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In this supplementary material, we present a detailed derivation of our pro-
posed method ∞-Brush and extensive experimental results. In section A, we
provide the details of forward process, reverse process, full proof of Propo-
sition 1 and Theorem 1. In section B, we perform experiments to compare
the long-range dependency between the patch-based method [3] and ∞-Brush,
zero-shot classification using a Vision-Language Model (VLM) Quilt, applica-
tion of synthetic data on downstream task, and ablation study on % pixels
for training. We further demonstrate the qualitative results of our method on
4096× 4096, 2048× 2048, and 1024× 1024 resolutions of TCGA-BRCA [1] and
NAIP [6] datasets along with failure cases generated with our method.

A Conditional Diffusion Models in Function Space

Forward process. The forward process of a conditional diffusion model in
function space is defined as a discrete-time Markov chain that incrementally
perturbs probability measure Qdata towards a Gaussian measure N (m,C) with
a zero mean and a specified covariance operator C. It is a time-indexed process
where each step ut is obtained by applying a transformation to the previous
step ut−1, which involves a scaling factor

√
1− βtut−1 related to the variance

schedule β, and adding scaled Gaussian noise
√
βtξt with ξt ∼ N (0,C):

ut =
√
1− βtut−1 +

√
βtξt t = 1, 2, . . . , T. (1)

Similar to diffusion models in finite dimensions, the forward process in function
space also admits sampling ut at an arbitrary timestep t in closed form. For
ᾱt =

∏t
i=1(1− βt), we have:

ut =
√
1− βtut−1 +

√
βtξt ;where ξt, ξt−1, · · · ∼ N (0,C)

=
√
(1− βt)(1− βt−1)ut−2 +

√
(1− βt)βt−1ξt−1 +

√
βtξt

=
√
(1− βt)(1− βt−1)ut−2 +

√
1− αtαt−1ξ̄t−1

= . . .

=
√
ᾱtu0 +

√
1− ᾱtξ

(2)

⋆ Equal contribution
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Based on the above analysis, we obtain:

Q (ut|u0) = N
(
ut;

√
ᾱtu0, (1− ᾱt)C

)
. (3)

In the context of image generation, we discretize the function uj on the mesh
xj = {x(i)

j }1≤i≤N ⊂ X by sampling N coordinates of each image, which results
in a non-smooth input space. To achieve a smoother function representation,
a smoothing operator [4, 5] A : H → H, e.g . a truncated Gaussian kernel, is
applied to approximate the rough inputs within the function space H:

Q (ut|u0) = N
(
ut;

√
ᾱtAu0, (1− ᾱt)ACAT

)
. (4)

Reverse process. The reverse process in the diffusion model framework is
achieved by iteratively denoising from the Gaussian measure N (m,C) back to-
wards the probability measure Q0 = Qdata. We use a variational approach to
approximate posterior measures with a variational family of measures on H and
incorporate the conditional embedding e to control the generation process. We
model the underlying posterior measure Q(ut−1|ut) with a conditional Gaussian
measure:

Pθ(ut−1|ut, e) = N
(
ut−1;mθ(ut, e, t),ACθ(ut, e, t)A

T
)
. (5)

Likewise, we are able to derive a closed-form representation of the forward
process posteriors, which are tractable when conditioned on u0:

Q (ut−1|ut,u0) = N
(
ut−1; m̃t(ut,u0), β̃tC

)
. (6)

Using Bayes’ rule, we obtain:

Q(ut−1|ut,u0) = Q(ut|ut−1,u0)
Q(ut−1|u0)

Q(ut|u0)

∝ exp
(
− 1

2

( ⟨C−1(ut −
√
αtut−1),ut −

√
αtut−1⟩

βt
+

⟨C−1(ut−1 −
√
ᾱt−1Au0),ut−1 −

√
ᾱt−1Au0⟩

1− ᾱt−1

− ⟨C−1(ut −
√
ᾱtAu0),ut −

√
ᾱtAu0⟩

1− ᾱt

))
= exp

(
− 1

2

(
(
αt

βt
+

1

1− ᾱt−1
)⟨C−1ut−1,ut−1⟩ − 2⟨C−1(

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0),ut−1⟩+ C(ut,u0)

))
,

(7)
where C(ut,u0) is some function not involving ut−1 and details are omitted.
Following the standard Gaussian density function, the mean and covariance of
Q(ut−1|ut,u0) can be parameterized as follows (recall that αt = 1 − βt and
ᾱt =

∏T
i=1 αi):

m̃t(ut,u0) = (

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0)/(

αt

βt
+

1

1− ᾱt−1
)

= (

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0)

1− ᾱt−1

1− ᾱt
· βt

=

√
ᾱt−1βt

1− ᾱt
Au0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
ut.

(8)
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β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) = 1/(

αt − ᾱt + βt

βt(1− ᾱt−1)
) =

1− ᾱt−1

1− ᾱt
· βt. (9)

Proposition 1 (Learning Objective). The cross-entropy of conditional dif-
fusion models in function space has a variational upper bound of

LCE = −EQ logPθ(u0|e) ≤ EQ

[
KL(Q(uT |u0) ∥ Pθ(uT ))︸ ︷︷ ︸

LT

− logPθ(u0|u1, e)︸ ︷︷ ︸
L0

+

T∑
t=2

KL(Q(ut−1|ut,u0) ∥ Pθ(ut−1|ut, e)︸ ︷︷ ︸
Lt−1

]
. (10)

Proof. The conditional diffusion model in function space is trained to minimize
the cross entropy as the learning objective, which is equivalent to minimize
variational upper bound (VUB):

LCE = −EQ(u0|e) logPθ(u0|e)

= −EQ(u0|e) log
(∫

Pθ(u0:T |e)du1:T

)
= −EQ(u0|e) log

(∫
Q(u1:T |u0, e)

Pθ(u0:T |e)
Q(u1:T |u0, e)

du1:T

)
= −EQ(u0|e) log

(
EQ(u1:T |u0,e)

Pθ(u0:T |e)
Q(u1:T |u0, e)

)
≤ −EQ(u0:T |e) log

Pθ(u0:T |e)
Q(u1:T |u0, e)

= EQ(u0:T |e)

[
log

Q(u1:T |u0, e)

Pθ(u0:T |e)

]
= EQ(u0:T |e)

[
log

Q(u1:T |u0)

Pθ(u0:T |e)

]
= LVUB.

(11)

To convert each term in the equation to be analytically computable, the
objective can be further rewritten to be a combination of several KL-divergence
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and entropy terms:

LVUB = EQ(u0:T |e)

[
log

Q(u1:T |u0)

Pθ(u0:T |e)

]
= EQ

[
log

∏T
t=1 Q(ut|ut−1)

Pθ(uT )
∏T

t=1 Pθ(ut−1|ut, e)

]
= EQ

[
− logPθ(uT ) +

T∑
t=1

log
Q(ut|ut−1)

Pθ(ut−1|ut, e)

]
= EQ

[
− logPθ(uT ) +

T∑
t=2

log
Q(ut|ut−1)

Pθ(ut−1|ut, e)
+ log

Q(u1|u0)

Pθ(u0|u1, e)

]
= EQ

[
− logPθ(uT ) +

T∑
t=2

log
(Q(ut−1|ut,u0)

Pθ(ut−1|ut, e)
· Q(ut|u0)

Q(ut−1|u0)

)
+ log

Q(u1|u0)

Pθ(u0|u1, e)

]
= EQ

[
− logPθ(uT ) +

T∑
t=2

log
Q(ut−1|ut,u0)

Pθ(ut−1|ut, e)
+

T∑
t=2

log
Q(ut|u0)

Q(ut−1|u0)
+ log

Q(u1|u0)

Pθ(u0|u1, e)

]
= EQ

[
− logPθ(uT ) +

T∑
t=2

log
Q(ut−1|ut,u0)

Pθ(ut−1|ut, e)
+ log

Q(uT |u0)

Q(u1|u0)
+ log

Q(u1|u0)

Pθ(u0|u1, e)

]
= EQ

[
log

Q(uT |u0)

Pθ(uT )
+

T∑
t=2

log
Q(ut−1|ut,u0)

Pθ(ut−1|ut, e)
− logPθ(u0|u1, e)

]
= EQ[KL(Q(uT |u0) ∥ Pθ(uT ))︸ ︷︷ ︸

LT

+

T∑
t=2

KL(Q(ut−1|ut,u0) ∥ Pθ(ut−1|ut, e))︸ ︷︷ ︸
Lt−1

− logPθ(u0|u1, e)︸ ︷︷ ︸
L0

]

(12)
Combine Eq. 11 and Eq. 12, we obtain:

LCE = −EQ logPθ(u0|e) ≤ EQ

[
KL(Q(uT |u0) ∥ Pθ(uT ))︸ ︷︷ ︸

LT

− logPθ(u0|u1, e)︸ ︷︷ ︸
L0

+

T∑
t=2

KL(Q(ut−1|ut,u0) ∥ Pθ(ut−1|ut, e)︸ ︷︷ ︸
Lt−1

]
. (13)

⊓⊔

To compute the KL divergence between probability measures KL(Q ∥ P), we
need to utilize a measure-theoretic definition of the KL divergence, which is
stated in the following lemmas [2].

Lemma 1 (Measure Equivalence - The Feldman-Hájek Theorem). Let
Q = N (m1,C1) and P = N (m2,C2) be Gaussian measures on H. They are
equivalent if and only if (i) : C1/2

1 (H) = C
1/2
2 (H) = H0, (ii) : m1−m2 ∈ H0, and

(iii) : The operator (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is a Hilbert-Schmidt operator

on the closure H0.

Proof. Refer to the proof of Theorem 2.25 of Da Prato and Zabczyk [2]. ⊓⊔
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Lemma 2 (The Radon-Nikodym Derivative). Let Q = N (m1,C1) and
P = N (m2,C2) be Gaussian measures on H. If P and Q are equivalent and
C1 = C2 = C, then P-a.s. the Radon-Nikodym derivative dQ/dP is given by

dQ
dP (f) = exp

[〈
C−1/2 (m1 −m2) ,C

−1/2 (f −m2)
〉
− 1

2∥C
−1/2(m1 −m2)∥2

]
∀f ∈ H.

(14)

Proof. Refer to the proof of Theorem 2.23 of Da Prato and Zabczyk [2]. ⊓⊔

Lemma 1 states the three conditions under which two Gaussian measures
are equivalent. Lemma 2 is the consequence of the Feldman-Hájek theorem,
providing the Radon-Nikodym derivative formula when dealing with Gaussian
measures on H.

To train the diffusion model in functional space we have to minimize the
upper bound of Proposition 1, which requires us to compute the KL divergence
between the measures Q,P. In order to satisfy Lemma 1, which will enable us to
use Lemma 2 to compute the KL divergence, we make the following assumption:

Assumption 1 Let Q = N (m̃t(ut,u0), β̃tC) and Pθ = N (mθ(ut, e, t), β̃tC)
be Gaussian measures on H. With a conditional component e, which can be
an element of finite-dimensional space Rd or Hilbert space H, there exists a
parameter set θ such that the difference in mean elements of the two measures
falls within the scaled covariance space:

m̃t(ut,u0)−mθ(ut, e, t) ∈ (β̃tC)1/2(H). (15)

By making this assumption we satisfy all three conditions of Lemma 1: (i) :
C

1/2
1 (H) = C

1/2
2 (H) = (β̃tC)1/2(H) = H0; (ii) : m1 − m2 ∈ H0 is directly

satisfied from Assumption 1; (iii) : (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I = I − I is

the zero operator, which is trivially a Hilbert-Schmidt operator as its Hilbert-
Schmidt norm is 0. As a consequence, Q and P are equivalent, allowing us to
utilize the Radon-Nikodym derivative from Lemma 2.

Theorem 1 (Conditional Diffusion Optimality in Function Space).
Given the specified conditions in Assumption 1, the minimization of the learning
objective in Proposition 1 is equivalent to obtaining the parameter set θ∗ that is
the solution to the problem

θ∗ = argmin
θ

Eu0∼Qdata,t∼[1,T ]λt

∣∣∣∣∣∣C−1/2 (Aξ − ξθ(
√
ᾱtAu0 +

√
1− ᾱtAξ, e, t)

)∣∣∣∣∣∣2
H
,

(16)
where ξ ∼ N (0,C), A : H → H denotes a smoothing operator, e ∈ (Rd∪H) is a
conditional component, ξθ : {1, 2, . . . , T}× (Rd∪H)×H → H is a parameterized
mapping, λt = β2

t /2β̃t(1− βt)(1− ᾱt) ∈ R is a time-dependent constant.
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Proof. Under Assumption 1, we are now able to use the Radon-Nikodym deriva-
tive to compute the KL divergence:

KL [Q ∥ P] =
∫
H
log

dQ
dP

(f) dQ(f)

= −1

2
∥C−1/2(m1 −m2)∥2H +

∫
H

〈
C−1/2 (m1 −m2) ,C

−1/2 (f −m2)
〉

dQ(f).

(17)
We now use spectral decomposition to compute the integral term. Let {λj , ej}∞j=1

be the eigenvalues and eigenvectors of C. The eigenvector of C form an orthonor-
mal basis for H by the spectral theorem, as C is a self-adjoint compact operator.
Hence, the second integral is:∫

H

〈
C−1/2 (m1 −m2) ,C

−1/2 (f −m2) dQ(f)

=

∫
H

∞∑
j=1

⟨m1 −m2, ej⟩ ⟨f −m2, ej⟩λ−1
j dQ(f)

=

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩

∫
H
⟨f −m2, ej⟩ dQ(f)

=

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2

=
〈
C−1/2 (m1 −m2) ,C

−1/2 (m1 −m2)
〉
.

(18)

Combine Eq. 17 and Eq. 18, we obtain:

KL [Q ∥ P] =
1

2
∥C−1/2(m1 −m2)∥2H (19)

From Proposition 1, the KL divergence between Gaussian measures Q and P
now becomes:

Lt−1 = KL [Q(ut−1|ut,u0) ∥ Pθ(ut−1|ut, e)]

=
1

2
∥(β̃tC)−1/2(m̃t(ut,u0)−mθ(ut, e, t))∥2H

(20)

Our model must predict the mean function m̃t(ut,u0). Recall that we got the
expression of m̃t(ut,u0) and u0 depending on ut:

m̃t(ut,u0) =

√
ᾱt−1βt

1− ᾱt
Au0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
ut. (21)

Au0 =
1√
ᾱt

(
ut −

√
1− ᾱtAξ

)
;where ξ ∼ N (0,C) (22)

Combine these two expressions, we have:

m̃t(ut,u0) =
1√

1− βt

(
ut −

βt√
1− ᾱt

Aξ

)
(23)
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Thus, we parameterize the variational mean via:

mθ(ut, e, t) =
1√

1− βt

(
ut −

βt√
1− ᾱt

ξθ(ut, e, t)

)
(24)

Finally, plugging Eq. 23 and Eq. 24 into Lt−1, we obtain:

Lt−1 =
1

2

∥∥∥∥(β̃tC)−1/2

(
1√

1− βt

βt√
1− ᾱt

Aξ − 1√
1− βt

βt√
1− ᾱt

ξθ(ut, e, t)

)∥∥∥∥2
H

=
β2
t

2β̃t(1− βt)(1− ᾱt)

∥∥∥C−1/2 (Aξ − ξθ(ut, e, t))
∥∥∥2
H

=
β2
t

2β̃t(1− βt)(1− ᾱt)

∥∥∥C−1/2
(
Aξ − ξθ(

√
ᾱtAu0 +

√
1− ᾱtAξ, e, t)

)∥∥∥2
H

(25)
⊓⊔

B Experiments

B.1 Long-range dependencies

We obtained the patch-based large-image model of Graikos et al. [3] directly from
the authors and tried to apply it to synthesize images larger than 1024 × 1024
pixels. The overreliance of the patch-based model on the local descriptors (patch
SSL embeddings) leads to the loss of large-scale structures and fails to capture
long-range dependencies across the image. As a qualitative example (Figure 1),
we get a reference image of size 2048 × 2048 pixels from TCGA-BRCA and
extract embeddings in an attempt to generate a variation of it using our model
and the patch-based model of [3]. As illustrated, ∞-Brush retains large-scale
structures (such as clearly-separated clusters of cells) that can span multiple
patches, in comparison to the image generated from [3].

B.2 Zero-shot classification

Following the experiment of [3], we generate images from a pre-defined set of
four classes: benign tissue, in-situ, invasive carcinoma, and normal tissue. We
use a VLM (Quilt) as a zero-shot classifier and compute the confusion matrix
(CM). Figure 2 shows that ∞-Brush generates images semantically aligned with
the text prompts.

B.3 Application of synthetic data on downstream task

As a practical application, we double the number of training images of the BACH
dataset by synthesizing images using real data embedding and evaluating the test
set. Table 1 shows a significant accuracy boost from these synthetic images.
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∞-BrushReference Patch-based

Fig. 1: Long-range dependencies comparison between our ∞-Brush and patched-based
method [3]. ∞-Brush retains large-scale structures (such as clearly-separated clusters
of cells) that can span multiple patches in comparison to the image generated from [3].

Benign InSitu Invasive Normal
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0.61 0.01 0.01 0.37

0 0.87 0 0.13

0 0 0.58 0.42

0 0 0.02 0.98

0.0

0.2

0.4

0.6

0.8

Fig. 2: Confusion matrix of zero-shot classification of generated images.

Table 1: Synthetic data improves the accuracy significantly on the BACH test set.

Training Data Test Acc
Real 79 %

Real + synthetic 83 %

B.4 Ablation study on % of pixels for training

We compare our model when training on 256∗256 (0.4%) vs. 512∗512 pixels
(1.6%). Figure 3 shows that training with more pixels improves performance.
Our model efficiently uses 0.4% of pixels compared to 25% of ∞-Diff’s due to
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Reference Trained on 0.4% pixels Trained on 1.6% pixels

Fig. 3: Ablation on % pixels for training and zoomed-in views.

the incorporation of coordinate embedding in CANO, functioning as positional
embedding.

B.5 Qualitative results

In Figure 4 and Figure 5, we illustrate the generated very large (4096×4096) and
large (1024×1024) images of TCGA-BRCA [1] dataset. We also show synthesized
satellite images at 2048×2048 and 1024×1024 resolutions in Figure 6. Qualitative
results show that given a single embedding vector of a downsampled 256×256 real
image, ∞-Brush can synthesize images of arbitrary resolutions up to 4096×4096
and preserve global structures of the reference image.

Figure 7 shows examples where the model did not successfully capture spatial
structures and details from the reference images. This can be attributed to both
the model and the conditioning used to represent the images.
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Synthetic Reference Synthetic Reference

Fig. 4: Very large (4096×4096) images generated from ∞-Brush, and the correspond-
ing reference real images used to generate them. Given a single embedding vector of a
downsampled 256×256 real image, ∞-Brush can synthesize images of up to 4096×4096
and preserve global structures of the reference image.
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Fig. 5: Large (1024 × 1024) images generated from ∞-Brush, and the corresponding
reference real images used to generate them. Given a single embedding vector of a
downsampled 256× 256 real image, ∞-Brush can synthesize images at arbitrary reso-
lutions and preserve global structures of the reference image.
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Fig. 6: Satellite large (1024× 1024 and 2048× 2048) images generated from ∞-Brush,
and the corresponding reference real images used to generate them. Given a single
embedding vector of a downsampled 256 × 256 real image, ∞-Brush can synthesize
images at arbitrary resolutions and preserve global structures of the reference image.
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Fig. 7: Uncurated (4096 × 4096 and 2048 × 2048) images generated from ∞-Brush,
and the corresponding reference real images used to generate them. Our model fails
to capture spatial structure and details in specific regions of reference images (top 3
rows). In the last 2 rows, it shows that our model fails to controllably synthesize images
due to bad conditioning information.
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