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We provide complementary information on the model architecture and training,
additional results, and interpretability examples:

1. Sec. 1: Implementation details around pretraining, aggregator architecture,
and graph optimal transport loss.

2. Sec. 2: Detailed descriptions of datasets used for pretraining and the down-
stream evaluations.

3. Sec. 3: Supervised Multiple Instance Learning (MIL) baselines.
4. Sec. 4 and 5: Additional results on downstream breast and kidney tasks.
5. Sec. 6: Ablations of loss and aggregator architecture.
6. Sec. 7: Additional interpretability examples of breast cancer cases.
7. Sec. 8: Limitations of Madeleine.

1 Implementation details

1.1 Contrastive loss

Formally, we define a batch of B cases, where each case includes K pairs (hHE
i ,hsk

i )Kk=1,
where sk represents a non-H&E stain. The objective LinfoNCE is given by:
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where the first and second terms represent the H&E-to-sk and sk-to-H&E con-
trastive loss, respectively. τ represents the Softmax temperature parameter.
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1.2 Multi-head attention architecture

Madeleine uses a multi-head attention-based Multiple Instance Learning (MIL)
architecture. Before applying each head, the patch embeddings are passed through
a common pre-attention network consisting of 3 layers with 512 hidden units,
layer normalization, GELU activation, and 0.1 dropout. Each attention head
comprises a gated-attention network, consisting of a 2-layer MLP with 512 hid-
den units with Softmax activation and 0.25 dropout. The attention score ami,j for
each patch derived from the mth attention head of M total heads are defined as:

ami,j =
exp

(
wm(tanh(VmH̃HE

i,j )⊙ sigm(UmH̃HE
i,j )
)∑NHE

j′=1 exp
(
wm(tanh(VmH̃HE

i,j′)⊙ sigm(UmH̃HE
i,j′)

) , ∀m. (2)

The output of each head is concatenated, and a post-attention network con-
sisting of two linear layers with 2048 and 512 units is applied to get a slide
embedding for each stain.

1.3 Additional information on the GOT objective

Additional details of the Graph Optimal Transport objectives are as follows,

1) Graph building: Each stain-specific graph is defined by instantiating 256 ran-
domly sampled patches as nodes from the slide (sampling is done as each slide
can have > 10, 000 patches, making it computationally infeasible to calculate
the complete optimal transport-based loss). Then, an edge is built between two
nodes (i.e., two patches) if the cosine similarity between their patch embeddings
is larger than a threshold. The threshold is dynamically constructed and is set
at the lowest similarity value, increasing by 0.1 times the difference between the
highest and lowest similarity values.

2) LWD: Denoting T ∈ RNHE×Nsk
+ as the transport plan, we can minimize the

Wasserstein Distance (WD) between distributions p̂HE and p̂sk by finding the
optimal transport plan

LWD(p̂HE, p̂sk) = min
T

∑
j

∑
m

Tj,m · C(vHE
j , vskm ), (3)

such that
∑NHE

j=1 Tj,m = 1/Nsk ,∀m and
∑Nsk

m=1 Tj,m = 1/NHE,∀j. The cost be-
tween cross-modal embeddings C(vHE

j , vskm ) is computed with the cosine distance
metric.

3) LGWD: In addition to the node-matching with LWD, we also wish to match
the graph topology via comparing the edge distance between stain-specific graphs.
Denoting T̃ ∈ RNHE×Nsk

+ as the transport plan as before,

LGWD(p̂HE, p̂sk) = min
T

∑
j,j′,m,m′

T̃j,mT̃j′,m′ · C(vHE
j , vskm , vHE

j′ , vskm′), (4)
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such that
∑NHE

j=1 T̃j,m = 1/Nsk ,∀m and
∑Nsk

m=1 T̃j,m = 1/NHE,∀j. The cost
between the pairs (vHE

j , vHE
j′ ) and (vskm , vskm′) is given as C(vHE

j , vskm , vHE
j′ , vskm′) =

∥c(vHE
j , vHE

j′ )−c(vHE
m , vHE

m′ )∥, with c(·, ·) representing the cosine similarity metric.

1.4 Madeleine pretraining

We pretrained Madeleine with AdamW optimizer and a batch size of 90 for 120
epochs. The learning rate is linearly ramped up during a 5-epoch warmup from
1e-9 to 1e-4. Then, we employed a cosine scheduler to reach the final learning
rate of 1e-8 after 120 epochs. To increase training diversity and simplify batch
processing, we sample a fixed and random subset of patches per slide, specifically
2048 patch embeddings. In slides with fewer patches, we perform random over-
sampling. All training settings are summarized in Appendix Table 1.

Table 1: Madeleine pretraining and architectural hyperparameters. 3 ×
24GB NVIDIA 3090Ti GPUs were used for training. Batch size refers to the total
batch size across all GPUs.

Hyperparameter Value

Heads 4
Head activation GELU
Patch embedding dimension 512
Pre-attention hidden dimension 512
Patches sampled (training) 2048
Stain encoding dimension 32

AdamW β (0.9, 0.999)
Batch size 90
Warmup epochs 5
Max epochs 120
Learning rate schedule Cosine
Learning rate (start) 0
Learning rate (post warmup) 1e-4
Learning rate (final) 1e-8
Weight decay 0.01
infoNCE Temperature 0.001
Patches sampled for GOT 256
GOT γ 0
Automatic mixed precision bloaft16
Early stopping criteria SmoothRank [3]
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1.5 Early stopping with rank analysis

Following [3], we use the rank as a measure of the quality of the underlying
latent space learned during Madeleine pretraining and save the model weights
from the highest rank iteration (no models are saved during the first 20 epochs
of training). We compute the rank as the entropy of the d (assuming d < n) L1-
normalized singular values of the slide embedding matrix H ∈ Rn×d. Specifically,
we have:

RankMe(H) = exp(−
d∑

k=1

pk log(pk)) , (5)

pk =
σk(H)

|σ(H)|1
+ ϵ (6)

where σk denotes the k−th singular of H (sorted from large to low), and ϵ is
small constant set to 1e− 7 for numerical stability.

1.6 Additional information on evaluation

Few-shot evaluation is based on linear probing and prototyping classification.
Linear probing Linear probing is implemented using a logistic regression

objective based on sklearn. We use the default sklearn L2 regularization (set to
1.0) with an lbfgs solver. We set the maximum number of training iterations to
10,000 for all experiments.

Prototyping We define positive and negative slide “prototypes” p+, p− as
the average of k (k=1,5,10,25) slide embeddings using downstream task labels.
Subsequently, we measure the similarity between a query slide embedding qi
and the two prototypes using the L2 distance. We apply this evaluation for
morphological and molecular subtyping, and allograft rejection prediction.
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2 Datasets

Overall, our study comprises a total of 23,580 whole slide images (WSIs) from
two organs (breast and kidney) and includes eight different immunohistochem-
istry and special stains. We use 16,281 of these WSIs for pretraining and 7,299
for downstream evaluation. We now detail all the sources of the WSIs used in
the study.

Acrobat (multi-stain, pretraining) Acrobat is a multi-stain dataset origi-
nally proposed as part of the AutomatiC Registration Of Breast cAncer Tis-
sue MICCAI challenge [12, 13]. It comprises 4,211 whole slide images (WSI)
sourced from 1,153 patients diagnosed with primary breast cancer. These WSIs
are available at a magnification of 10× (equivalent to 1µm/px) and show tis-
sue resections, which have been processed using either hematoxylin and eosin
(H&E) staining or immunohistochemistry (IHC). For every patient included in
the dataset, there is one WSI that has been stained with H&E, along with a
minimum of one and a maximum of four WSIs of tissue from the same tumor
that has been stained with ER (N=844), PR (N=837), HER2 (N=534), or KI67
(N=843). The collection of slides was digitized at Karolinska Institutet in Stock-
holm, Sweden, during routine clinical workflows. Data can be downloaded at
https://acrobat.grand-challenge.org/data/.

TCGA Breast (H&E, downstream) We collected N=1,041 primary cases
from the TCGA Breast Invasive Carcinoma (BRCA) cohort, which comprises
N=831 Invasive Ductal Carcinoma (IDC) and N=210 Invasive Lobular Carci-
noma (ILC). For each case, we downloaded the corresponding disease-specific
survival and associated censorship status, subtype (IDC and ILC), and molecu-
lar status: ER (N=996; 780 positive, 216 negative), PR (N=993; 678 positive, 315
negative), and HER2 (N=693; 158 positive, 535 negative) from UCSC Xena [4]
and cBioPortal [1]. WSIs can be downloaded from Genomics Data Commons
(https://portal.gdc.cancer.gov/).

BCNB (H&E, downstream) The Cancer Core-Needle Biopsy WSI (BCNB)
dataset comprises N=1,058 patients, with a single side associated with each pa-
tient [17]. BCNB includes the molecular status of each patient: ER (N=1,058;
831 positive, 227 negative), PR (N=1,058; 790 positive, 268 negative), HER2
(1,058; 277 positive, 781 negative), and KI67 (1,058; 156 positive, 902 negative).
The dataset was originally collected from hospital systems in Beijing, China,
and is made publicly available at (https://paperswithcode.com/dataset/
bcdalnmp).

AIDPATH (H&E, downstream) AIDPATH dataset contains 50 breast can-
cer WSIs stained with H&E. The dataset additionally provides HER2 expression
(positive or negative, where equivocal cases are analyzed with FISH) (7 positive,
41 negative) and KI67 expression (provided as a percentage). We convert the
continuous KI67 expression values to a binary task using 50% as a threshold for

https://acrobat.grand-challenge.org/data/
https://portal.gdc.cancer.gov/
https://paperswithcode.com/dataset/bcdalnmp
https://paperswithcode.com/dataset/bcdalnmp
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IHC status prediction (19 positive, 31 negative). The dataset is made publicly
available at https://mitel.dimi.uniud.it/aidpath-db.

BWH Breast (H&E, downstream) We collected an invasive breast cancer
cohort (N=1,265) from the archives of Hopsital-A, which comprises N=982 IDC
and N=283 ILC cases. All cases were primary breast cancers and included resec-
tions and biopsies. All slides were scanned at 20× or 40× magnification. Using
patient reports, we additionally collected molecular status: ER (N=874; 613 pos-
itive, 261 negative), PR (N=874; 504 positive, 370 negative), and HER2 (N=816;
151 positive, 665 negative).

MGH Breast (Estrogen and Progesterone receptor stains, downstream)
We use another private breast cohort for IHC quantification of ER abundance
(N=962) and PR abundance (N=1,071). We frame both ER and PR quantifica-
tion as 3- and 6-class problems. For a detailed breakdown, see Appendix Table 2.

BWH Kidney (multi-stain, pretraining) We collected a private renal trans-
plant cohort comprising kidney biopsies from 1,069 renal transplant cases. Each
case includes one to three tissue blocks, where each block consists of one to two
H&E-stained (N=4,638) and one to two periodic acid-Schiff (PAS) (N=4,630)
slides, one Jones-stained slide (N=2,326) and one Trichrome-stained slide (N=2,328).
In total, each case includes 6 to 18 slides. We held out 20% of the cohort
(210 cases, 463 H&E slides) as an independent test set and used the rest for
Madeleine pretraining. All slides were processed at 20×. We use H&E slides
of the held-out cases to screen for Antibody-mediated rejection (AMR, 2 class;
107 positive, 356 negative) and quantify Interstitial Fibrosis and Tubular Atro-
phy (IFTA, 3 classes; mild : 292,moderate : 104, advanced : 67). As each case
includes several H&E slides, we define two sub-tasks: “single-slide" prediction,
where we use a single slide per case (N=463 H&E slides), and “all-slides" pre-
diction, where we use all available slides per case (N=305 H&E slides).

Table 2: MGH Breast label distribution.

Model/Data ER PR
C = 6 C = 3 C = 6 C = 3

0 175 335 168 337
< 1% 160 169
1− 10% 120 292 219 389
10− 50% 172 170
50− 90% 176 335 175 344
> 90% 159 169

https://mitel.dimi.uniud.it/aidpath-db
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3 Baselines

3.1 Supervised multiple instance learning baselines

We provide a detailed description of the four multiple-instance learning (MIL)
approaches used in the study.

1. ABMIL [6]: Attention-based multiple instance learning (ABMIL) is a popu-
lar MIL architecture. ABMIL operates as follows: first, it assigns patch-level
importance scores through a gated-attention mechanism. Attention scores
are used to weigh patch embeddings, which are subsequently summed to
build a slide representation used for classification.

2. TransMIL [10]: Transformer-based multiple instance learning (TransMIL)
replaces the gated attention from ABMIL with a low-rank Transformer.
TransMIL first squares the sequence of low dimensional representations then
applies a Pyramidal Positional Encoding module to encode spatial informa-
tion and finally uses Nystrom attention [16] to approximate self-attention
scores between patches. The CLS token is finally taken as the slide-level
representation.

3. Information Bottleneck MIL [8]: Information bottlenecks (IB) are used
to compress the WSI by removing uninformative instances (patch embed-
dings). IB aims to find patch instances that minimize the mutual informa-
tion between the distribution of patches and patch representations. By only
keeping such instances, [8] postulate that the most informative patches can
be retained, which can then be aggregated into a slide embedding.

4. Low-rank MIL [15]: While TransMIL tries to learn slide-level representa-
tions by encoding patch correlations, it does not leverage the redundancy
in WSIs, which [15] used to propose iterative low-rank attention (ILRA).
Each ILRA block consists of two layers: one aims to project the sequence of
patch representations to a low-rank space by cross-attending it with a latent
matrix, and the second reconstructs the input. Performing max-pooling over
the output of k such layers yields a low-rank slide-level representation.

3.2 Slide-level baselines

1. Mean: The Mean baseline is defined by taking the arithmetic average of
the patch embedding constituting the slides.

2. HIPT [2]: Hierarchical Image Pyramid Transformer (HIPT) proposes a 3-
level slide encoding schema, where each level is independently trained with a
Transformer. The first level transforms patches into patch embeddings, which
are then aggregated in region embeddings and finally into a slide embedding.

3. GigaSSL [7]: GigaSSL, similar to the Intra baseline, is a method for learn-
ing slide representations based on different views of the same slide. It creates
different views of a slide by sampling patches and applying augmentations
such as random cropping. The different views are then pulled using a con-
trastive loss to learn the slide representation. Author-provided GigaSSL slide
embeddings for TCGA Breast were taken from https://data.mendeley.
com/datasets/d573xfd9fg/3.

https://data.mendeley.com/datasets/d573xfd9fg/3
https://data.mendeley.com/datasets/d573xfd9fg/3
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4. GigaPath [18]: GigaPath is a concurrent work to ours scaling intra-SSL to
large cohorts. It includes its own pan-cancer patch encoder that was pre-
trained on 171,000+ WSIs (> 30,000 patients) using DINOv2. The slide
encoder was trained using a LongNet model with masked auto encoding.
We used the official GigaPath demo3 using (1) 256×256-pixel patching at
20× and the latest HuggingFace tile and slide encoders. GigaPath-(Mean)
is defined by taking the average of all patch embeddings, and GigaPath is
defined by building a slide embedding using global pooling of all LongNet
tokens at the 11th Transformer layer.

3 https://github.com/prov-gigapath/prov-gigapath/blob/main/demo/run_gigapath.ipynb
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4 Additional Breast results

Table 3: Few-shot molecular status prediction from H&E in TCGA Breast.
Evaluation using Macro-AUC. Standard deviation reported over ten runs. All results
for k = 25 training samples per class. Madeleine refers to InfoNCE + GOT. Besides
HIPT and GigaSSL, all models use the same patch encoder. GigaSSL embeddings for
BWH and BCNB cohorts were not available. Best in bold, second best is underlined.

Model/Data TCGA (↑) BCNB (↑) BWH (↑)
ER PR HER2 ER PR HER2 ER PR HER2

M
IL

ABMIL [6] 82.7 72.8 62.4 81.4 75.9 64.5 65.4 62.6 57.0
± 3.1 ± 2.5 ± 3.3 ± 4.5 ± 2.9 ± 3.4 ± 3.5 ± 2.6 ± 2.4

TransMIL [10] 75.1 63.5 55.0 68.7 63.4 56.0 54.8 54.3 51.8
± 5.5 ± 7.1 ± 2.9 ± 7.0 ± 8.2 ± 4.1 ± 4.2 ± 3.0 ± 2.7

IB-MIL [8] 81.6 73.1 62.6 81.0 76.7 64.3 65.8 61.7 55.2
± 2.8 ± 2.5 ± 2.6 ± 2.8 ± 2.2 ± 4.7 ± 3.1 ± 2.5 ± 3.7

ILRA [15] 82.3 74.0 62.2 79.0 74.2 63.6 63.2 59.9 55.1
± 2.7 ± 2.4 ± 2.6 ± 7.2 ± 1.9 ± 3.9 ± 3.9 ± 4.7 ± 3.5

L
in

ea
r

p
ro

b
e

Mean 79.4 68.5 59.6 78.5 72.4 64.7 62.8 60.7 55.8
± 4.7 ± 4.2 ± 3.1 ± 3.2 ± 3.8 ± 4.3 ± 2.8 ± 3.6 ± 4.3

Intra 80.1 70.2 60.0 79.6 75.1 67.1 64.0 60.9 55.9
± 3.3 ± 3.2 ± 2.5 ± 2.7 ± 2.7 ± 3.7 ± 2.2 ± 3.1 ± 3.4

HIPTCLS-4k [2] 74.1 63.9 61.9 65.3 62.2 54.0 60.3 57.0 52.9
± 3.0 ± 2.9 ± 3.7 3.7 4.4 3.0 ± 3.6 ± 3.6 ± 3.7

GigaSSL [7] 77.7 69.4 59.9 – – – – – –
± 3.1 ± 2.8 ± 3.2 – – – – – –

GigaPath-(Mean) [18] 77.7 68.1 58.3 76.2 71.0 63.7 64.6 59.3 54.4
± 4.8 ± 2.8 ± 3.4 ± 3.9 ± 3.9 ± 3.8 ± 2.2 ± 3.1 ± 3.4

GigaPath [18] 76.0 66.7 57.4 74.1 68.9 61.8 63.0 58.2 53.2
± 5.0 ± 2.7 ± 3.4 ± 3.7 ± 4.0 ± 3.7 ± 2.4 ± 3.2 ± 3.4

Madeleine 84.7 74.7 61.3 84.4 79.2 68.5 68.7 65.1 60.3
± 2.1 ± 3.4 ± 2.4 ± 1.3 ± 2.3 ± 3.1 ± 1.8 ± 3.2 ± 3.8

Madeleine-SE 84.6 74.6 62.5 81.8 76.9 69.8 68.5 64.3 59.7
± 2.2 ± 2.8 ± 2.6 ± 2.0 ± 2.8 ± 2.3 ± 2.0 ± 2.2 ± 3.9

P
ro

to
ty

p
in

g

Mean 79.6 70.8 61.1 76.9 74.8 65.5 62.5 58.7 54.3
± 4.0 ± 2.0 ± 3.4 ± 2.2 ± 2.7 ± 2.9 ± 2.8 ± 3.9 ± 4.2

Intra 79.9 71.6 60.3 77.7 74.7 66.8 63.3 59.4 54.2
± 2.8 ± 1.4 ± 2.4 ± 1.8 ± 2.1 ± 3.2 ± 2.7 ± 3.8 ± 4.4

HIPTCLS-4k [2] 69.9 64.9 60.7 56.4 56.2 53.3 60.7 57.0 55.0
± 2.9 ± 2.1 ± 3.3 ±2.8 ±4.1 ±2.3 ± 2.0 ± 2.6 ± 2.7

GigaSSL [7] 80.0 71.5 62.8 – – – – – –
± 2.4 ± 2.0 ± 2.4 – – – – – –

GigaPath-(Mean) [18] 71.7 66.1 56.4 69.7 68.3 61.6 62.0 58.8 53.8
5.6 3.8 2.6 ± 3.2 ± 5.1 ± 3.7 ± 2.7 ± 2.8 ± 3.8

GigaPath [18] 70.5 63.9 56.4 68.5 66.5 59.4 60.4 57.4 52.5
5.4 2.7 1.9 ± 3.3 ± 4.8 ± 4.0 ± 2.9 ± 2.4 ± 3.4

Madeleine 85.1 76.4 62.6 83.0 80.7 68.5 68.2 65.7 57.1
± 1.4 ± 1.2 ± 2.9 ± 1.6 ± 1.8 ± 2.2 ± 2.7 ± 3.8 ± 3.2

Madeleine-SE 83.3 74.9 62.9 80.5 77.3 69.8 67.2 64.7 56.9
± 1.5 ± 1.1 ± 3.1 ± 1.6 ± 1.5 ± 2.0 ± 2.6 ± 3.2 ± 3.8
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Table 4: IHC quantification. We quantify the abundance of estrogen (ER) (N=962)
and progesterone (PR) (N=1,071) receptor expression in 3-class and 6-class scenar-
ios using IHC. We compare Madeleine fine-tuned against Madeleine architecture
trained from scratch and Mean. Results using 5-fold cross-validation with k=25 exam-
ples per class and evaluated using macro-AUC. Best in bold, second best is underlined.

Model/Data ER (↑) PR (↑)
C = 3 C = 6 C = 3 C = 6

Mean (linear probe) 74.6 ± 1.9 69.5 ± 1.2 73.1 ± 1.8 69.1 ± 1.0
ABMIL (Random) 82.1 ± 2.0 83.4 ± 1.3 83.8 ± 1.4 83.9 ± 1.4
ABMIL (FineTune) 89.6 ± 1.3 86.0 ± 0.8 89.4 ± 0.9 85.5 ± 0.9

Table 5: Survival outcome prediction in TCGA Breast. Models are trained
using site-stratified 5-fold cross-validation. Evaluation using Concordance index (c-
index). Besides HIPT, GigaSSL and GigaPath, all models use the same patch encoder.
Best in bold, second best is underlined.

Model/Data TCGA Breast (↑)

M
IL

ABMIL [6] 0.669 ± 0.073
TransMIL [10] 0.697 ± 0.046
IB-MIL [8] 0.612 ± 0.088
ILRA [15] 0.657 ± 0.067

S
li
d
e

le
ve

l

Mean 0.687 ± 0.079
Intra 0.692 ± 0.069
HIPTCLS-4k [2] 0.547 ± 0.078
GigaSSL [7] 0.530 ± 0.038
GigaPath-(Mean) [18] 0.587 ± 0.091
GigaPath [18] 0.521 ± 0.083
Madeleine 0.715 ± 0.041
Madeleine-SE 0.696 ± 0.073

Table 6: Molecular subtyping from H&E. Detection of HER2 and KI67 status
(binary) from H&E in AIDPATH and BCNB datasets. Results of Madeleine and
Madeleine-SE obtained using linear probing. “SL" stands for slide level. Results using
5-fold stratified cross-validation evaluated using macro-AUC. Best in bold, second best
is underlined.

Model/Data HER2 (↑) KI67 (↑)
AIDPATH AIDPATH BCNB

M
IL

ABMIL [6] 81.1 ± 8.9 89.2 ± 7.7 81.9 ± 3.7
TransMIL [10] 46.4 ± 10.7 65.1 ± 19.9 74.9 ± 10.1
IB-MIL [8] 73.2 ± 11.1 87.7 ± 6.1 81.6 ± 3.5
ILRA [15] 76.1 ± 7.8 84.9 ± 4.9 78.8 ± 3.6

S
L

Mean 77.4 ± 20.5 80.2 ± 2.8 79.6 ± 4.0
Intra 85.8 ± 17.4 80.2 ± 5.9 80.9 ± 3.6
Madeleine 81.5 ± 9.9 91.3 ± 4.9 81.4 ± 4.2
Madeleine-SE 92.5 ± 7.2 83.0 ± 8.6 82.0 ± 3.6
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5 Additional kidney results

Table 7: Kidney rejection tasks. Linear probe and prototyping for k = 50 reported.
HIPT and GigaSSL are not available for non-cancer datasets. Best in bold, second best
is underlined.

Model/Data IFTA (↑) AMR (↑)
Slide Patient Slide Patient

M
IL

ABMIL [6] 74.5 78.2 69.6 71.2
± 1.9 ± 4.9 ± 3.7 ± 5.8

TransMIL [10] 57.5 60.4 55.9 55.4
± 3.7 ± 6.6 ± 5.4 ± 10.5

IB-MIL [8] 73.0 80.0 67.4 69.6
± 3.7 ± 5.1 ± 4.3 ± 8.5

ILRA [15] 70.9 77.5 62.4 63.5
± 5.0 ± 4.5 ± 6.8 ± 10.4

L
in

ea
r

p
ro

b
e

Mean 73.6 79.3 67.8 70.9
± 2.6 ± 2.1 ± 3.2 ± 3.2

Intra 74.5 80.2 67.9 72.0
± 2.2 ± 1.8 ± 3.1 ± 3.2

Madeleine 75.3 80.9 71.2 73.8
± 2.5 ± 2.3 2.9 ± 3.2

Madeleine-SE 76.1 82.4 70.0 74.2
± 2.0 ± 1.8 ± 2.9 ± 3.5

P
ro

to
ty

p
in

g

Mean 70.2 75.0 63.8 67.5
± 2.4 ± 2.8 ± 6.0 ± 8.1

Intra 70.6 75.7 63.4 66.5
± 2.5 ± 3.2 ± 4.3 ± 5.4

Madeleine 72.1 77.0 66.7 71.2
± 2.4 ± 3.0 ± 3.7 ± 4.3

Madeleine-SE 73.1 79.8 65.5 70.4
± 2.4 ± 2.0 ± 4.1 ± 5.4
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6 Additional ablations

Table 8: Ablation study of Madeleine feature extractor. Survival was evalu-
ated using c-index and site-stratified 5-fold cross-validation. Subtyping and molecular
status prediction were evaluated using macro-AUC and prototyping evaluation (k=25)
repeated five times with fixed seed across baselines. Standard deviation reported over
the 5 runs. Madeleine refers to pretraining on breast cancer using InfoNCE + GOT
without stain encoding. CONCH is the patch encoder of the Vision+Language model
proposed in [9]. Best in bold, second best is underlined.

Model/Data TCGA BWH TCGA BCNB Avg
Survival (↑) Subtyping (↑) PR (↑) ER (↑)

CTransPath+Mean 68.6 81.1 65.0 67.7 70.6
± 4.0 ± 3.9 ± 1.5 ± 2.1

CONCH+Mean 68.7 86.2 70.8 76.9 75.6
± 7.9 ± 7.9 ± 3.0 ± 2.0

CTransPath+Madeleine 65.4 83.1 66.9 68.6 71.0
± 6.5 ± 4.6 ± 1.6 ± 3.5

CONCH+Madeleine 71.5 94.9 76.4 83.0 81.5
± 4.1 ± 0.9 ± 1.9 ± 1.6
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Table 9: Ablation study of Madeleine architecture. Survival was evaluated
using c-index and site-stratified 5-fold cross-validation. Subtyping and molecular sta-
tus prediction were evaluated using macro-AUC and prototyping evaluation (k=25)
repeated five times with fixed seed across baselines. Standard deviation reported over
the 10 runs. “MH” refers to multi-head attention, “SH” to single-head attention, and
“SE” to stain encoding. Madeleine refers to pretraining on breast cancer using In-
foNCE + GOT. Best in bold, second best is underlined.

Model/Data TCGA BWH TCGA BCNB Avg
Survival (↑) Subtyping (↑) PR (↑) ER (↑)

Madeleine-SH 70.1 91.8 75.0 80.5 79.4
± 7.1 ± 1.7 ± 1.4 ± 2.5

Madeleine w. TransMIL 55.7 90.8 75.6 82.1 76.5
± 7.8 ± 1.7 ± 1.3 ± 1.3

Madeleine w. SE 69.6 95.8 74.9 80.5 80.2
± 7.3 ± 0.8 ± 1.1 ± 1.6

Madeleine-MH 71.5 94.9 76.4 83.0 81.5
± 4.1 ± 0.9 ± 1.2 ± 1.6
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7 Additional interpretability examples

H&E MADELEINE (4 heads)

5 mm

6 mm

6 mm 6 mm 6 mm 6 mm

6 mm

6 mm 6 mm 6 mm

6 mm

5 mm 5 mm 5 mm

5 mm

Site: Breast Head: 3 Head: 4 Average of all headsHead: 1 Head: 2

5 mm 5 mm

6 mm 6 mm

6 mm 6 mm

5 mm

6 mm

6 mm

H&E H&E H&EMADELEINE (1 head) MADELEINE (1 head) MADELEINE (1 head)

A.

B.

Fig. 1: Additional heatmap examples obtained with Madeleine A. Atten-
tion weights of multi-headed (frozen) ABMIL slide encoder pretrained with Madeleine
overlaid on three randomly chosen samples for TCGA Breast cohort. We show all heads
and the average of heads. B. Attention weights of a single head (frozen) ABMIL slide
encoder pretrained with Madeleine overlaid on three randomly chosen samples for
TCGA Breast cohort. Multi-headed ABMIL trained with Madeleine can focus on
different morphologies, whereas single-headed ABMIL focuses only on tumor morphol-
ogy.
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8 Limitations

Madeleine is a multimodal pre-training strategy for slide representation learn-
ing. It operates under the assumption that representation learning of H&E im-
ages can be guided by other stains (immunohistochemistry and special stains).
This premise is directly inspired by the standard practice in clinical settings,
where H&E staining is routinely performed as the gold standard procedure,
along with complementary stains. Though this approach is principled, we high-
light some limitations of our study and this methodology more broadly.

Data scaling Clinical practice is complex and ever evolving. Every year, new
IHC and special stains become available, some of which are integrated in the
workflow and can be used on a case-by-case basis. In breast cancer, our study
focuses on four IHC stains (the most common ones), whereas many more can
be employed, such as Epidermal Growth Factor Receptor (EGFR), P53, and
E-Cadherin. As each stain offers a different view of a biomarker, increasing the
number of stains would make the training signal richer and the resulting repre-
sentation potentially better.

Lack of large public datasets Acrobat is the only large-scale public dataset
with H&E and IHC stains. Therefore, without relying on proprietary data, such
method cannot be scaled to more stains and other types of cancer. While the
NADT-Prostate [14] cohort includes H&E and IHC, it remains limited by its
size; for example, 14/18 stains provided have less than 100 examples, preventing
efficient pre-training in prostate adenocarcinoma. In addition, TCGA includes
known limitations such as site-specific biases [5] and demographic biases [11].
Despite these limitations, TCGA remains the largest public resource for cancer
prognostication and survival analyses.

Model scaling Madeleine is trained using a combination of a global objective
using contrastive learning and a local objective using graph optimal transport
(GOT). Using our current hardware (3× 3090 GPUs), we are limited by the max-
imum batch size for contrastive learning, even using efficient parallelization and
bfloat16 quantization. In addition, computing GOT is computationally expen-
sive, with significant memory requirements. Because of this constraint, we must
use 256 patch embeddings (or tokens) per stain for computing GOT. Scaling to
more tokens would allow finer-grained matching between stains. Local alignment
through GOT also requires morphological overlap between tissue sections used
for different stains.
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