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A Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [19] [26] [47] are a class of
probabilistic generative models that apply a noise injection process, followed
by a reverse procedure for sample generation. A DDPM is defined as two pa-
rameterized Markov chains: a forward chain that add random Gaussian noise
to images to transform data distribution into a simple prior distribution and a
reverse chain that convert the noised image back into target data by learning
transition kernels parameterized by deep neural networks.
Forward diffusion process: Given a data point sampled from a real data
distribution x0 ∼ q(x), a forward process begins with adding a small amount of
Gaussian noise to the sample in T steps, producing a sequence of noisy samples
x1, . . . , xT . The step sizes are controlled by a variance schedule {βt ∈ (0, 1)}Tt=1.

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt; (1− βt)xt−1, βtI) .

(7)

The data sample x0 gradually loses its distinguishable features as the step t be-
comes larger. Eventually, when T → ∞, xT is equivalent to an isotropic Gaussian
distribution.
Reverse diffusion process: The reverse process starts by first generating an
unstructured noise vector from the prior distribution, then gradually remov-
ing noise by running a learnable Markov chain in the reverse time direction.
Specifically, the reverse Markov chain is parameterized by a prior distribution
p(xT ) = N (xT ; 0, I) and a learnable transition kernel pθ(xt−1|xt). Therefore, we
need to learn a model pθ to approximate these conditional probabilities in order
to run the reverse diffusion process.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)) ,

(8)

where θ denotes model parameters, often instantiated by architectures like UNet,
which parameterize the mean µθ(xt, t) and variance Σθ(xt, t). The UNet takes
the noised data xt and time step t as inputs and outputs the parameters of the
normal distribution, thereby predicting the noise ϵθ that the model needs to
reverse the diffusion process. With this reverse Markov chain, we can generate
a data sample x0 by first sampling a noise vector xT ∼ p(xT ), then successively
sampling from the learnable transition kernel xt−1 ∼ pθ(xt−1|xt) until t = 1.

B Stochastic Perturbation Generation

CLIP Score We summarise the following reasons for choosing CLIP Score to
measure the correlation between a generated caption for an image and the actual
content of the image.
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– 1. While CLIP score is certainly not perfect as a metric (like other metrics)
to mimic human-perception similarity, but some works show that CLIP is
generally reliable and highly correlated with human judgement in user ex-
periments, e.g., [18]. Both CLIP scores are calculated (and thus anchored)
by considering the text information, regardless of variations in image styles
and backgrounds for additional evidence. Therefore, they are highly likely
to be similar.

– 2. While the best metric for measuring T2I correctness remains an open
question, CLIP score is commonly used in studying T2I robustness [11, 32,
48, 64, 65, 70]

– 3. While CLIP score is a building block of ProTIP, it can be substituted with
other correctness metrics. The statistical models—the theoretical core and
main contribution of ProTIP—are easily adaptable to any new correctness
metrics as future advancements.

Stochastic Perturbation Method Table 2 for examples of stochastic text
perturbations on T2I DM inputs.

Table 2: Examples of stochastic text perturbations

Perturbation Description Example

Insert Insert a character randomly A white daog plays with a red ball on the
green grass.

Substitute Substitute a character randomly A white dog plays with a rad ball on the
green grass.

Swap Swap two characters randomly A white dog plays with a red ball on the
green garss.

Delete Delete a character randomly A white dog plays with a red bll on the
green grass.

Keyboard Substitute a char. by keyboard distance A whote dog plays with a red ball on the
green grass.

C Hoeffding’s Inequality

Reusing the notations in the main paper, let I1, . . . , In be i.i.d. samples drawn
from a population, and R denotes the population mean to be estimated. Let
µ̂
(n)
I = 1

n

∑n
i=1 Ii, i.e., the sample mean, we have the following Hoeffding’s In-

equality [20].

Theorem 2 (Hoeffding’s Inequality).

Pr
(∣∣∣µ̂(n)

I −R
∣∣∣ ≤ ε

)
> 1− σ (9)

where σ = 2e−2nε2 , equivalently, ε =
√

log(2/σ)
2n .
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From the two Theorems 2 and 1 regarding the original and adaptive Hoeffd-
ing’s Inequality respectively, we may derive the following two corollaries.

Corollary 1 (Tightness of the two bounds). Give a confidence level 1− σ
and the same number of samples n, the estimation error (between the sample
mean and population mean) ε derived from the original Hoeffding’s Inequality is
always smaller than the adaptive Hoeffding’s Inequality.

Proof. As Theorems 2 and 1, the estimation error ε from the original and adap-

tive Hoeffding’s Inequality are
√

log(2/σ)
2n and

√
0.6·log(log1.1 n+1)+1.8−1·log(24/σ)

n ,
respectively. We may prove the former is smaller than the latter either analyti-
cally or empirically. The inequalities of Corollary 1 can be written:

√
log(2/σ)

2n
<

√
0.6 · log(log1.1 n+ 1) + 1.8−1 · log (24/σ)

n
(10)

Where n ≥ 1 and σ ∈ (0, 1).

log (2/σ)

2n
<

0.6 · log (log1.1 n+ 1) + 1.8−1 · log (24/σ)
n

(11a)

log(2/σ) < 1.2 · log (log1.1 n+ 1) +
10

9
· log (24/σ) (11b)

log (2/σ) < log
[
(log1.1 n+ 1)

1.2 · (24/σ)
10
9

]
(11c)

Because n ≥ 1, hence, log1.1 n > 0, log1.1 n + 1 > 1, and (log1.1 n+ 1)
1.2

> 1,
the right side of (11c) is.

log
[
(log1.1 n+ 1)

1.2 · (24/σ)
10
9

]
> log (24/σ)

10
9 > log (24/σ) (12)

Hence, (11c) will be:

log (2/σ) < log (24/σ) , σ ∈ (0, 1) (13)

Therefore the equation holds, and the proof is complete. ⊓⊔

Corollary 2 (Monotonicity to n and σ). For both the original and adaptive
Hoeffding’s Inequalities, the estimation errors (between the sample mean and
population mean) ε are monotonically decreasing to sample size n (for n >= 2)
and σ.

Proof. By taking the (partial) derivatives of the two analytical expressions of ε
r.w.t. n and σ respectively, we may establish negative results as what follows.
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1.
√

log(2/σ)
2n partial derivative with respect to n:

∂ε(n, σ)

∂n
=

∂

∂n

(√
log(2/σ)

2n

)

=
1

2

(
log(2/σ)

2n

)− 1
2

· ∂

∂n

(
log(2/σ)

2n

)
=

1

2
√

log(2/σ)
2n

· ∂

∂n

(
log(2/σ)

2n

)

=
1

2
√

log(2/σ)
2n

·
(
− log(2/σ)

2n2

)

= − log(2/σ)

4n2

√
log(2/σ)

2n

2.
√

log(2/σ)
2n partial derivative with respect to σ:

∂ε(n, σ)

∂σ
=

∂

∂σ

(√
log(2/σ)

2n

)

=
1

2

(
log(2/σ)

2n

)− 1
2

· ∂

∂σ

(
log(2/σ)

2n

)
=

1

2
√

log(2/σ)
2n

· ∂

∂σ

(
log(2/σ)

2n

)

=
1

2
√

log(2/σ)
2n

·
(
− 1

2nσ ln 10

)

= − 1

4nσ ln 10
√

log(2/σ)
2n
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3.
√

0.6·log(log1.1 n+1)+1.8−1·log(24/σ)
n partial derivative with respect to σ:

∂ε(n, σ)

∂σ
=

∂

∂σ

(√
0.6 · log(log1.1 n+ 1) + 1.8−1 · log (24/σ)

n

)

=
1

2

(
0.6 · log(log1.1 n+ 1) + 1.8−1 · log (24/σ)

n

)− 1
2

× ∂

∂σ

(
0.6 · log(log1.1 n+ 1) + 1.8−1 · log (24/σ)

n

)
=

1

2
√

0.6·log(log1.1 n+1)+1.8−1·log(24/σ)
n

× ∂

∂σ

(
0.6 · log(log1.1 n+ 1) + 1.8−1 · log (24/σ)

n

)
=

1

2
√

0.6·log(log1.1 n+1)+1.8−1·log(24/σ)
n

×
(
− 1

1.8σn ln 10

)
= − 1

3.6σn ln 10
√

0.6·log(log1.1 n+1)+1.8−1·log(24/σ)
n

Therefore, the partial derivatives with respect to n and σ are both less than
zero.

4.
√

0.6·log(log1.1 n+1)+1.8−1·log(24/σ)
n under the square root, we have f1(n) +

f2(n, σ):

f1(n) =
0.6 · log(log1.1 n+ 1)

n

f2(n, σ) =
1.8−1 · log

(
24
σ

)
n

f2(n, σ) partial derivative with respect to n:

∂

∂n
f2(n, σ) =

∂

∂n

(
1.8−1 · log

(
24
σ

)
n

)

=
−1.8−1 · log

(
24
σ

)
n2

Therefore, f2(n, σ) is monotonically decreasing.
The derivative of the denominator of f1(n) is 1. For the numerator f(n) =
0.6 · log(log1.1 n+ 1),
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f ′(n) =
d

dn
(0.6 · log(log1.1 n+ 1))

= 0.6 · 1

log(1.1) · (log1.1 n+ 1)
· 1
n
· 1

ln(10)

f ′(n) is monotonically decreasing. When n ≥ 2, f ′(n) ≤ f ′(2) = 0.165.
Therefore, the derivative of the numerator is smaller than that of the de-
nominator, and f1(n) is monotonically decreasing.

⊓⊔

D Sequential Analysis Parameter Design

D.1 Design parameters and output of group sequential design

– Type of design: Pocock type alpha spending
– Information rates: 0.200, 0.400, 0.600, 0.800, 1.000
– Significance level: 0.0500
– Type II error rate: 0.3000
– Type of beta spending: Pocock type beta spending

Derived from User Defined Parameters

– Maximum number of stages: 5
– Stages: 1, 2, 3, 4, 5

Default Parameters

– Two-sided power: FALSE
– Binding futility: FALSE
– Test: one-sided
– Tolerance: 1e-08

Output

– Power: 0.1655, 0.3637, 0.5316, 0.6452, 0.7000
– Futility bounds (non-binding): -0.145, 0.511, 1.027, 1.497
– Cumulative alpha spending: 0.01477, 0.02616, 0.03543, 0.04324, 0.05000
– Cumulative beta spending: 0.08862, 0.15694, 0.21255, 0.25945, 0.30000
– Critical values: 2.176, 2.144, 2.113, 2.090, 2.071
– Stage levels (one-sided): 0.01477, 0.01603, 0.01729, 0.01833, 0.01918

Group Sequential Design Characteristics

– Number of subjects fixed: 4.7057
– Shift: 7.2491
– Inflation factor: 1.5405
– Informations: 1.450, 2.900, 4.349, 5.799, 7.249
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– Power: 0.1655, 0.3637, 0.5316, 0.6452, 0.7000
– Rejection probabilities under H1 : 0.16549, 0.19825, 0.16786, 0.11361, 0.05478
– Futility probabilities under H1 : 0.08862, 0.06832, 0.05561, 0.04690
– Ratio expected vs fixed sample size under H1 : 0.7938
– Ratio expected vs fixed sample size under a value between H0 and H1 :

0.7776
– Ratio expected vs fixed sample size under H0 : 0.5869

D.2 Sample Size Calculation for a Continuous Endpoint

Sequential analysis with a maximum of 5 looks (group sequential design), overall
significance level 5% (one-sided). The sample size was calculated for a two-sample
t-test, H0 : µ(1) − µ(2) = 0, H1 : effect = 0.5, standard deviation = 1, power
70%.

Table 3: Group Sequential Design Characteristics

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Information rate 20% 40% 60% 80% 100%
Efficacy boundary (z-value scale) 2.176 2.144 2.113 2.090 2.071
Futility boundary (z-value scale) -0.145 0.511 1.027 1.497 -
Overall power 0.1655 0.3637 0.5316 0.6452 0.7000
Expected number of subjects 60.9
Number of subjects 23.6 47.2 70.9 94.5 118.1
Cumulative alpha spent 0.0148 0.0262 0.0354 0.0432 0.0500
Cumulative beta spent 0.0886 0.1569 0.2126 0.2595 0.3000
One-sided local significance level 0.0148 0.0160 0.0173 0.0183 0.0192
Efficacy boundary (t) 0.959 0.644 0.512 0.436 0.385
Futility boundary (t) -0.060 0.150 0.246 0.311 -
Overall exit probability (under H0) 0.4570 0.2977 0.1526 0.0688 -
Overall exit probability (under H1) 0.2541 0.2666 0.2235 0.1605 -
Exit probability for efficacy (under H0) 0.0148 0.0113 0.0087 0.0062 -
Exit probability for efficacy (under H1) 0.1655 0.1982 0.1679 0.1136 -
Exit probability for futility (under H0) 0.4423 0.2864 0.1439 0.0626 -
Exit probability for futility (under H1) 0.0886 0.0683 0.0556 0.0469 -

Legend

– (t): treatment effect scale

D.3 Design Plan Parameters and Output for Means

Design Parameters

– Information rates: 0.200, 0.400, 0.600, 0.800, 1.000
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– Critical values: 2.176, 2.144, 2.113, 2.090, 2.071
– Futility bounds (non-binding): -0.145, 0.511, 1.027, 1.497
– Cumulative alpha spending: 0.01477, 0.02616, 0.03543, 0.04324, 0.05000
– Local one-sided significance levels: 0.01477, 0.01603, 0.01729, 0.01833, 0.01918
– Significance level: 0.0500
– Type II error rate: 0.3000
– Test: one-sided

User Defined Parameters

– Alternatives: 0.5

Default Parameters

– Mean ratio: FALSE
– Theta H0: 0
– Normal approximation: FALSE
– Standard deviation: 1
– Treatment groups: 2
– Planned allocation ratio: 1

Sample Size and Output

– Reject per stage [1]: 0.16549
– Reject per stage [2]: 0.19825
– Reject per stage [3]: 0.16786
– Reject per stage [4]: 0.11361
– Reject per stage [5]: 0.05478
– Overall futility stop: 0.2595
– Futility stop per stage [1]: 0.08862
– Futility stop per stage [2]: 0.06832
– Futility stop per stage [3]: 0.05561
– Futility stop per stage [4]: 0.04690
– Early stop: 0.9047
– Maximum number of subjects: 118.1
– Maximum number of subjects (1): 59.1
– Maximum number of subjects (2): 59.1
– Number of subjects [1]: 23.6
– Number of subjects [2]: 47.2
– Number of subjects [3]: 70.9
– Number of subjects [4]: 94.5
– Number of subjects [5]: 118.1
– Expected number of subjects under H0: 45
– Expected number of subjects under H0/H1: 59.6
– Expected number of subjects under H1: 60.9
– Critical values (treatment effect scale) [1]: 0.959
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– Critical values (treatment effect scale) [2]: 0.644
– Critical values (treatment effect scale) [3]: 0.512
– Critical values (treatment effect scale) [4]: 0.436
– Critical values (treatment effect scale) [5]: 0.385
– Futility bounds (treatment effect scale) [1]: -0.0605
– Futility bounds (treatment effect scale) [2]: 0.1496
– Futility bounds (treatment effect scale) [3]: 0.2457
– Futility bounds (treatment effect scale) [4]: 0.3108
– Futility bounds (one-sided p-value scale) [1]: 0.55773
– Futility bounds (one-sided p-value scale) [2]: 0.30485
– Futility bounds (one-sided p-value scale) [3]: 0.15231
– Futility bounds (one-sided p-value scale) [4]: 0.06717

Legend

– (i): values of treatment arm i
– (k): values at stage k

E More Experimental Results
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Fig. 8: More results on ProTIP effectiveness for SD V1.5 Pert. Rate 10% (Part 1).
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Fig. 8: More results on ProTIP effectiveness for SD V1.5 Pert. Rate 10% (Part 2).
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Fig. 9: More results on ProTIP effectiveness for SD V1.4 Pert. Rate 10% (Part 1).
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Fig. 9: More results on ProTIP effectiveness for SD V1.4 Pert. Rate 10% (Part 2).
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Fig. 10: Results on ProTIP effectiveness for SDXL Turbo Pert. Rate 10% (Part 1).
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Fig. 10: Results on ProTIP effectiveness for SDXL Turbo Pert. Rate 10% (Part 2).
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Fig. 11: Probabilistic robustness with/without defence methods (Part 1).



Probabilistic Robustness Verification on Text-to-Image Diffusion Models 35

Fig. 11: Probabilistic robustness with/without defence methods (Part 2).


