
OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 19

Appendix

In this Appendix we provide the following material:

– Appendix A demonstrates more weight flipping information for vanilla BNNs
and OvSW in additional to Fig. 1.

– Appendix B extrapolates the conclusions in Sec. 4.1 to a more generalized
scenario.

– Appendix C conducts ablation analysis for different weight initialization
methods, including kaiming normal [13] and kaiming uniform [13] and the
same weight initialization methods with different std or range.

– Appendix D compares AGS with LARS.
– Appendix E disscusses the difference of OvSW with latent weights (Ap-

pendix E.1) and adam optimizer (Appendix E.2) for BNNs.
– Appendix F describes societal impact of OvSW.

20 Xiang et al.

A More Experimental Results

We further demonstrate the weight flip information of the relevant layers based
on Fig. 1. As seen in Fig. 5 and Fig. 6, in addition to the weight flipping of
layer4.conv2.weight, OvSW also promotes weight flip efficiency for other layers.

(a) layer1.1.conv2.weight (b) layer2.1.conv2.weight (c) layer3.1.conv2.weight

Fig. 5: Histogram of the initialized weight distribution (blue) and the weights that
never update signs throughout training (orange) for Vanilla BNNs. 37.02%, 46.02%
and 40.44% represent the ratio of the corresponding orange area to the blue.

(a) layer1.1.conv2.weight (b) layer2.1.conv2.weight (c) layer3.1.conv2.weight

Fig. 6: Histogram of the initialized weight distribution (blue) and the weights that
never update signs throughout training (orange) for OvSW. 4.18%, 3.18% and 1.86%
represent the ratio of the corresponding orange area to the blue.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 21

sign

Scale BatchNormsign Bin-Conv

Backward

Forward

Fig. 7: Forward and backward computation graph for binarized convolutional opera-
tion with quantization aware training.

B A More Generalized Scenario

In this section, we further generalize the conclusion in Sec. 4.1 to the more
general scenario, where N and N 0

have different ↵j and ↵
0

j .
Firstly, we rewritten Eq. (3) as:

Aj+1 = BN
⇣⇣

Âj ~ Ŵj

⌘
� ↵j

⌘
= BN

�
Aj � ↵j

�

= BN
�
diag(↵j)Aj

�
= BN

�
⇤jAj

�
.

(17)

Assuming that for two networks N and N 0
, where Aj = A0

j and sign(Wj) =

sign(W 0

j), it is easy to obtain that Aj is equivalent to A
0

j . Therefore, we pay our
attention to @L

@Aj
and @L

@A
0
j

. Assuming that BN in both N and N 0
can estimate

the mean and variance of ⇤jAj and ⇤
0

jA
0

j with relative precision, and learnable
affine parameters �j = �

0

j ,�j = �
0

j we can know for the forward propagation:

Aj+1 = BN
�
⇤jAj

�

⇡ �j �
⇤jAj � µ

�
⇤jAj

�

�
�
⇤jAj

� + �j

⇡ �
0

j �
⇤

0

jA
0

j � µ
⇣
⇤

0

jA
0

j

⌘

�
⇣
⇤

0
jA

0

j

⌘ + �
0

j

= BN
0
⇣
⇤

0

jA
0

j

⌘
= A

0

j+1,

(18)

Thus, N and N 0
will have the same output and loss, i.e. L = L0

. For the back
propagation:

@L
@Aj

=
@L

@Aj+1

@Aj+1

@
�
⇤jAj

�
@
�
⇤jAj

�

@Aj
⇡ @L

@Aj+1

@Aj+1

@Aj
⇤�1
j ⇤j

=
@L

@A0
j+1

@A0

j+1

@A
0

j

⇤
0�1

j ⇤
0

j ⇡
@L0

@A0
j+1

@A0

j+1

@
⇣
⇤

0
jA

0

j

⌘
@
⇣
⇤

0

jA
0

j

⌘

@A
0

j

=
@L0

@A
0

j

.

(19)

22 Xiang et al.

Then we can obtain:

@L
@Aj

=
@L
@Aj

@Aj

@Aj
=

@L0

@A
0

j

@A
0

j

@A0
j

=
@L0

@A0
j

. (20)

From Eq. (18), Eq. (19) and Eq. (20), we observe that due to the existence
of BN, the value of ↵j and ↵

0

j hardly affects the results of both forward and
backward propagation. Thus the flipping efficiency of the weight signs is also
independent of the value of ↵, and it is the relationship between the gradient
and the weight distribution that really makes a contribution.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 23

C Ablation Analysis for Weight Initialization

We employ OvSW for two famous weight initialization methods, including kaim-
ing normal (default in this paper) and kaiming uniform, as shown in Eq. (21)
and Eq. (22) respectively:

Wj ⇠ Normal
�
0,�2std2

�
(21)

Wj ⇠ Uniform
�
� �bound,�bound), (22)

where std = gainp
fan_in

and bound = gain ⇥
q

3
fan_in . fan_in is computed via

Cj
in
⇥Kj

h
⇥Kj

w
. We train binarized ResNet18 for CIFAR100 with 120 epochs

to demonstrate weight initialization analysis. Without loss of generality, we set
� to 1 and initialize Wj via the stand kaiming initialization and then employ
Wj = �W 0

j to simulate Eq. (21) and Eq. (22) in our implementations.
We present the epoch-wise flip rate for eight different settings of �, which

vary from 0.0001 to 1000. The results in Fig. 10 to Fig. 17 and Fig. 18 to Fig. 25
are for kaiming normal and kaiming uniform respectively. As seen, because of the
gradients of the BNN being independent of their latent weight distribution, the
epoch-wise flip rate and � have a significant negative correlation. When � is set
to 1000, the epoch-wise flip rate of both distributions undergoes a severe drop,
greatly hurting the model’s convergence as shown in Fig. 8 and performance
as shown in Fig. 9. Meanwhile, we can observe that by reducing the variance
or range of the weight distribution to some extent, a significant improvement
can be achieved to the BNNs compared to the standard distribution, which
demonstrates the reasonableness of AGS again.

24 Xiang et al.

(a) Kaiming Normal (b) Kaiming Uniform

Fig. 8: Convergence for different weight initialization.

Fig. 9: Mean top-1 accuracy (mean±std) of binarized ResNet18 w.r.t. different values
for different � with different weight initialization methods on CIFAR100.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 25

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 10: Epoch-wise flip rate for � = 0.0001 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 11: Epoch-wise flip rate for � = 0.001 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 12: Epoch-wise flip rate for � = 0.01 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 13: Epoch-wise flip rate for � = 0.1 (kaiming normal).

26 Xiang et al.

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 14: Epoch-wise flip rate for � = 1 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 15: Epoch-wise flip rate for � = 10 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 16: Epoch-wise flip rate for � = 100 (kaiming normal).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 17: Epoch-wise flip rate for � = 1000 (kaiming normal).

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 27

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 18: Epoch-wise flip rate for � = 0.0001 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 19: Epoch-wise flip rate for � = 0.001 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 20: Epoch-wise flip rate for � = 0.01 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 21: Epoch-wise flip rate for � = 0.1 (kaiming uniform).

28 Xiang et al.

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 22: Epoch-wise flip rate for � = 1 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 23: Epoch-wise flip rate for � = 10 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 24: Epoch-wise flip rate for � = 100 (kaiming uniform).

(a) layer1 (b) layer2 (c) layer3 (d) layer4

Fig. 25: Epoch-wise flip rate for � = 1000 (kaiming uniform).

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 29

Fig. 26: Mean top-1 accuracy (mean±std) of binarized ResNet18 w.r.t. different values
for different ⌘ with LARS on CIFAR100.

D AGS vs LARS

In this section, we compare LARS and AGS (' = 0 in OvSW) and demonstrate
their corresponding results in Fig. 26. As seen, by selecting the appropriate pa-
rameter ⌘, LARS is also able to achieve impressive gains by scaling the local
learning rate. However, the improvement of AGS is more significant over LARS.
By comparing the optimization processes of LARS and OvSW in Algorithm 2
and Algorithm 3, We find that the most essential difference between them is
that LARS only scales the learning rate at a single step, and the scaling only
acts on the current gradient descent and does not accumulate into the momen-
tum; in contrast, AGS directly modifies the gradient through adaptive gradient
scaling, and the gradient not only acts on the current, but also accumulates into
the future optimization process through the momentum. From the experimental
results in Fig. 26, we can see that compared to LARS, AGS is more conducive
to the efficient training of BNNs.

30 Xiang et al.

Algorithm 2 SGD with LARS. Example with weight decay and momentum.
1: Parameters: Learning rate �(t), momentum m, weight decay ', LARS coefficient

⌘, number of steps T
2: Init: t = 0, v = 0. Init weight Wj for each layer
3: while t < T for each layer do

4: Gj(t) @L(t)
@Wj(t)

(obtain a stochastic gradient for the current mini-batch)

5: �j(t) ⌘kWj(t)kF
kGj(t)kF+'kWj(t)kF

(compute the local LR �j(t))
6: Vj(t+ 1) mVj(t) + (Gj(t) + 'Wj(t)) (update the momentum)
7: Wj(t+ 1) Wj(t)� �(t)�j(t)Vj(t) (update the weights)
8: end while

Algorithm 3 SGD with OvSW. Example with weight decay and momentum.
1: Parameters: Learning rate �(t), momentum m, weight decay ', � for AGS, ⌧ for

SAD, (S(t), m, �) for flipping state detection, number of steps T
2: Init: t = 0, v = 0. Init weight Wj for each layer
3: while t < T for each layer do

4: Gj(t) @L(t)
@Wj(t)

(obtain a stochastic gradient for the current mini-batch)
5: Gj(t) Eq. (14) (scale the gradient adaptively)
6: Gj(t) Eq. (16) (silence awareness decaying)
7: Vj(t+ 1) mVj(t) +

�
Gj(t) + 'Wj(t)

�
(update the momentum)

8: Wj(t+ 1) Wj(t)� �(t)Vj(t) (update the weights)
9: Sj(t) Eq. (15) (update state for the weights)

10: end while

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 31

E Discussion for Latent Weights and Optimizer

E.1 Latent Weights

We first discuss the similarities and differences between ours and Helwegen et
al . [17]. Similarly, both of us find that the gradient of the weights in the BNNs
is independent of the magnitude of the weights. Subsequently, Helwegen et al .
design a binary optimizer (BOP), which determines the flipping of the weight
signs by comparing the exponential moving average of gradients with a pre-
defined threshold, which is independent to the magnitude of weights and gra-
dients. While this approach avoids the problem that inappropriate weight dis-
tributions can lead to inefficient weight signs flipping, they ignore the fact that
the weight magnitudes also play a role in sign changes during the optimization
process. OvSW constructed a correlation between the gradient distribution and
the weight distribution via AGS, which is essentially the same as BOP in facili-
tating weight signs flipping. Meanwhile, the optimization takes the role of weight
magnitude into account and thus achieves better results than BOP. Apart from
these, another advantage of OvSW is that SAD detects “silent weights” to further
enhance the efficiency of weight signs flipping.

E.2 Optimizer

OvSW emploies SGD to train BNNs, which is different from the previous state-
of-the-art BNNs that uses Adam [21] as the optimizer, including ReActNet [33],
AdamBNN [32], RoBNN [51], ReBNN [50]. From the perspective of weight signs
flipping, we believe this is due to cmt/

�p
bvt + ✏

�
in Adam adaptively scales the

gradients and facilitates the flipping efficiency. However, Adam needs to preserve
the first momentum and second momentum of the gradient during training,
leading to additional storage. In the mixed precision training scenario, a model
with parameter number and Adam optimizer will consume 16 [41] storage for
model and optimizer. Even though OvSW introduce an auxiliary variable S, it
cause 14 [41] storage, which is 12.5% less than Adam. At the same time, OvSW
can be simply and effectively implemented on GPUs, improving the performance
of BNN with little or no degradation of training speed.

32 Xiang et al.

F Societal Impact

Increasing model size can result in tremendous resource consumption and carbon
emissions during both training end inference. OvSW can improve performance
and accelerate the convergence efficiency of BNNs while introducing negligible
memory and computational overhead. It can facilitate the deployment of BNNs.
On the other hand, it also enables efficient training for BNNs under memory
and computational resources constraints. Both have far-reaching potential for
the promotion of green AI.

	OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks

