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A Overview of Appendices

Our appendices contain the following additional details and results:

– In Sec. B, we present point cloud results from our approach. We also provide
point cloud results from LightDepth [7] for comparison.

– In Sec. C, we provide additional information regarding our approach. Sec. C.1
includes additional details about the proposed per-pixel lighting (PPL) rep-
resentation and its usage in our proposed approach. In Sec. C.2, we provide
additional details regarding our approach to teacher-student learning, in-
cluding a full algorithm table. Sec. C.3 contains additional details regarding
our implementation, including our chosen loss weights and backbone model
size.

– Sec. D includes additional information regarding our experiments, chiefly the
training splits we utilized that match [7], as well as additional qualitative
results.

– Sec. E describes our limited code release included as a part of these supple-
mentary materials. The code includes our proposed loss functions and model
files for reference, as well as pre-trained models. We will release our full code,
including the training code and various baselines, in the near future.

– Sec. F includes additional information regarding our implementation of Light-
Depth [7].

– We provide additional, qualitative results on bronchoscopy data in Sec. G.
– Sec. H includes additional details regarding the clinical dataset utilized in

our work and to be released in the near future.
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B Point Clouds

We present point cloud results from our monocular depth estimation approach
in order to show that our produced depths can eventually be used for the task
of 3D mesh reconstruction and subsequent 3D analysis. In Fig. 1 it can be seen
that our produced point clouds are superior to the point clouds produced by our
re-implementation of LightDepth [7]. We also provide the raw .ply files for each
point cloud in Fig. 1 as a part of our supplementary materials.

Image Ours - Student LightDepth [54]

Fig. 1: A qualitative view of 3D point clouds generated by our approach and in contrast
to LightDepth [7]. We also provide the raw .ply files for each point cloud as a part of
our supplementary materials.
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C Additional Info on Methods

C.1 Per-Pixel Lighting Representation and Losses

In our main paper, we noted that we utilize the conventional pinhole camera
framework, positioned at the origin in the global coordinate system and looking
down the z-axis. This camera is defined by the intrinsic matrix K. A point in
the world space, denoted as X = (x, y, z), is mapped to a pixel coordinate (u, v)
using:

(u, v, 1)T ∼ K(x, y, z)T . (1)
Subsequently, we noted that we only take into account visible surfaces of

the colon, and therefore assume that the depth map and corresponding normal
map is a complete description of in-view surfaces. X(u, v) ∈ R3 describes the 3D
location of a pixel (u, v) on the surface of the organ. The depth map can then
be defined by D(u, v) = X(u, v)3, corresponding to the z-component of X(u, v).
X(u, v) itself can be recovered from the following:

X(u, v) = D(u, v)K−1(u, v, 1)T . (2)
For completeness, we now also note that given n(X) is the normal at the

point X, then the normal map can be defined by N(u, v) = n(X(u, v)). N is
subsequently computed based on the following:

N =
∂X
∂u × ∂X

∂v∥∥∂X
∂u × ∂X

∂v

∥∥ . (3)

Additionally, we note that our learning objective LPPS−corr can be formu-
lated as follows:

LPPS−corr = 1−
∑H

h=1

∑W
w=1(Igrayhw

− Ī)(PPLFhw
− PPLF )√∑H

h=1

∑W
w=1(Igrayhw

− Ī)2
∑

hw(PPLFhw
− PPLF )2

(4)

The simplified version of this formulation is presented in our main paper as
follows:

LPPS−corr = 1− corr(Igray, PPLF ) (5)
As noted in the main paper, the self-supervised loss function variant will

enable us to train on real clinical data where ground-truth depth information
is unavailable. Code implementations of both our supervised and self-supervised
loss function variants are included as a part of these supplementary materials.

C.2 Teacher-Student Transfer Learning for Sim2Real

Our approach with teacher-student training on labeled data DL and unlabeled
data DU can be summarized in algo. 1 as follows:

Where the losses used alongside our proposed losses LPPS−sup and LPPS−corr

correspond to the scale-shift invariant (LSSI), regularization (LREG), and virtual-
normal (LV NL) losses described in prior works [3, 6].
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Algorithm 1 Teacher-Student Learning for Endoscopic Data
Require: labeled synthetic dataset: DL, unlabeled real dataset: DU

1: Initialize teacher and student models with identical architectures:
MT (Teacher), MS (Student) ← InitializeModels()

2: Train MT on DL: MT ← Train(MT ,DL)
3: L = αSSILSSI + αREGLREG + αV NLLV NL + αPPS−supLPPS−sup

4: Freeze MT to prevent further updates
5: Prepare mixed dataset DM combining DL and DU .
6: for each batch b in DM do
7: if b is from DL then
8: Train MS on DL: MS ← Train(MS ,DL)
9: L = αSSILSSI + αREGLREG + αV NLLV NL + αPPS−supLPPS−sup

10: else if b is from DU then
11: Train MS on DU : MS ← Train(MS ,DU )
12: L = αSSILSSI∗ + αREGLREG∗ + αV NLLV NL∗ + αPPS−corrLPPS−corr

13: Compute LSSI∗, LREG∗, and LV NL∗ using pseudo-supervision from MT .
14: end if
15: end for

C.3 Implementation

As a part of training our approach, we use the following α values that describe
loss weights as shown in algo. 1: αSSI = 1.0, αREG = 0.1, αV NL = 10.0,
αPPS−sup = 0.1, and αPPS−corr = 1.0. We utilize the ViT-Small version of
the backbone architecture that’s also utilized in Depth Anything [8].

D Experiments

D.1 Dataset Splits

We utilized the same dataset splits as LightDepth [7] and include the exact
sequences used for the C3VD [2] dataset in Tab. 1. Our clinical dataset in-
cludes 80 sequences with oblique views (7,293 frames), 14 sequences with en-face
views (832 frames), and 20 sequences with down-the-barrel (axial) views (10,216
frames). The oblique views and en-face views are from a to-be-released dataset
described in Sec. H. The down-the-barrel (axial) views are from the Colon10K [5]
dataset. The exact clinical sequences used for training and testing are included
as train.txt and val.txt files in our supplementary materials folder.



PPSNet 5

Table 1: Dataset Splits for C3VD [2]

Sequence Texture Video Frames Set

Cecum 1 b 765 Train
Cecum 2 b 1120 Train
Cecum 2 c 595 Train
Cecum 4 a 465 Train
Cecum 4 b 425 Train

Sigmoid Colon 1 a 800 Train
Sigmoid Colon 2 a 513 Train
Sigmoid Colon 3 b 536 Train
Transcending 1 a 61 Train
Transcending 1 b 700 Train
Transcending 2 b 102 Train
Transcending 2 c 235 Train
Transcending 3 b 214 Train
Transcending 4 b 595 Train

Descending Down 4 a 74 Train

Cecum 1 a 276 Test
Cecum 2 a 370 Test
Cecum 3 a 730 Test
Sigmoid 3 a 610 Test

Transcending 2 a 194 Test
Transcending 3 a 250 Test
Transcending 4 a 384 Test

Descending Up 4 a 74 Test
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D.2 Qualitative Results

Image Ours - Student Ours - Backbone LightDepth [54]Ours - Teacher

Fig. 2: Qualitative evaluation on clinical data. Red = further distance from the camera
and blue is closer.
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E Limited Code Release

Our limited code release can be accessed via a link to a GitHub repo on our
project website: https://ppsnet.github.io/. The GitHub repo contains a
PPSNet.py file that serves as the full model file for our proposed approach.
calculate_PPL.py from [4] is also included for reference alongside our proposed
loss functions in PPS_losses.py. We also provide limited evaluation code for
the C3VD [2] dataset and pre-trained models. We will release our full codes,
including the training code and various baselines, in the near future.

F LightDepth Implementation
For the purpose of comparison to state-of-the-art monocular depth estimation
specific to endoscopy, we attempted to implement LightDepth [7] on our own,
as the authors did not release their code. The authors describe an architecture
with two ViT branches: one initialized with the weights from DPT-Hybrid, used
for depth prediction; and one trained from scratch, used for prediction of albedo.
Specifically, this albedo predictor computes hue and saturation values for each
pixel, and then converts to RGB color space from HSV assuming V=100%.
We were unable to successfully implement this two-headed depth and albedo
prediction. Instead, we compute the albedo ρ by analytically solving the per-
pixel rendering equation used (eq. 3 in [7]):

I(di, ρi, g) =
(

σ0
||diri − xl||2

R(ψi) cos θiρig

)1/γ

with ψi, R(ψi), and θi depending only on constants and the predicted depth
map (whose value at pixel i is di).

Assuming a colocated light and camera and setting σ0 = g = 1, we can
rearrange to get:

ρi =
d2i I

γ
i

R(ψi) cos θi

where Ii is the R, G, or B value of the ith pixel, and we apply this separately
for each channel. This calculated ρi replaced the predicted albedo ρi in all loss
calculations. We additionally add a regularization loss

Lalbvar =
1

3
(Var(ρR) + Var(ρG) + Var(ρB))

where Var(ρR) is the variance of the R channel calculated albedo value over
the entire batch, and likewise for G and B. This provided a slight improvement
in results, the idea being that in endoscopy the surface albedo should be fairly
uniform.

Starting from the pretrained DPT-Hybrid weights from [3], we fine-tuned our
LightDepth implementation for a single epoch on the train split of C3VD used
in [7] at a learning rate of 4e-6, as any further training was found to overfit and
reduce accuracy.

https://ppsnet.github.io/
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G Qualitative Results on Bronchoscopy

In Fig. 3, we present qualitative depth map results on bronchoscopy data. Despite
not on bronchoscopy data, we note that ’Ours - Student’ and ’Ours - Backbone’
both provide superior results to the baseline provided by Depth Anything [8],
with ’Ours - Student’ being slightly better than ’Ours - Backbone’ in certain
areas with relatively farther depths. We plan to explore bronchoscopy data as
an additional bio-application in subsequent work. We will release a small dataset
of bronchsocopy frames for qualitative evaluation upon this work’s acceptance.

Image Ours - Student DepthAnything [67]Ours - Backbone

Fig. 3: Qualitative evaluation on bronchoscopy data. Red = further distance from the
camera and blue is closer. Note that ’Ours - Student’ and ’Ours - Backbone’ provide
significantly higher quality depth estimations than Depth Anything [8].
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H Clinical Dataset

The clinical dataset used in our work consists of 80 sequences with oblique views
(7,293 frames), 14 sequences with en-face views (832 frames), and 20 sequences
with down-the-barrel (axial) views (10,216 frames). The down-the-barrel (axial)
views are from the Colon10K [5] dataset. The oblique views and en-face views are
from a dataset which will be released in a separate submission [1] to a different
conference. The anonymized submission in question is included as a part of our
supplementary materials.
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