before and after introduction of combinatorial objectives in
SMILe. Although both approaches use K-shot examples for classes in Cn, Di-
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Fig. 4: Ablation on Overcoming Class Confusion in SMILe. (a,b) SMILe
demonstrates 11% lower confusion over AGCM and (c,d) 4% lower confusion over
DiGeo. Only significant numbers are highlighted. Best viewed in 200% zoom.

Geo differs from AGCM by adopting an upsampling strategy which allows the
utilization of abundant examples in Cb while upsampling the instances in Cn.
This injects different degrees of inter-class biases for models trained by adopt-
ing AGCM and DiGeo which has been demonstrated as the primary reason for
confusion in previous work [29]. At first, we observe from Fig. 4 that by adopt-
ing the upsampling based strategy, DiGeo achieves very low confusion between
already learnt base classes, leading to significantly lower confusion (5% among
Cb and Cn). Further, confusion matrix plots in Fig. 4 show that AGCM+SMILe
demonstrates 11% lower confusion than AGCM and DiGeo+SMILe shows 4%
lower confusion and DiGeo. This proves the efficacy of combinatorial objec-
tives (Linter

comb) in mitigating inter-class bias, thereby reducing confusion between
classes.

5 Conclusion

In this work, we have presented a novel approach to Few-Shot Object Detection
(FSOD) by introducing a combinatorial viewpoint through the SMILe frame-
work. By leveraging the properties of set-based combinatorial functions, SMILe
aims to address the challenges of class confusion and catastrophic forgetting,
which are prevalent in FSOD tasks. Our approach incorporates Submodular
Mutual Information (SMI) and Submodular Information Measures (SIM) to pe-
nalize overlapping features between base and novel classes and to ensure the
formation of compact feature clusters, respectively. The experimental results
on PASCAL-VOC and MS-COCO benchmarks demonstrate the effectiveness of
SMILe, showing significant improvements in novel class performance, faster con-
vergence, and a reduction in class confusion and catastrophic forgetting. Overall,
SMILe offers a promising direction for advancing the state-of-the-art in FSOD
by providing a generalized framework that is adaptable to various underlying
architectures and capable of handling the complexities associated with few-shot
learning in object detection.
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