
OvSW: Overcoming Silent Weights for Accurate
Binary Neural Networks

Jingyang Xiang1 , Zuohui Chen2 , Siqi Li1 , Qing Wu3, and Yong Liu1,4 ⋆

1 APRIL Lab, Zhejiang University
2 Zhejiang University of Technology

3 College of Computer Science, Hangzhou Dianzi University
4 Huzhou Institute, Zhejiang University

Abstract. Binary Neural Networks (BNNs) have been proven to be
highly effective for deploying deep neural networks on mobile and em-
bedded platforms. Most existing works focus on minimizing quantiza-
tion errors, improving representation ability, or designing gradient ap-
proximations to alleviate gradient mismatch in BNNs, while leaving the
weight sign flipping, a critical factor for achieving powerful BNNs, un-
touched. In this paper, we investigate the efficiency of weight sign up-
dates in BNNs. We observe that, for vanilla BNNs, over 50% of the
weights remain their signs unchanged during training, and these weights
are not only distributed at the tails of the weight distribution but also
universally present in the vicinity of zero. We refer to these weights
as “silent weights”, which slow down convergence and lead to a signif-
icant accuracy degradation. Theoretically, we reveal this is due to the
independence of the BNNs gradient from the latent weight distribution.
To address the issue, we propose Overcome Silent Weights (OvSW).
OvSW first employs Adaptive Gradient Scaling (AGS) to establish a
relationship between the gradient and the latent weight distribution,
thereby improving the overall efficiency of weight sign updates. Ad-
ditionally, we design Silence Awareness Decaying (SAD) to automat-
ically identify “silent weights” by tracking weight flipping state, and
apply an additional penalty to “silent weights” to facilitate their flip-
ping. By efficiently updating weight signs, our method achieves faster
convergence and state-of-the-art performance on CIFAR10 and Ima-
geNet1K dataset with various architectures. For example, OvSW obtains
61.6% and 65.5% top-1 accuracy on the ImageNet1K using binarized
ResNet18 and ResNet34 architecture respectively. Codes are available at
https://github.com/JingyangXiang/OvSW.

Keywords: Binary Neural Networks · Silent Weights · Adaptive Gradi-
ent Scaling · Silence Awareness Decaying

1 Introduction

Deep neural networks (DNNs) have shown tremendous success in various com-
puter vision tasks, including image classfication [15,23], object detection [10,14,
⋆ Corresponding author: yongliu@iipc.zju.edu.cn.

https://orcid.org/0000-0001-5350-1528
https://orcid.org/0000-0003-1806-6676
https://orcid.org/0009-0000-4632-9010
https://orcid.org/0000-0003-4822-8939
https://github.com/JingyangXiang/OvSW

2 Xiang et al.

0.08 0.04 0.00 0.04 0.08
W

0

2

4

6

8
×104

54.07%
0.04 0.00 0.04

0

2

4 ×104

(a) Vanilla

0.08 0.04 0.00 0.04 0.08
W

0

2

4

6

8
×104

2.03%
0.04 0.00 0.04

0.0

2.5

5.0 ×103

(b) OvSW

0 30 60 90 120
Epochs

0

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

0

4

8

12

16

Fl
ip

Ra
tio

 (%
)

(c) Top-1 Acc & Flip Ratio

Fig. 1: (a) and (b): Histogram of the initialized weight distribution (blue) and the
weights that never update signs throughout training (orange). 54.07% and 2.03% rep-
resent the ratio of the corresponding orange area to the blue. (c) Top-1 Accuracy (solid
lines) and Flip Ratio (dashed lines) are for Vanilla (green) and OvSW (red). (a), (b)
and Flip Ratio in (c) is for layer4.conv2.weight.

43], and semantic segmentation [12,35]. However, the remarkable performance is
always attributed to deeper and wider architectures [15, 46], which comes with
expensive memory and computational overhead and makes it challenging to de-
ploy DNNs on resource-constrained edge platforms.

The community has been delving into model compression, which aims to re-
duce inference overhead for DNNs while preserving their performance. Typical
techniques include, but are not limited to, efficient architecture design [7, 58],
neural architecture search [8, 47], network pruning [28, 36], knowledge distilla-
tion [18,27], and network quantization [4,11,61]. Among them, network quanti-
zation is widely suggested as a promising solution. It effectively enhances memory
efficiency and execution speed on embedding platforms by reducing the weight
and activation bits and replacing expensive floating-point arithmetic with rela-
tively inexpensive fixed-point arithmetic. Extensive studies [11, 20, 54, 57] have
demonstrated its effectiveness and yielded light and efficient DNNs.

In this paper, we focus on studying binary neural networks (BNNs), which are
an aggressive form of quantized neural networks (QNNs). BNNs binarize both
weights and activations to discrete values ({+1,−1}), which can be represented
by 1-bit and reduce memory usage by 32×. On the other hand, by employing
efficient bitwise operations instead of floating-point ones, BNNs also significantly
reduce computation complexity, providing 58× speedup as reported by XNOR-
Net [42]. These characteristics make them well-suited for deployment on low-
power embedding platforms, including FPGA, ASICs, and IoT devices [19].

However, the application of BNNs is still limited due to constraining both
weights and activations to 1-bit significantly reducing accuracy compared to full-
precision models. To address this problem, many methods have been developed
to reduce quantization error and enhance the representation capability, thereby
closing the performance gap between BNNs and their real-valued counterparts.

Although these methods have effectively narrowed the performance gap,
they still overlook the essence of BNN optimization is to update the signs of
latent weights [17], instead of updating their values. In other words, if the

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 3

signs of the latent weights don’t change, the BNNs are hardly ever updated.
To demonstrate the weight sign flipping of vanilla BNNs, we train binarized
ResNet18 on CIFAR100 with 120 epochs and plot the flipping information for
layer4.conv2.weight. As shown in Fig. 1a, more than 50% of the weights never
change their signs throughout training process, which slows down convergence
and leads to a significant accuracy degradation for BNNs. We denote the part
of weights that hardly change their signs during training as “silent weights”.

It’s worth noting that, as a study mostly related to ours, ReCU [53] pro-
poses a rectified clamp unit to revive the “dead weights” for updating, which
refers to a group of weights that are distributed at the tails of the weight dis-
tribution and barely update their signs during training. They claim that the
magnitudes of latent weights do not contribute to the forward propagation. If
two weights have the same sign, they have the same effect on the forward prop-
agation. Intuitively, the signs of the weights around the zero are easily changed,
while weights distributed at the tails of the weight distribution tend to have
difficulties in changing their signs. Although ReCU facilitates the updating for
“dead weights”, it ignores the fact, the gradient distribution across layers and
weights have great distinction. Weights with larger magnitudes are intuitively
more difficult to flip their signs, but small weights may also suffer from silence
once their gradients are relatively small compared to their magnitudes. As shown
in Fig. 1a, for a vanilla BNN, these weights are not only distributed at the tails
of the weight distribution but also universally present in the vicinity of zero. As
a result, it is still sub-optimal and remains to be improved.

In this paper, we reveal that the root cause of the large number of “silent
weights” is attributed to the independence of the BNN gradients from the la-
tent weight distribution via a systematical and theoretical analysis. To this end,
two simple yet effective techniques, including Adaptive Gradient Scaling (AGS)
and Silence Awareness Decaying (SAD), are introduced to Overcome Silent
Weights (OvSW). Specifically, AGS adaptively scales the gradients by estab-
lishing a relationship between the gradients and the latent weight distribution,
thereby improving the overall efficiency of weight sign updates. Meanwhile, SAD
automatically identifies “silent weights” by tracking weight sign flipping state
and applies an additional penalty to them, further promoting the updating ef-
ficiency of their signs. Benefiting from AGS and SAD, OvSW enables efficient
flipping of weight signs, significantly accelerates the convergence and promotes
the performance for BNNs as shown in Fig. 1b and Fig. 1c. In comparison to
the expensive computational cost of forward and backward propagation, OvSW
introduces negligible extra overhead to the training process, maintaining its ef-
ficiency. Furthermore, since OvSW aims to facilitate the weight sign flipping for
BNNs, which is orthogonal to the previous work, it has good compatibility and
can be used as plug-and-play modules to enhance other BNNs’ performance.

The contributions of our work are highlighted as follows:

– We are the first to find that a large number of weights in BNNs fail to
update their signs throughout the training. These “silent weights” are not
only distributed at the tails of the weight distribution but also universally

4 Xiang et al.

present in the vicinity of zero. Theoretically, we reveal this is attributed to
the independence of the gradients from the distribution of the latent weights.

– We propose to overcome “silent weights” with two novel techniques: (1) an
adaptive gradient scaling method to scale the gradients according to the dis-
tribution of the latent weights, which improves overall efficiency in updating
signs for weights; (2) a silence awareness decaying strategy to identify “silent
weights” by tracking weight sign flipping state and introduce an additional
penalty to them, further facilitating the flipping of their signs.

– Extensive experiments for various BNNs including ResNet18/20 [15] and
VGGsmall [46] on CIFAR10 [22] and ResNet18/34 [15] on ImageNet1K [44]
demonstrate the effectiveness of our method. For example, OvSW achieves
61.6% and 65.5% top-1 accuracy on the ImageNet for binarized ResNet18
and ResNet34, improving ReCU [53] by 0.6% and 0.4% respectively. Be-
sides, for ResNet18, OvSW achieves 2.00% and 2.83% improvement on CI-
FAR100 [22] when combined with AdaBin (enhancing representation ability)
and RBNN (training-aware gradient approximation) respectively, demon-
strating its good compatibility with the other methods.

2 Related Work

Great efforts have been put into reducing the performance gap between BNNs
and their real-valued counterparts. The pioneering BNN work dates back to
Courbariaux et al . [5], which binarizes weights and activations to +1 or -1 by
sign function. However, this aggressive approach limits the representation ability
of BNNs to the binary space, resulting in a significant accuracy degradation. To
reduce the quantization error and improve their accuracy, XNOR-Net [42] intro-
duces a scaling factor obtained through the ℓ1-norm of weights or activations.
Furthermore, XNOR-Net++ [3] merges two scale factors from the weights and
activations into a trainable parameter and optimizes them via backpropagation.
ABC-Net [31] employs a linear combination of multiple binary weight sets to
approximate the real-valued weights and alleviate the information loss. Bi-Real
Net [34] connects the real-valued activations to the consecutive block via an iden-
tity shortcut, which significantly enhances network representation ability while
incurring negligible computational overhead. AdaBin [48] introduces adaptive
binary sets to fit different distributions, enhancing binarized representation abil-
ity. UaBNN [59] introduces an uncertainty-aware BNN to reduce these weights’
uncertainties. INSTA-BNN [24] controls the quantization threshold in an input
instance-aware manner, taking higher-order statistics into account.

Apart from enhancing the representation ability of BNNs, gradient estima-
tion is also one of the critical research directions, since gradients in the sign
function are almost zero everywhere. Straight through estimator (STE) [1] is the
most widely used function to enable the gradient to backpropagate. However,
the gradient error is huge for STE and will accumulate during backpropagation,
leading to instability in training and severe accuracy degradation. To alleviate
this, Bi-Real Net [34] utilizes a piecewise polynomial function as the approxi-
mation function. IR-Net [40] proposes an error decay estimator and RBNN [30]

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 5

employs a training-aware approximation function to replace the sign function.
EWGS [25] takes discretization error between input and output into account and
introduces element-wise gradient scaling to adaptively scale up or down each gra-
dient element. ReSTE [49] revises the original STE and balance the estimating
error and the gradient stability well. All of these methods effectively reduce the
gradient error and achieve consistent improvement in both training stability and
accuracy compared to the vanilla STE.

3 Background

We briefly review the optimization process of BNNs in this section. Given a
DNN, we denote Wj ∈ RCj

out×Cj
in×Kj

h×Kj
w as the real-valued weight in the j-th

layer, Cj
out, C

j
in, Kj

h and Kj
w are the number of output channels, input channels,

kernel height, and kernel width, respectively. Let the real-valued activation be
Aj , then the convolution process can be formulated as

Aj+1 = Wj ∗ Aj , (1)

where ∗ represents the standard convolution operation.
BNNs aim to binarize weights Wj and activations Aj to discrete values ({+1,−1})

through sign function:

x̂ = sign (x) =

{
+1, if x ≥ 0,
−1, otherwise.

(2)

To reduce the quantization error in BNNs, XNOR-Net [42] introduces two
scale factors to approximate the binarized weights Ŵb

j and activation Âb
j . Fur-

thermore, XNOR-Net++ [3] proposes fusing the activation and weight scaling
factors into one and optimizing it via backpropagation. This approach signifi-
cantly outperforms XNOR-Net within the same computational budget and has
been widely adopted by recent works [33, 34, 40, 53]. Following them, we denote
the scaling factor as αj . Then the binary convolution operation can be formu-
lated as

Aj+1 =
(
Âj ⊛ Ŵj

)
⊙ αj , (3)

where ⊛ is the efficient XNOR and Bitcount operation and ⊙ is the hadamard
product. In the implementation of BNNs, Aj+1 will be processed through several
layers, e.g ., Batch Normalization (BN) layer, non-linear activation layer, and
max-pooling layer. In this section, we omit these operations for simplicity.

To train a BNN, the forward propagation includes Eq. (2) and Eq. (3), where
their real-value counterparts Wj and Aj are used for calculating gradients and
updating during the backpropagation. However, the sign is not differentiable,
thereby gradient estimation is important in BNNs. Following the previous stud-
ies, we use straight-through estimator (STE) [1] to approximate the gradient of
the loss w.r.t. the weight w ∈ W:

∂L
∂w

=
∂L
∂ŵ

· ∂ŵ
∂w

≈ ∂L
∂ŵ

, (4)

6 Xiang et al.

sign

Scale BatchNormsign Bin-Conv

Backward

Forward

Fig. 2: Forward and backward computation graph for binary convolutional operation
with quantization aware training.

where L denotes the loss function. For the gradient w.r.t. the activation a ∈ A,
we adopt the piece-wise polynomial gradient estimation function [34] as follows:

∂L
∂a

=
∂L
∂â

· ∂â
∂a

≈ ∂L
∂â

· ∂F (a)

∂a
, (5)

where
∂F (a)

∂a
=

2 + 2a,
2− 2a,
0,

if − 1 ≤ a < 0,
if 0 ≤ a < 1,
otherwise.

(6)

4 Methodology

In this section, we show that the distribution of gradients and weights for BNNs is
independent by systematical and theoretical analysis. Then, we propose Adaptive
Gradient Scaling (AGS) to scale the gradient and introduce Silence Awareness
Decaying (SAD) to detect “silent weights”, moving them towards zero. Both of
them can enhance the efficiency of weight sign flipping.

4.1 The Independence of the Gradient and Weight Distribution

Figure 2 demonstrates forward and backward computation graph for binary con-
volutional (Bin-Conv) operation. As seen, Bin-Conv is often followed by a BN
layer. We can conclude that once two BNNs N and N ′

satisfy:

Ŵj = Ŵ
′

j , αj = α
′

j ,BNj = BN
′

j ,∀j, (7)

for the same input Âj , the output Aj+1 and A′

j+1 can be formulated as:

Aj+1 = BN
((

Âj ⊛ Ŵj

)
⊙ αj

)
= BN

′
((

Âj ⊛ Ŵ
′

j

)
⊙ α

′

j

)
= A

′

j+1. (8)

Through mathematical induction, we can know that the N and N ′
will have the

same output and loss, i.e. L = L′
. Therefore, the backpropagation for them is:

∂L
∂Wj

=
∂L

∂Aj+1

∂Aj+1

∂Ŵj

∂Ŵj

∂Wj
=

∂L′

∂A′
j+1

∂A′

j+1

∂Ŵ ′
j

Ŵ ′

j

∂W ′
j

=
∂L′

∂W ′
j

. (9)

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 7

Without loss of generality, we can obtain that once two networks satisfy the
conditions in Eq. (7), the gradients obtained from the backpropagation are the
same (a more generalized scenario are extrapolated in ??). The gradient has
nothing to do with the magnitude of weight and weight with larger magnitude
does not necessarily corresponding to larger gradient. Therefore, although intu-
itively, weight with large magnitude tends to remain its sign unchanged, it is also
potential for weight with small magnitude to suffer from silence if its gradient
is relatively small compared to its magnitude. Furthermore, if we assume the
weights further satisfy W ′

j = γWj , where γ > 1 and networks are optimized via
vanilla SGD, the optimization of t-step can be formulated as:

W
′

j (t+ 1) = W
′

j (t)− β(t)
∂L′

(t)

∂W ′
j(t)

= γWj (t)− β(t)
∂L(t)
∂Wj(t)

= (γ − 1)Wj (t) +Wj (t)− β(t)
∂L(t)
∂Wj(t)

= (γ − 1)Wj (t) +Wj (t+ 1) ,

(10)

where β (t) is the learning rate at t-step. Equation (10) can be viewed as a
variant of exponential moving averages and the effect of Wj (t) on W ′

j (t+ 1)
will gradually increases as γ increases. Once k is large enough:

lim
γ→∞

W
′

j (t+ 1) = lim
γ→∞

[(γ − 1)Wj (t) +Wj (t+ 1)] = (γ − 1)Wj (t) . (11)

The signs of W ′

j (t+ 1) will be the same as Wj (t).
However, BNNs binarize W ′

j to {+1,−1} at each training step. Once the
signs of W ′

j do not change, the BNNs hardly ever update. It not only slows
down convergence, but also leads to significant accuracy degradation. Please see
?? for a detailed ablation analysis for γ.

4.2 Adaptive Gradient Scaling

To improve the efficiency of the update, an intuitive approach is to scale β (t)
to γβ (t). In this case, W ′

j (t+ 1) can be formulated as:

W
′

j (t+ 1) = W
′

j (t)− γβ(t)
∂L(t)
∂W ′

j(t)

= γWj (t)− γβ(t)
∂L(t)
∂Wj(t)

= γWj (t+ 1) .

(12)

However, selecting the appropriate scaling factor is tricky. Meanwhile, an in-
appropriate scaling factor may make weights with small magnitudes correspond
to large gradients, leading them to oscillate frequently in {+1,−1} and intro-
ducing instability to BNNs training.

To overcome this issue, we introduce “Adaptive Gradient Scaling” (AGS).
Let Gj ∈ RCj

out×Cj
in×Kj

h×Kj
w denote the gradient with respect to Wj , i.e., ∂L

∂Wj
,

8 Xiang et al.

and ∥ · ∥F denote the Forbenius norm, i.e., the k-th filter norm in Wj can be
formulated as:

∥Wk
j ∥F =

√∑Cj
in

l=1

∑Kj
h

m=1

∑Kj
w

n=1W
k,l,m,n
j . (13)

The AGS algorithm is motivated by the observation that the ratio of the
norm of Gk

j to Wk
j (∥Gk

j ∥F

∥Wk
j ∥F

) provides a simple measure of how much a single
gradient descent step will change the original weight Wj . For instance, if we

train BNNs via vanilla SGD without momentum, then ∥△Wk
j ∥F

∥Wk
j ∥F

= β
∥Gk

j ∥F

∥Wk
j ∥F

,

where the parameter update for the Wk
j is given by △Wk

j = −βGk
j . We can

conclude that the small value of ∥Gk
j ∥F

∥Wk
j ∥F

during training is the root cause why

a large number of weights fail to flip signs and adaptively scaling ∥Gk
j ∥F

∥Wk
j ∥F

plays
a crucial role in promoting the update efficiency for BNNs. Specifically, in AGS
algorithm, Gk,l,m,n

j is scaled as:

Gk,l,m,n

j =

λ
∥Wk

j ∥F

∥Gk
j ∥F

Gk,l,m,n
j if ∥Gk

j ∥F

∥Wk
j ∥F

< λ,

Gk,l,m,n
j otherwise.

(14)

where λ is a scalar scaling threshold to limits the lower bound of ∥Gk
j ∥F

∥Wk
j ∥F

. Ablation
analysis for λ can be found in Sec. 5.3.

AGS and “Adaptive Gradient Clipping” (AGC) [2] are closely related but

fundamentally different, as the former restricts the lower bound of ∥Gk
j ∥F

∥Wk
j ∥F

to
enhance the flipping efficiency of BNN weight signs, while the latter restricts
upper bound and is designed to improve training stability. AGS also can be
viewd as a adaptive varient to Layer-wise Adaptive Rate Scaling (LARS) [56],
which sets the norm of update parameter to a fixed ratio of the parameter
norm, and completely ignores the gradient magnitude to real-valued networks.
Although LARS is also able to improve the accuracy for BNNs, we find that
LARS and AGS is much different in the update of gradient momentum and
doing so degrades performance compared to AGS. More details for comparing
AGS with LARS and ablation analysis for LARS can be found in ??.

4.3 Silence Awareness Decaying

We propose another approach (Silence Awareness Decaying, SAD) orthogonal
to AGS to detect and prevent “silent weights”. Specifically, we track the flipping
state of Wj over time using an exponential moving average (EMA) strategy,
which is formulated as:

Sj(t) = m · Sj(t− 1) + (1−m) · |sign (Wj (t))− sign (Wj (t− 1)) |abs
2

, (15)

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 9

Algorithm 1 Overview of the OvSW method.
Input: A minibatch of inputs and their labels, real-valued weightsW(t), scaling factor
α(t), λ for AGS, τ for SAD, (S(t), m, σ) for flipping state detection.
Output: UpdatedW(t+1), α(t+1) and S(t+1).
1: while Forward propagation do
2: Âj ← sign(Aj).
3: Ŵj ← sign(Wj).
4: Computing features via Eq. (2) and Eq. (3).
5: Computing loss L.
6: end while
7: while Backward propagation do
8: Computing ∂L

∂Wj
, i.e. Gj , and ∂L

∂Aj
via Eq. (4) and Eq. (5)&Eq. (6)

9: Scaling Gj to Gj via Eq. (14).
10: Adding penalties to Gj via Eq. (16).
11: Update Wj(t+ 1) and αj(t+ 1) via SGD optimizer.
12: Update Sj(t+ 1) via Eq. (15).
13: end while

where m is the momentum and Sj is the auxiliary variable. Nagel et al . [38]
employ this technique to identify and dampen oscillations prematurely while we
employ it to identify “silent weights” and dynamically introduce additional weight
penalties to move them towards zero. In our algorithm, we think if Sk,l,m,n

j is less
than a pre-defined threshold σ, its corresponding weight Wk,l,m,n

j is considered
as a “silent weight” and will be applied with an additional penalty. The silence
awareness decaying process is formulated as:

G
k,l,m,n

j (t) =

{
Gk,l,m,n

j (t) + γWk,l,m,n
j (t), if Sk,l,m,n

j (t) < σ,

Gk,l,m,n

j (t), otherwise,
(16)

where γ is the proportion of penalty term.
It is worth noting that while both AGS and SAD improve the efficiency of

weight sign flipping, they solve the problem in fundamentally different ways. AGS
facilitates sign flipping for the whole weights by adaptively scaling the gradient,
while SAD detects “silent weights” by tracking their flipping state and applies
additional penalties. In Sec. 5.3, we show that both methods achieve significant
performance improvement and they are complementary to each other. As an
algorithm guideline, the pseudo-code of OvSW is provided in Algorithm 1.

5 Experiment

In this section, we conduct extensive image classification experiments for OvSW
and compare it to state-of-the-art (SOTA) methods on CIFAR10 and Ima-
geNet1K with various architectures. Then, we discuss the hyperparameter set-
tings for OvSW, including λ for AGS and σ for SAD and convergence speed on
CIFAR100. We also conduct ablation study to demonstrate the compatibility

10 Xiang et al.

Table 1: Performance comparison with SOTAs on CIFAR10.We report the Top-1
Accuracy performance on ResNet18, ResNet20, and VGGsmall. W/A denotes the bit-
width of weights/activations.

Networks Methods Bit-width (W/A) Top-1 Acc.(%)

ResNet18

Full-precision 32/32 94.8
IR-Net [40] 1/1 91.5
RBNN [30] 1/1 92.2
CMIM [45] 1/1 92.2
SiMaN [29] 1/1 92.5
ReCU [53] 1/1 92.8
OvSW (Ours) 1/1 93.2

ResNet20

Full-precision 32/32 92.1
SLB [55] 1/1 85.5
FDA-BNN [52] 1/1 86.2
IR-Net [40] 1/1 86.5
CMIM [45] 1/1 87.3
SiMaN [29] 1/1 87.4
ReCU [53] 1/1 87.4
OvSW (Ours) 1/1 87.7

VGGsmall

Full-precision 32/32 94.1
DoReFa [60] 1/1 90.2
RAD [6] 1/1 90.5
RBNN [30] 1/1 91.3
DSQ [11] 1/1 91.7
Proxy-BNN [16] 1/1 91.8
SLB [55] 1/1 92.0
ReCU [53] 1/1 92.2
FDA-BNN [52] 1/1 92.5
SiMaN [29] 1/1 92.5
OvSW (Ours) 1/1 92.8

and visualize the loss landscape for OvSW. Finally, we deploy OvSW to a real-
world mobile device to exhibit its efficiency. To train OvSW, we use one NVIDIA
RTX 3090 on the CIFAR10 and CIFAR100 and four on the ImageNet1K. All
experiments are implemented on PyTorch [39].

5.1 Results on CIFAR10

We trained OvSW for CIFAR10 with 600 epochs, where the batch size is set to
256 and the initial learning rate to 0.1, decaying with CosineAnealing. We adopt
SGD optimizer with a momentum of 0.9 and weight decay of 5e-4 and employ the
same data augmentation in ReCU [53]. λ and σ are set to 0.04 and 9e-4 respec-
tively. We compare OvSW with IR-Net [40], RBNN [30], CMIM [45], SiMaN [29],
ReCU [53], SLB [55], FDA-BNN [52], DoReFa [60], RAD [6], DSQ [11], and
Proxy-BNN [16]. As shown in Tab. 1, OvSW achieves the best performance
among all methods. For ResNet18, OvSW obtains 93.2% top-1 accuracy, which
outperforms SiMaN and ReCU by 0.7% and 0.4% respectively, reducing the ac-
curacy gap between BNNs and full-precision model to 1.6%. In addition, it yields
87.7% and 92.8% top-1 accuracy on ResNet20 and VGGsmall, which succeeds
ReCU and SiMaN by 0.3% and 0.3% respectively.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 11

Table 2: Performance comparison with SOTAs on ImageNet1K.We report the Top-1
and Top-5 Accuracy performance on ResNet18 and ResNet34. W/A denotes the bit-
width of weights/activations. ∗ means using the two-step training setting as ReActNet.

Model Method Bit-width (W/A) Top-1 Acc.(%) Top-5 Acc.(%)

ResNet18

Full-precision 32/32 69.6 89.2

XNOR [42] 1/1 51.2 73.2
BiReal [34] 1/1 56.4 79.5
IR-Net [40] 1/1 58.1 80.0
RBNN [30] 1/1 59.9 81.9
SiMaN [29] 1/1 60.1 82.3
FDA-BNN [52] 1/1 60.2 82.3
ReCU [53] 1/1 61.0 82.6
OvSW (Ours) 1/1 61.6 83.1

ReActNet [33] 1/1 65.9 86.1
ReCU [53] 1/1 66.4 86.5
OvSW∗ (Ours) 1/1 66.6 86.7

ResNet34

Full-precision 32/32 73.3 91.3

XNOR++ [3] 1/1 57.1 79.9
BiReal [34] 1/1 62.2 83.9
IR-Net [40] 1/1 62.9 84.1
RBNN [30] 1/1 63.1 84.4
SiMaN [29] 1/1 63.9 84.8
CMIM [45] 1/1 65.0 85.7
ReCU [53] 1/1 65.1 85.8
OvSW (Ours) 1/1 65.5 86.1

5.2 Results on ImageNet1K

On ImageNet1K, OvSW is trained from scratch.We train OvSW with 200 epochs,
where the batch size is set to 512 and the initial learning rate is set to 0.1, decay-
ing with CosineAnnealing. We adopt SGD optimizer with a momentum of 0.9
and weight decay of 1e-4 and the data augmentation is the same as ReCU [53]. λ
and σ are set to 0.02 and 2e-5 respectively. We demonstrate the ImageNet1K per-
formance of ResNet18/34 and compare OvSW with SOTA methods, including
one-stage training methods XNOR [42], BiReal [34], IR-Net [40], RBNN [30],
SiMaN [29], FDA-BNN [52], ReCU [53], CMIM [45], and two-stage training
method [37] adopted by ReActNet [33]. As shown in Tab. 2, OvSW also achieves
the best performance. For ResNet18, OvSW achieves 61.6% top-1 and 83.1% top-
5 accuracy compared to ReCU’s 61.0% top-1 and 82.6% top-5 accuracy, which
demonstrates the efficiency of overcoming the “silent weights”. For ResNet34,
OvSW achieves 65.5% top-1 accuracy, which is also better than ReCU. We fur-
ther compare OvSW with the two-stage training method ReActNet. OvSW ob-
tains 66.6% top-1 accuracy, succeeding ReActNet and ReCU by 0.7% and 0.2%
respectively.

12 Xiang et al.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

66

67

68

69

70

To
p-

1
Ac

cu
ra

cy
 (%

)

AGS
Vanilla

(a) AGS vs Vanilla

0.0005 0.0006 0.0007 0.0008 0.0009 0.0010

69.2

69.4

69.6

69.8

70.0

To
p-

1
Ac

cu
ra

cy
 (%

)

AGS+CSD
AGS

(b) AGS+SAD(OvSW) vs AGS

60 120 200 300 400 500
Epoch

54

58

62

66

70

74

To
p-

1
Ac

cu
ra

cy
 (%

)

OvSW
Vanilla

(c) Convergence

Fig. 3: Top-1 accuracy (mean±std) of binarized ResNet18 w.r.t. different values of
λ (a), σ (b) and epoch (c) on CIFAR100.

5.3 Ablation Analysis

We investigate the effectiveness of hyper-parameters, including λ and σ, conver-
gence speed, different components, and compatibility through ablation analysis.
All the following results are based on binarized ResNet18 for CIFAR100.
λ for AGS and σ for SAD. We first compare AGS with vanilla BNNs and
analyze the λ for AGS. In Fig. 3a, we present the results for nine different settings
of λ, which vary from 0.01 to 0.09. As seen, the appropriate λ can significantly
improve the performance of BNNs, and λ = 0.04 achieves the best performance.
If λ is too small, the sign of the weights can flip inefficiently; while λ is too
large, the sign of the weights can flip dramatically, introducing instability to the
training. Based on this result, we further introduce SAD to AGS (λ = 0.04) to
analyze σ. Figure 3b demonstrates that the performance of the model can be
further improved by identifying “silent weights” and applying additional penalties
to them via SAD (σ = 0.0009).
Convergence for OvSW. To verify that OvSW facilitates the flipping of weight
signs and thus improves the efficiency of convergence, we fix the λ and σ to
0.04 and 0.0009 respectively, and record the top-1 accuracy over the training
epoch from 60 to 500. As shown in Fig. 3c, OvSW effectively accelerates train-
ing convergence and achieves better performance. For example, OvSW achieves
66.37±0.35% top-1 accuracy with only 60 traning epochs, while vanilla BNNs
only reaches 55.28±0.07% and 65.23±0.21% top-1 accuracy with 60 and 120
training epochs respectively. It indicates that OvSW can achieve significant per-
formance gains in scenarios with limited training resources, such as training the
network on edge devices. Meanwhile, although increasing epochs improve the
final performance for both OvSW and vanilla BNNs, OvSW consistently out-
performs the vanilla BNNs.
Components. AGS and SAD promote sign flipping for overall weights and
“silent weights” respectively. To prove that they are orthogonal to each other, we
conduct components ablation study for different modules and show the results
in Tab. 3 (left). As seen, AGS and SAD achieve 69.61±0.22% and 69.45±0.18%
top-1 accuracy respectively and both of them succeed vanilla BNNs. It shows
that they are effective in improving the efficiency of weight signs flipping. By

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 13

Table 3: Left: Ablation study of different components in OvSW. Right: Applying
OvSW as a plug-and-play module to other methods.

AGS SAD mean±std (%)

✗ ✗ 65.23±0.21
✓ ✗ 69.61±0.22
✗ ✓ 69.45±0.18

✓ ✓ 69.77±0.15

Method mean±std (%)

AdaBin 70.56±0.19
AdaBin+OvSW 72.56±0.11

RBNN 67.15±0.23
RBNN+OvSW 69.98±0.13

combining them, OvSW (AGS+SAD) further achieves the best top-1 accuracy
with 69.77±0.15%.
Compatibility. We show the good compatibility of OvSW by inserting it as a
plug-and-play module into the current state-of-the-art methods, including Ad-
aBin [48] and RBNN [30]. The former introduces an adaptive binary set to en-
hance the feature representation of BNNs, while the latter proposes a training-
aware approximation function to reduce the gradient estimation error during
training. Table 3 (right) demonstrates OvSW achieves 72.56±0.11% top-1 accu-
racy on AdaBin and 69.98±0.13% on RBNN, succeeding their original perfor-
mance. This result indicates that OvSW has good compatibility and can effec-
tively enhance the performance of existing methods.

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1

2

3

4

5

6

1

2

3

4

5

(a) Full-precision

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

2

4

6

8

10

2

4

6

8

(b) XNOR-Net++

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1
2
3
4
5
6
7
8

2

4

6

8

(c) OvSW

Fig. 4: 3D visualization of the loss surfaces of ResNet18 on CIFAR100, which is used
to enable comparisons of sharpness/flatness of different methods.

5.4 Loss Landscape Visualization

BNNs restrict the weights and activations to discrete values, which naturally lim-
its the representational capacity of the model and further result in disparate op-
timization landscapes compared to real-valued ones [32]. As illustrated in Fig. 4,
we follow the method in [26] to plot the actual optimization landscape about our
OvSW and compare it with the same architecture to real-valued and XNOR-
Net++. As seen, our OvSW has a significantly smoother loss-landscape and
minor loss elevation compared to XNOR-Net++, which confirms the effective-
ness of OvSW in the BNN optimization.

14 Xiang et al.

Table 4: Comparing OvSW (1-bit) with 32-bit and 16-bit backbones on M1 Pro.

Network W/A Size (MB) Memory Saving Latency (ms) Acceleration

ResNet18
32/32 46.76 - 27.67 -
16/16 23.38 2× 16.65 1.66×
1/1 2.81 16.64× 7.97 3.47×

ResNet34
32/32 87.19 - 48.82 -
16/16 43.60 2× 29.01 1.68×
1/1 4.12 21.16× 14.28 3.42×

5.5 Deployment Efficiency

We implement 1-bit models on the M1 Pro, which features 8 high-performance
Firestorm cores and 2 efficient Icestorm cores in a hybrid design. The Firestorm
cores can be clocked up to 3.2 GHz, while the Icestorm cores can reach 2.1
GHz. Our OvSW shows significant efficiency gains when deployed on real-world
mobile devices, as evidenced by practical speed evaluations. To make our infer-
ence framework BOLT [9] compatible with OvSW, we leverage the ARM NEON
SIMD instruction SSHL. We compare OvSW with 32-bit and 16-bit backbones.
As shown in Tab. 4, OvSW inference speed is substantially faster with the highly
efficient BOLT framework in a single thread. For instance, OvSW achieves an ac-
celeration rate of about 3.47× on ResNet18 compared to its 32-bit counterpart.
For the ResNet34 backbone, OvSW achieves a 3.42× acceleration rate with the
BOLT framework on hardware, which is significant for computer vision applica-
tions on real-world edge devices. At the same time, OvSW can save memory by
a factor of 16.64× and 21.16×, which demonstrates its potential for applications
with limited memory resources.

6 Conclusion

BNN is a crucial method to compress deep learning models and reduce inference
overhead. In this paper, systematically and theoretically, we prove the distri-
bution of gradients is independent of latent weights, which is the root cause of
inefficient updating and performance degradation of BNNs. To this end, Adap-
tive Gradient Scaling (AGS) and Silence Awareness Decaying (SAD), are pro-
posed to Overcome Silent Weights (OvSW) and achieve SOTA performance on
BNNs. Specifically, AGS adaptively scales the gradient based on the distribution
of weights, improving the efficiency of sign flipping for the overall weights. SAD
can effectively measure the states of weight flipping, detect the “silent weights”
and introduce additional penalty to them to facilitate their flipping. Extensive
experiments demonstrate that OvSW can achieve notable performance gains over
the SOTA methods on various datasets and networks. In addition, OvSW has
better convergence efficiency and excellent compatibility, which can be combined
with existing methods to further enhance the performance of BNNs.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 15

References

1. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013) 4, 5

2. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image
recognition without normalization. In: Int. Conf. Mach. Learn. pp. 1059–1071.
PMLR (2021) 8

3. Bulat, A., Tzimiropoulos, G.: Xnor-net++: Improved binary neural networks.
arXiv preprint arXiv:1909.13863 (2019) 4, 5, 11

4. Chen, J., Liu, L., Liu, Y., Zeng, X.: A learning framework for n-bit quantized neu-
ral networks toward fpgas. IEEE Transactions on Neural Networks and Learning
Systems 32(3), 1067–1081 (2020) 2

5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016) 4

6. Ding, R., Chin, T.W., Liu, Z., Marculescu, D.: Regularizing activation distribution
for training binarized deep networks. In: IEEE Conf. Comput. Vis. Pattern Recog.
pp. 11408–11417 (2019) 10

7. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making vgg-style
convnets great again. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 13733–13742
(2021) 2

8. Duan, Y., Chen, X., Xu, H., Chen, Z., Liang, X., Zhang, T., Li, Z.: Transnas-bench-
101: Improving transferability and generalizability of cross-task neural architecture
search. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 5251–5260 (2021) 2

9. Feng, J.: Bolt. https://github.com/huawei-noah/bolt (2021) 14
10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-

curate object detection and semantic segmentation. In: IEEE Conf. Comput. Vis.
Pattern Recog. pp. 580–587 (2014) 1

11. Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., Yan, J.: Differentiable
soft quantization: Bridging full-precision and low-bit neural networks. In: Int. Conf.
Comput. Vis. pp. 4852–4861 (2019) 2, 10

12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Int. Conf. Comput.
Vis. pp. 2961–2969 (2017) 2

13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Int. Conf. Comput. Vis. pp. 1026–
1034 (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015) 1

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 770–778 (2016) 1, 2, 4

16. He, X., Mo, Z., Cheng, K., Xu, W., Hu, Q., Wang, P., Liu, Q., Cheng, J.: Proxybnn:
Learning binarized neural networks via proxy matrices. In: Eur. Conf. Comput. Vis.
pp. 223–241. Springer (2020) 10

17. Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng, K.T., Nusselder, R.:
Latent weights do not exist: Rethinking binarized neural network optimization.
Adv. Neural Inform. Process. Syst. 32 (2019) 2

18. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015) 2

https://github.com/huawei-noah/bolt

16 Xiang et al.

19. Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In:
2014 IEEE international solid-state circuits conference digest of technical papers
(ISSCC). pp. 10–14. IEEE (2014) 2

20. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 2704–
2713 (2018) 2

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 4

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Adv. Neural Inform. Process. Syst. 25 (2012) 1

24. Lee, C., Kim, H., Park, E., Kim, J.J.: Insta-bnn: Binary neural network with
instance-aware threshold. In: Int. Conf. Comput. Vis. pp. 17325–17334 (2023) 4

25. Lee, J., Kim, D., Ham, B.: Network quantization with element-wise gradient scal-
ing. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 6448–6457 (2021) 5

26. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. In: Adv. Neural Inform. Process. Syst. (2018) 13

27. Li, S., Lin, M., Wang, Y., Fei, C., Shao, L., Ji, R.: Learning efficient gans for im-
age translation via differentiable masks and co-attention distillation. IEEE Trans.
Multimedia (2022) 2

28. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: IEEE Conf. Comput. Vis. Pattern Recog.
pp. 1529–1538 (2020) 2

29. Lin, M., Ji, R., Xu, Z., Zhang, B., Chao, F., Lin, C.W., Shao, L.: Siman: Sign-to-
magnitude network binarization. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
10, 11

30. Lin, M., Ji, R., Xu, Z., Zhang, B., Wang, Y., Wu, Y., Huang, F., Lin, C.W.: Rotated
binary neural network. Adv. Neural Inform. Process. Syst. 33, 7474–7485 (2020)
4, 10, 11, 13

31. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
Adv. Neural Inform. Process. Syst. 30 (2017) 4

32. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do adam
and training strategies help bnns optimization. In: Int. Conf. Mach. Learn. pp.
6936–6946. PMLR (2021) 13

33. Liu, Z., Shen, Z., Savvides, M., Cheng, K.T.: Reactnet: Towards precise binary
neural network with generalized activation functions. In: Eur. Conf. Comput. Vis.
pp. 143–159. Springer (2020) 5, 11

34. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhancing
the performance of 1-bit cnns with improved representational capability and ad-
vanced training algorithm. In: Eur. Conf. Comput. Vis. pp. 722–737 (2018) 4, 5,
6, 11

35. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 3431–3440 (2015)
2

36. Luo, J.H., Wu, J.: Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. Pattern Recognition 107, 107461 (2020) 2

37. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural net-
works with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)
11

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks 17

38. Nagel, M., Fournarakis, M., Bondarenko, Y., Blankevoort, T.: Overcoming oscilla-
tions in quantization-aware training. In: Int. Conf. Mach. Learn. pp. 16318–16330.
PMLR (2022) 9

39. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In:
Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett,
R. (eds.) Adv. Neural Inform. Process. Syst. pp. 8024–8035. Curran Associates,
Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf 10

40. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and
backward information retention for accurate binary neural networks. In: IEEE
Conf. Comput. Vis. Pattern Recog. pp. 2250–2259 (2020) 4, 5, 10, 11

41. Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: Zero: Memory optimizations to-
ward training trillion parameter models. In: SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–16. IEEE
(2020)

42. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: Eur. Conf. Comput. Vis.
pp. 525–542. Springer (2016) 2, 4, 5, 11

43. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2016) 1

44. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015) 4

45. Shang, Y., Xu, D., Zong, Z., Yan, Y.: Network binarization via contrastive learning.
arXiv preprint arXiv:2207.02970 (2022) 10, 11

46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 2, 4

47. Su, X., Huang, T., Li, Y., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Prioritized
architecture sampling with monto-carlo tree search. In: IEEE Conf. Comput. Vis.
Pattern Recog. pp. 10968–10977 (2021) 2

48. Tu, Z., Chen, X., Ren, P., Wang, Y.: Adabin: Improving binary neural networks
with adaptive binary sets. In: Eur. Conf. Comput. Vis. pp. 379–395. Springer (2022)
4, 13

49. Wu, X.M., Zheng, D., Liu, Z., Zheng, W.S.: Estimator meets equilibrium perspec-
tive: A rectified straight through estimator for binary neural networks training. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
17055–17064 (2023) 5

50. Xu, S., Li, Y., Ma, T., Lin, M., Dong, H., Zhang, B., Gao, P., Lu, J.: Resilient
binary neural network. In: AAAI. vol. 37, pp. 10620–10628 (2023)

51. Xu, S., Li, Y., Wang, T., Ma, T., Zhang, B., Gao, P., Qiao, Y., Lü, J., Guo, G.:
Recurrent bilinear optimization for binary neural networks. In: Eur. Conf. Comput.
Vis. pp. 19–35. Springer (2022)

52. Xu, Y., Han, K., Xu, C., Tang, Y., Xu, C., Wang, Y.: Learning frequency domain
approximation for binary neural networks. Adv. Neural Inform. Process. Syst. 34,
25553–25565 (2021) 10, 11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

18 Xiang et al.

53. Xu, Z., Lin, M., Liu, J., Chen, J., Shao, L., Gao, Y., Tian, Y., Ji, R.: Recu:
Reviving the dead weights in binary neural networks. In: Int. Conf. Comput. Vis.
pp. 5198–5208 (2021) 3, 4, 5, 10, 11

54. Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., Hua, X.s.:
Quantization networks. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 7308–
7316 (2019) 2

55. Yang, Z., Wang, Y., Han, K., Xu, C., Xu, C., Tao, D., Xu, C.: Searching for low-
bit weights in quantized neural networks. Adv. Neural Inform. Process. Syst. 33,
4091–4102 (2020) 10

56. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888 (2017) 8

57. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In: Eur. Conf. Comput. Vis. pp. 365–
382 (2018) 2

58. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices. In: IEEE Conf. Comput. Vis. Pattern
Recog. pp. 6848–6856 (2018) 2

59. Zhao, J., Yang, L., Zhang, B., Guo, G., Doermann, D.S.: Uncertainty-aware binary
neural networks. In: IJCAI. pp. 3441–3447 (2021) 4

60. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016) 10

61. Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X., Yan, J.: Towards
unified int8 training for convolutional neural network. In: IEEE Conf. Comput.
Vis. Pattern Recog. pp. 1969–1979 (2020) 2

	OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks

