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Abstract. Developing self-supervised learning (SSL) models that can
learn universal and transferable representations of H&E gigapixel whole-
slide images (WSIs) is becoming increasingly valuable in computational
pathology. These models hold the potential to advance critical tasks such
as few-shot classification, slide retrieval, and patient stratification. Ex-
isting approaches for slide representation learning extend the principles
of SSL from small images (e.g., 224×224 patches) to entire slides, usually
by aligning two different augmentations (or views) of the slide. Yet the
resulting representation remains constrained by the limited clinical and
biological diversity of the views. Instead, we postulate that slides stained
with multiple markers, such as immunohistochemistry, can be used as
different views to form a rich task-agnostic training signal. To this end,
we introduce Madeleine, a multimodal pretraining strategy for slide
representation learning. Madeleine is trained with a dual global-local
cross-stain alignment objective on large cohorts of breast cancer sam-
ples (N=4,211 WSIs across five stains) and kidney transplant samples
(N=12,070 WSIs across four stains). We demonstrate the quality of slide
representations learned by Madeleine on various downstream evalua-
tions, ranging from morphological and molecular classification to prog-
nostic prediction, comprising 21 tasks using 7,299 WSIs from multiple
medical centers. Code at https://github.com/mahmoodlab/MADELEINE.

Keywords: Computational pathology; Slide Representation Learning

1 Introduction

Self-supervised learning (SSL) via multimodal pretraining is increasingly adopted
in medical AI for constructing universal image representations that can be used
for diagnosis, prognosis, and treatment response prediction [2, 13, 38]. The core
idea is to align an image (e.g., a histology region-of-interest of a tumor) with
other corresponding modalities (e.g., the morphological text description of the
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tumor) into a shared latent space via contrastive learning or other similarity
matching losses [54]. Intuitively, the richer the contrasting modality employed,
the more detailed and nuanced the image representations become, enabling bet-
ter generalization and transferability to downstream tasks.

In computational pathology [62], multimodal pretraining has mostly focused
on building visual-language models of small images [21,25], capitalizing on their
success in computer vision [54, 69]. However, the scale of whole-slide images
(WSIs), often exceeding 100,000 × 100,000 pixels at 20× magnification (0.5
µm/pixel), presents a significant challenge for adapting such techniques to pathol-
ogy. To address this issue, most intra-modal and multimodal SSL methods focus
on embedding small patches (e.g., 224 × 224), which can then be aggregated
using multiple instance learning (MIL) for downstream tasks [26, 48, 58]. Alter-
natively, the aggregation stage can also be pretrained via SSL to create a slide
embedding from the patch embeddings [12,39,49,63]. The hierarchical construc-
tion from patches to patch embeddings to a slide embedding in a two-stage
training pipeline enables self-supervised slide representation learning, without
utilizing labels from pathologists or learning task-specific representations.

However, most existing slide representation learning methods are intra-modal,
thus limiting the richness and diversity of the training signal to learning visual
invariances within the slide [12, 39]. Instead, we propose to leverage additional
modalities that naturally form clinically and biologically relevant pairs suitable
for pretraining. In this study, we hypothesize that WSIs stained with various
markers, such as immunohistochemistry (IHC), can constitute a strong task-
agnostic training signal for multimodal pretraining. Each stain can be seen as
a different view of the H&E slide by highlighting spatially-resolved expression
levels of relevant markers. In addition, unlike bulk gene expression data or text
captions [29], H&E and other stains offer fine-grained morphological correspon-
dences, which can be leveraged for enhanced representational power.

To this end, we introduce Madeleine, an SSL approach for multistain-
guided slide representation learning. Madeleine uses a multihead attention-
based MIL [26, 48] to encode pre-extracted patch embeddings into a slide em-
bedding. Madeleine is pretrained on large collections of multistain tissue using
a dual global-local cross-stain objective. The global objective, based on a sym-
metric contrastive loss [15], learns slide-level correspondences between the H&E
slide and the other stains. This alignment guides the H&E embedding to encap-
sulate the global morphological composition of the tissue. The local objective,
based on the Graph Optimal Transport framework [11, 51], learns patch-level
correspondences between the H&E and the other stains, thereby enabling cross-
stain matching of fine-grained morphological features. The resulting latent space
(i) can encode all stains encountered during pretraining, as the same network is
employed for encoding each stain, and (ii) can be used for diverse downstream
applications, as the training signal and resulting model are task-agnostic.

To summarize, our contributions are (1) Madeleine, a multimodal pre-
training strategy for slide representation learning in computational pathology;
(2) a large-scale demonstration of Madeleine pretraining on two organs, breast
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Fig. 1: Overview of Madeleine. a. Preprocessing: WSIs from various stains
undergo tissue segmentation and patching into 256×256-pixel tiles. Patch encoding:
All patches are passed through a stain-agnostic Vision Transformer to extract patch
embeddings augmented with a learnable stain-specific encoding. Slide encoding: Em-
beddings from each stain are sequentially passed through a pre-attention, a multi-head
attention, and a post-attention module, resulting in stain-specific slide embeddings.
b. Madeleine is trained with a combination of global and local objectives. Global
objective: Slide embeddings are aligned using a cross-modal contrastive objective
(infoNCE). Local objective: Patch embeddings are aligned using a cross-modal local
Graph Optimal Transport objective. c. The resulting stain-agnostic slide encoder
can be used for various downstream tasks in few-shot and full fine-tuning settings.

(N=4,211 slides, five stains) and kidney (N=12,070 slides, four stains); and (3)
extensive evaluation of Madeleine across 21 tasks including morphological sub-
typing, molecular subtyping, survival prediction, and IHC quantification, tested
in various scenarios for few-shot learning (using linear probing and prototyping)
and model fine-tuning.

2 Related work

2.1 Vision representation learning

Training a Vision Transformer (ViTs) [18,65] with self-supervised learning (SSL)
[10, 80] is now the preferred approach for learning task-agnostic image repre-
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sentations, such as based on visual-language models [4, 31, 43–45, 54, 59, 69, 78].
Visual-language models are usually based on contrastive learning [54], where
the objective is to maximize the similarity between an image and its textual
description, or as recently proposed, using Optimal Transport (OT) for fine-
grained cross-modal alignment [16, 36, 52]. This approach is framed as a dis-
tribution matching objective, where the aim is to minimize the cost associated
with a transport plan to match a token distribution of one modality to the other.
Differently, multimodal training can leverage other spatial modalities, such as
depth maps or bounding box annotations [8]. Drawing on these methodologies,
our model, Madeleine, integrates various high-resolution “views” of the same
tissue stained with different markers, such as estrogen or progesterone receptor
stainings.

2.2 Representation learning of histology images

SSL for learning representations of histology images is an active field with efforts
in (i) developing models that can extract embeddings from small patches, typi-
cally 256×256 in size, and (ii) creating models designed to derive representations
from entire WSIs, a task we denote as slide representation learning, and which
constitutes the central contribution of our study.
Patch representation learning Using SSL to encode histology patches has
so far been the main focus with increasingly large models trained on larger
datasets [7, 13, 20, 33, 37, 66, 71, 77] (e.g., [9] used 3 billion patches from 423,000
slides). Simultaneously, vision-language models for histopathology have been de-
veloped using large datasets from sources such as social media and educational
textbooks [21, 25, 47]. Similar to Madeleine, [24] proposed multimodal fine-
tuning by aligning H&E and IHC patches. However, their method focuses on
encoding patches, whereas Madeleine focuses on encoding WSIs.
Slide representation learning Developing pretrained encoders that extend
beyond simple regions of interest to gigapixel whole slides is the next frontier
in representation learning of histology images. Several works [6, 12, 32, 39, 49,
60, 61, 63, 67, 79] proposed hierarchical slide pretraining, first by transforming
each patch into a patch embedding and then into a slide embedding (or region
embedding). The slide encoder is typically trained using image augmentation
techniques to define different views of the slide followed by contrastive or recon-
struction objectives. Concurrent to this work, multimodal pretraining for slide
representation learning was explored using bulk transcriptomics [29] and pathol-
ogy reports [56,77].

2.3 Beyond H&E staining

While H&E staining remains the gold standard in standard-of-care, it is of-
ten complemented with immunohistochemistry (IHC) and special stains. Several
works have been proposed for automatic IHC quantification [22,35,53,64], often
leveraging cell segmentation networks. Differently, IHC status can be predicted
from H&E slides, such as for HER2 (human epidermal growth factor receptor 2)
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status prediction in invasive breast cancer or EGFR (epidermal growth factor
receptor) prediction in lung cancer [3, 5, 17,19,23,34,50,55,57,68].

3 Methods

We introduce Madeleine for multistain-guided slide representation learning
(Fig. 1). Madeleine is composed of (1) a stain-agnostic patch encoder that
transforms histology patches into patch embeddings (Sec. 3.1 and 3.2), (2) a
multihead attention-based MIL to learn a slide embedding (Sec. 3.3), and (3) a
cross-stain alignment module based on a dual global-local objective (Sec. 3.4).

3.1 Pre-processing and notation

Given a histology slide Xi ∈ Rdx×dy×3 (H&E or another stain) for the ith patient,
we follow the MIL paradigm [26, 40, 41, 48, 58], which consists of tessellating
the slide into small patches, using a pretrained vision encoder to extract patch
embeddings, and pooling the resulting patch embeddings into a slide embedding.
We use sk to refer to the kth stain with {sk}Kk=1 collectively referring to all
non-H&E stains, e.g., in breast cases, sk ∈ {ER,PR,HER2,KI67} with K =
4 denoting estrogen receptor, progesterone receptor, human epidermal growth
factor receptor 2, and antigen kiel 67, respectively. We start by detecting and
segmenting tissue regions to discard any background information. We use the
CLAM toolbox [48] to detect H&E tissue and employ a deep learning-based
tissue detector trained on mask annotations to detect non-H&E tissue. We then
extract non-overlapping 256×256 patches on all stains.

3.2 Patch encoding

As Madeleine is trained on multiple stains, this renders most SSL models
for patch feature extraction trained on H&E suboptimal [66, 70]. Instead, we
use CONCH, the image encoder of a visual-language model pretrained on 1M
histology image-caption pairs curated from existing publications, which includes
various histology stains [47]. We obtain the H&E patch embeddings HHE

i ∈
RNHE×d, with NHE and d = 512 denoting the number of H&E patches and the
embedding dimension, respectively. The jth row entry, HHE

i,j , corresponds to the
jth patch embedding. We perform the same procedure for other non-H&E stains
{sk}Kk=1 to obtain patch embeddings, i.e., Hsk

i ∈ RNsk
×d.

3.3 Slide encoding

Pre-attention & stain encoding The patch embeddings HHE
i are first passed

through a pre-attention network, fpre : Rd → Rd, resulting in H̃HE
i ∈ Rd×d. As

the same pre-attention module is used for encoding all stains, having a stain-
specific signature in the input can be beneficial. To do so, we define a learnable
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stain-specific encoding (denoted as SE, 32 dims) that is concatenated to each
patch token before pre-attention, with d = d+ 32. This is inspired by modality-
specific token augmentation schemes in multimodal fusion [27,46,61].
Multi-head attention-based MIL We subsequently pass the resulting patch
embeddings H̃HE

i to a multihead (MH) attention network with M heads [26],
resulting in an attention score ami,j ∈ [0, 1] for each patch (Appendix Equation
2). Using multiple attention heads allows each head to focus on different yet
morphologically important regions, similar to multi-head attention in Trans-
formers [18,65]. Once computed, we form head-specific slide embeddings by tak-
ing the weighted average of the transformed patch embeddings, i.e., hHE

i,m =∑NHE
j=1 ami,jH̃

HE
i,j . The resulting slide embedding hHE

i is formed by concatenating
the M slide embeddings and passing it through a post-attention network for
dimension reduction, fpost : RMd → Rd,

hHE
i = fpost([hHE

i,1 , . . . ,h
HE
i,M ]). (1)

The slide embeddings for other stains {hsk
i }Kk=1 are computed analogously. We

emphasize that we apply the same model to all stains, instead of stain-specific
modules. This way, we reduce memory requirements by a factor of K (the number
of stains) and constrain the network to learn stain-agnostic representations.

3.4 Loss

Madeleine is trained using a combination of two cross-modal objectives: (1) a
global objective to align slide embeddings of all stains in a shared latent space,
and (2) a local objective for matching cross-stain patch embeddings. We option-
ally complement these two objectives with an intra-modal loss.
Cross-modal global alignment (infoNCE) We align the latent space in-
duced by each stain through a global symmetric cross-modal contrastive learning
objective, commonly referred to as infoNCE [15]. This is a widely employed
representation learning formulation [54], especially in visual-language pretrain-
ing. This objective enforces slide embeddings from the same case to be closer
to each other while pushing away slide embeddings from different cases. Each
term maximizes the dot-product similarity between embeddings from the same
pair normalized (with Softmax) by negative pairs, which can be seen as other
“classes".
Cross-modal local alignment (GOT) We also perform local alignment by
matching the empirical distributions of patch embeddings of all stains. Intu-
itively, as the local morphological structure is preserved across different stains,
we can identify fine-grained cross-stain correspondences. The model can conse-
quently learn to distinguish H&E morphologies corresponding to marker-positive
and marker-negative regions.

To this end, we leverage the framework of graph optimal transport (GOT) [11,
51]. Formally, we define the empirical distribution of the H&E patch embeddings
as p̂HE = 1

NHE

∑NHE
j=1 δ(HHE

i,j ), with δ(·) denoting the dirac-delta function. We
additionally define an H&E graph GHE(VHE, EHE), where the node vHE

j ∈ VHE



Multistain Pretraining for Slide Representation Learning in Pathology 7

represents the jth patch embedding from HHE
i,j and the edge eHE

j,j′ is formed if the
cosine similarity between vHE

j and vHE
j′ is above a certain threshold. The same

construction is applied to all other stains.
Based on this setup, we aim to cross-align the stain-specific graphs by mini-

mizing two metrics: (i) The Wasserstein distance (WD) LNode(p̂HE, p̂sk) defined
between the empirical distributions of patch embeddings (i.e., the nodes of GHE
and Gsk). Intuitively, WD can be seen as computing the distance between the
node embedding distributions of different stains. (ii) The Gromov-Wasserstein
distance (GWD) LEdge(p̂HE, p̂sk) between the edges of GHE and Gsk . Intuitively,
GWD enforces stain-specific graphs to follow a similar structure (or topology).
Additional technical information is provided in Appendix 1.3.

The local alignment objective LGOT is given as the combination of two met-
rics over cross-stain pairs, with γ denoting a weighting term,

LGOT = γ

K∑
k=1

LNode(p̂HE, p̂sk) + (1− γ)

K∑
k=1

LEdge(p̂HE, p̂sk). (2)

Intra-modal alignment (Intra) We additionally define an optional intra-
modality objective LIntra to align different augmentations of the H&E slide.
This objective is similar to existing pretraining strategy [12,39], and can be seen
as a direct extension of SSL from patch- to slide-level. Specifically, we generate
two distinct slide embeddings of the H&E slide by separately processing two
randomly disjoint sets of patch embeddings using Madeleine. This process
yields a pair of slide embeddings, denoted as hHE,(1)

i and h
HE,(2)
i , which are then

aligned using a contrastive objective.
Overall, we train Madeleine with the composite loss L = LInfoNCE+LGOT.

The Intra objective is used as a baseline, which can also be combined with L.
Pretraining details Madeleine was trained for a maximum of 120 epochs (5
warmup epochs) using AdamW optimizer, cosine learning rate schedule (start:
10−4, end: 10−8) and batch size of 90. All models were trained on 3×24 GB
3090Ti. Additional implementation details are provided in Appendix Table 1.

4 Study design

To assess the representative power of Madeleine pretraining, we design two dis-
tinct scenarios: (1) Madeleine pretraining on breast cancer cases (Sec. 4.1) and
(2) Madeleine pretraining on kidney transplant cases (Sec. 4.2). We then per-
form downstream evaluations based on public and private cohorts (Sec. 4.3). The
evaluation was designed to encompass the variability of tasks found in pathol-
ogy. We emphasize that Madeleine pretraining does not involve datasets used
for downstream tasks, precluding any data leakage. A detailed description is
provided in Appendix 2.
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4.1 Breast

Acrobat (multi-stain, pretraining) We pretrain Madeleine using data from
the Automatic registration of breast cancer tissue MICCAI challenge (Acro-
bat) [72,73]. Acrobat is a multi-stain dataset comprising 4,211 WSIs from 1,153
primary breast cancer cases. Every case includes an H&E-stained WSI, along
with one to four WSIs of tissue from the same tumor that have been stained with
immunohistochemistry, either ER (N=844 WSIs), PR (N=837), HER2 (N=534),
or KI67 (N=843), such that K=4. The entirety of Acrobat was used for pretrain-
ing, with all slides processed at 10× magnification.
TCGA Breast (H&E, downstream) We use the public TCGA Breast co-
hort for (1) morphological subtyping (N=1,041) into invasive ductal carcinoma
(IDC) and invasive lobular carcinoma (ILC); (2) binary molecular subtyping for
predicting ER status (N=996), PR status (N=993), and HER2 status (N=693),
and (3) survival prediction (N=1,049).
BCNB (H&E, downstream) We use the public BCNB cohort [76] for binary
molecular subtyping by predicting ER, PR, HER2 and KI67 status (N=1,058).
AIDPATH (H&E, downstream) We use the public AIDPATH cohort [1] for
binary HER2 status prediction (N=48) and KI67 status prediction (N=50).
BWH Breast (H&E, downstream) We use an in-house breast cohort for
two binary tasks (1) morphological subtyping (N=1,265); and (2) molecular
subtyping for predicting ER (N=873), PR (N=874), and HER2 (N=816).
MGH Breast (ER and PR, downstream) We use another in-house breast
cohort for IHC quantification of ER abundance (N=962) and PR abundance
(N=1,071). We frame both ER and PR quantification as 3- and 6-class problems.

4.2 Kidney

BWH Kidney (multi-stain, pretraining) We collected an in-house renal
transplant cohort comprising kidney biopsies from 1,069 renal transplant cases.
Each case includes one to three tissue blocks, where each block consists of
one to two H&E-stained (N=4,638) and one to two periodic acid-Schiff (PAS)
(N=4,630) slides, one Jones-stained slide (N=2,326) and one Trichrome-stained
slide (N=2,328), such that K = 3. In total, each case includes 6 to 18 slides.
We hold out 20% of this cohort (210 cases, 1,852 slides across all stains, out
of which 463 are H&E slides) as an independent test set and used the rest for
Madeleine pretraining. Slides were processed at 20×.
Renal allograft rejection (downstream) We use H&E slides of the held-
out cohort (N=463) to screen for Antibody-mediated rejection (AMR, 2 class)
and quantify Interstitial Fibrosis and Tubular Atrophy (IFTA, 3 classes) (N=210
cases, N=1,852 WSIs across all stains). As each case includes several H&E slides,
we define two sub-tasks: “single-slide” prediction, where we use a single slide per
case (N=463 H&E slides), and “all-slides” prediction, where we use all available
slides per case (N=305 H&E slides).



Multistain Pretraining for Slide Representation Learning in Pathology 9

Table 1: Few-shot breast cancer subtyping. Evaluation using macro-AUC on
TCGA Breast (N=1,041) and BWH Breast cohorts (N=1,265). GigaSSL embeddings
for BWH cohort not available. Mean and standard deviation reported over ten runs.
Best in bold, second best is underlined.

Model/Data TCGA Breast (↑) BWH Breast (↑)
k=1 k=5 k=10 k=25 k=1 k=5 k=10 k=25

M
IL

ABMIL [26] 79.7 ± 11.8 90.4 ± 3.8 90.4 ± 4.1 93.3 ± 1.2 67.8 ± 13.3 84.7 ± 9.3 93.0 ± 2.9 95.3 ± 2.0
TransMIL [58] 61.8 ± 5.7 71.5 ± 10.5 72.1 ± 10.6 82.5 ± 6.4 59.5 ± 12.2 72.6 ± 14.0 73.6 ± 9.4 81.2 ± 12.5
IB-MIL [42] 74.8 ± 10.8 90.1 ± 4.5 91.4 ± 2.2 93.8 ± 1.5 68.7 ± 13.1 82.6 ± 8.0 88.7 ± 6.3 95.2 ± 1.9
ILRA [74] 68.3 ± 9.3 89.3 ± 2.9 90.9 ± 1.6 92.2 ± 2.1 69.8 ± 8.6 84.7 ± 7.6 91.0 ± 2.4 93.3 ± 3.3

L
in

ea
r

p
ro

b
e Mean 70.5 ± 11.0 83.1 ± 3.7 86.6 ± 3.2 91.2 ± 1.2 70.2 ± 9.3 81.8 ± 5.4 87.4 ± 2.8 92.6 ± 1.5

Intra 70.8 ± 9.1 82.6 ± 4.2 86.1 ± 2.9 91.2 ± 1.2 69.3 ± 8.7 78.3 ± 7.1 84.8 ± 3.0 92.0 ± 2.4
HIPTCLS-4k [12] 62.2 ± 3.9 69.3 ± 5.4 77.5 ± 3.9 83.0 ± 2.3 66.8 ± 12.6 76.6 ± 6.2 80.6 ± 3.3 85.8 ± 2.0
GigaSSL [39] 68.2 ± 6.6 78.7 ± 4.8 82.8 ± 4.2 88.9 ± 1.9 – – – –
GigaPath-Mean [77] 59.7 ± 6.6 69.8 ± 5.2 77.0 ± 6.1 85.8 ± 3.4 64.8 ± 9.7 79.7 ± 5.3 84.5 ± 2.9 91.7 ± 1.9
GigaPath [77] 58.7 ± 6.7 68.6 ± 4.9 75.4 ± 4.8 84.0 ± 2.5 64.0 ± 11.5 78.0 ± 7.5 83.1 ± 2.9 90.3 ± 2.0
Madeleine 83.8 ± 8.0 91.2 ± 1.3 91.7 ± 2.0 93.2 ± 0.9 84.0 ± 7.7 91.9 ± 2.4 93.8 ± 1.4 96.0 ± 0.8
Madeleine-SE 87.2 ± 6.6 93.2 ± 1.0 93.1 ± 1.6 94.1 ± 0.8 85.6 ± 7.2 93.7 ± 1.7 95.3 ± 0.9 96.7 ± 0.4

P
ro

to
ty

p
in

g

Mean 69.1 ± 10.3 81.8 ± 6.9 84.2 ± 5.7 91.3 ± 2.8 68.8 ± 9.7 78.5 ± 5.8 83.9 ± 3.2 86.2 ± 3.0
Intra 69.3 ± 9.0 81.7 ± 5.9 83.9 ± 5.0 89.6 ± 2.4 68.4 ± 8.4 75.8 ± 6.8 81.9 ± 4.0 85.4 ± 3.0
HIPTCLS-4k [12] 62.1 ± 4.1 68.3 ± 6.2 73.6 ± 6.9 78.7 ± 2.4 66.3 ± 12.3 75.7 ± 7.3 79.1 ± 4.2 82.3 ± 0.9
GigaSSL [39] 67.9 ± 5.9 78.5 ± 5.4 82.6 ± 4.8 88.4 ± 1.6 – – – –
GigaPath-Mean [77] 58.8 ± 6.2 70.0 ± 5.7 73.5 ± 7.0 81.7 ± 4.1 65.7 ± 9.5 78.8 ± 4.9 81.6 ± 2.7 85.5 ± 2.0
GigaPath [77] 58.1 ± 6.3 68.4 ± 5.1 71.8 ± 7.0 80.1 ± 3.2 64.4 ± 11.3 76.8 ± 8.3 80.4 ± 2.1 83.3 ± 1.8
Madeleine 83.2 ± 7.8 91.6 ± 1.6 92.7 ± 1.3 94.4 ± 0.6 84.6 ± 8.4 91.1 ± 3.0 93.1 ± 1.4 94.9 ± 0.9
Madeleine-SE 86.4 ± 6.6 93.4 ± 1.0 94.0 ± 1.1 95.0 ± 0.4 86.3 ± 7.7 93.2 ± 2.2 94.9 ± 0.8 95.8 ± 0.8

4.3 Evaluation framework

Few-shot classification Following the standard practice in SSL evaluation [10,
13,80], we benchmark Madeleine and baselines with k-shot classification (k =
1, 5, 10, 25 examples per class) using (1) linear probing and (2) prototyping. All
experiments are repeated ten times by randomly sampling k examples per class.
Linear probing was conducted without hyper-parameter search using default
parameters of the sklearn package.
Survival prediction We assess Madeleine in survival outcome prediction,
where slide embeddings are passed to a Cox proportional hazards loss predicting
survival. Following prior work, MIL models are trained using survival negative
log-likelihood (NLL) loss [14]. We use site- and survival-stratified five-fold cross-
validation evaluated with concordance-index (c-index) [30].
Fine-tuning We assess the performance of Madeleine encoder for downstream
tasks when fine-tuned, compared to when trained from scratch. Evaluations fol-
low a 5-fold label-stratified train-test strategy.

5 Results

We showcase the performance of Madeleine and Madeleine-SE (i.e., with
stain encoding) on few-shot classification (Sec. 5.1), and full classification (Sec. 5.2),
that we complement by a series of ablations (Sec. 5.3). We benchmark Madeleine
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Fig. 2: Few-shot performance of Madeleine against baselines. All tasks are
assessed on H&E-stained WSIs. Morphological subtyping is reported for k=10, molec-
ular subtyping for k=25, and kidney transplant rejection for k=50. Each experiment
is repeated ten times by sampling k different samples per class. Besides HIPT and
GigaSSL, all models use the same patch encoder. Each axis represents 10% AUC and
each segment a 2% increment. Additional results for all k values are provided in Ap-
pendix 4 and 5.

against four MIL methods: single head ABMIL [26], TransMIL [58], IB-MIL [42]
and ILRA [75]; four intra-modal SSL methods: Intra, HIPT [12], GigaSSL [39],
and GigaPath [77] (work concurrent to Madeleine); and mean pooling (Mean).

5.1 Few-shot results

Fig. 2 highlights the few-shot classification of Madeleine against baselines (for
each task: best MIL, best intra-modal, and Mean). Detailed morphological sub-
typing performance is reported in Table 1, molecular subtyping in Appendix
Table 3, and kidney transplant rejection in Appendix Table 7.
Madeleine vs. rest Madeleine outperforms all baselines in 13/13 tasks, in
some cases by a significant margin, e.g., +10.1% over Intra in TCGA Breast
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(k=10, prototyping classification), or +9.0% over ABMIL in BWH Breast (k=5,
linear probing). This performance is achieved using simple downstream models
based on linear probing or prototyping classification, whereas MIL methods are
trained from scratch for each task.
Mean vs. Intra Despite its simplicity, the Mean baseline offers high per-
formance, often surpassing Intra, HIPT and GigaSSL. This highlights (1) the
importance of powerful domain-specific patch encoders and (2) the complexity
of deriving an information-rich training signal using information from the slide
itself, further motivating the exploration of multimodal pretraining for slide rep-
resentation learning.
MIL comparisons Despite recent advances in MIL, ABMIL remains a strong
baseline in a few-shot setting. In some cases, ABMIL is outperformed by IB-
MIL [42]. TransMIL, which includes patch-to-patch context using self-attention
approximation, performs poorly, which we hypothesize is due to overfitting.
Madeleine vs. Intra Madeleine outperforms the Intra baseline for all
values of k on all tasks. This highlights the importance of using clinically and
biologically meaningful “views” provided by multimodal pretraining.
Madeleine vs. GigaPath vs. GigaPath-Mean Madeleine outperforms
GigaPath on all tasks in both linear probing and prototyping evaluation, in
most cases by a significant margin, e.g., +17.7% in TCGA subtyping with linear
probing (k=10). Interestingly, GigaPath-(Mean) (average of all patch embed-
dings) reaches better performance than GigaPath slide encoder which suggests
that intra-SSL can degrade performance, even when scaling to large models and
number of samples. While GigaPath is a pan-cancer model, it was trained on a
comparable number of breast samples (around 4,500 WSIs), which underscores
(i) the quality of multistain pretraining, and (ii) the complexity of building pan-
cancer models.
Generalization to other stains As Madeleine is stain-agnostic, we can use it
for encoding non-H&E stains. Specifically, we perform fine-tuning of Madeleine
multi-head encoder (FineTune) for quantification of ER and PR slides (framed
as a 3-class and 6-class tasks) on the MGH cohort (Fig. 3.a and Appendix Table
2). We compare it against Madeleine architecture trained from scratch and
Mean. All models trained using k=25 examples per class. Fine-tuning leads to
consistently better performance than random weight initialization, with a +7.5%
gain on 3-class ER and +5.6% gain on 3-class PR quantification (Fig. 3.a and
Appendix Table 4).

5.2 Full classification

Beyond few-shot classification, we assess Madeleine in a supervised setting
using 5-fold cross-validation, where we directly use Madeleine embeddings for
survival prediction and molecular subtyping.
Survival We perform survival outcome prediction on TCGA Breast using a
5-fold site-stratified cross-validation. Madeleine and other slide-level models
(HIPT, GigaSSL and Intra) are trained using a Cox proportional hazards ob-
jective from the slide embedding. All MIL models are trained with a survival
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Fig. 3: Evaluation of Madeleine and baselines on IHC quantification and
survival prediction. a. We fine-tune Madeleine for IHC quantification on the MGH
cohort (N=962 ER and N=1,071 PR slides). 3-class and 6-class variants are derived
from IHC scores extracted in pathology reports. Models are trained with k=25 examples
per class. Random uses Madeleine architecture trained from scratch; FineTune is
initialized with Madeleine pretrained weights. We report the mean and standard
deviation (std) on a 5-fold label-stratified train-test study. b. Survival prediction on
TCGA Breast (N=1,041 slides). We report mean and std using a 5-fold site-stratified
cross-validation. “SE” is Madeleine with stain encodings. c. Molecular subtyping of
Madeleine fine-tuned on AIDPATH (N=48 for HER2 and N=50 for KI67) and BCNB
(N=1,058). Evaluation using 5-fold cross-validation. MIL refers to the best of four MIL
baselines.

NLL objective following prior work [14, 30]. Madeleine leads to the best sur-
vival prediction reaching 0.71 c-index outperforming all baselines (Fig. 3.b and
Appendix Table 5).
Molecular subtyping In addition, we use logistic regression to predict HER2
status in AIDPATH and KI67 status in AIDPATH and BCNB from H&E. In
AIDPATH, Madeleine-SE leads to +11.4% performance boost over the best
MIL in HER2, and +1.8% in KI67 (Fig. 3.c and Appendix Table 6.

5.3 Ablation

All ablations were run using Madeleine pretrained on breast cancer slides,
evaluated using AUC, and benchmarked using prototyping classification (k=25)
on a set of three representative tasks: (1) BWH Breast subtyping, (2) TCGA
PR classification, and (3) BCNB ER classification. In addition, we benchmark
TCGA Breast survival using a Cox model trained using 5-fold cross-validation.
Prototyping is not sensitive to hyper-parameter selection compared to linear
probing, making it ideal for ablating components of Madeleine.

Loss ablation We perform a thorough ablation of Madeleine loss function
by retraining models with InfoNCE alone, cross-modal Mean-Squared Error
(replacing InfoNCE), GOT alone, combining InfoNCE and GOT (Madeleine
default), and finally combining InfoNCE, GOT and Intra (Table 2). In-
foNCE alone significantly outperforms Mean (+4.4% AUC), Intra (+4.1%)
and MSE (+9.3%). GOT alone performs similarly to Mean and Intra. When
combining InfoNCE and GOT, we observe an additional gain of +1.4% over
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Table 2: Ablation study of Madeleine loss. Survival was evaluated using c-index
and site-stratified 5-fold cross-validation. Subtyping and molecular status prediction
were evaluated using macro-AUC and prototyping evaluation (k=25) repeated ten
times with fixed seed across baselines. Standard deviation reported over the 10 runs.
“MSE” stands for Mean-Squared Error. Best in bold, second best is underlined.

Model/Data TCGA BWH TCGA BCNB Avg
Survival (↑) Subtyping (↑) PR (↑) ER (↑)

Mean 68.8 ± 7.9 86.2 ± 3.0 70.8 ± 2.0 76.9 ± 2.2 75.7
Intra 69.2 ± 6.9 85.4 ± 3.0 71.6 ± 1.4 77.7 ± 1.8 76.0
MSE 68.0 ± 9.3 80.9 ± 2.8 65.2 ± 2.8 69.0 ± 3.3 70.8
InfoNCE 69.9 ± 8.1 93.3 ± 0.9 74.5 ± 1.3 82.8 ± 1.7 80.1
GOT 70.1 ± 3.6 85.9 ± 2.6 70.1 ± 2.0 75.8 ± 2.7 75.5
InfoNCE + GOT 71.5 ± 4.1 94.9 ± 0.9 76.4 ± 1.2 83.0 ± 1.6 81.5
InfoNCE + GOT + Intra 71.0 ± 6.2 94.9 ± 1.1 76.4 ± 1.2 83.3 ± 1.3 81.4

InfoNCE. However, including an Intra objective on top leads to a similar per-
formance. Overall, the global cross-modal InfoNCE objective remains the most
critical component, which benefits from the local GOT cross-modal objective.

Feature extractor ablation We further test if the benefits of Madeleine
pretraining generalize when using CTransPath [70], a state-of-the-art patch en-
coder based on the Swin-Transformer model and that was pretrained on 15 mil-
lion patches from TCGA and PAIP (Appendix Table 8). When comparing the
Mean baseline, our patch encoder significantly outperforms CTransPath (+5.0%
AUC). The same observation holds using Madeleine embeddings, where using
our patch encoder leads to +10.5% AUC gain over CTransPath. Overall, these
results further assert that (1) using powerful domain-specific feature encoders
trained on large amounts of diverse data is necessary, and (2) Madeleine pre-
training leads to high performance even when using weaker feature encoders.

Architecture ablation Madeleine explores two architectural features: (1)
the use of a multi-head (MH) attention network and (2) the use of a learn-
able stain encoding (Appendix Table 9). Using multiple ABMIL heads (four in
Madeleine) leads to a consistent performance gain (on average of +2.1%). We
hypothesize the gain arises from each head focusing on different morphologies
during pretraining. Adding stain-encoding does not have a consistent effect, as
it boosts performance in morphological subtyping but decreases performance in
molecular subtyping. Replacing the ABMIL architecture with a TransMIL back-
bone [58] leads to lower performance (on average -2.9% over ABMIL and -5.0%
over MH-ABMIL).

5.4 Madeleine attention visualization

By visualizing head-specific attention weights, we can gain insights into the inter-
nal behavior of Madeleine (Fig. 4). We show that different heads learn to focus
on morphologically distinct regions, e.g., Head-3 focuses on tumor while Head-4
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Fig. 4: Madeleine attention weight visualization in a breast cancer case.
Attention weights of the third (focusing on tumor, annotated in red) and fourth (fo-
cusing on non-tumor regions, annotated in green) heads of Madeleine slide encoder
along with high attention patches per head.

focuses on non-tumor stroma. This is a remarkable finding as Madeleine was
not given any morphological labels like tumor grade or subtype during training.
Additional example heatmaps are provided in Appendix 7.

6 Conclusion

In this study, we present Madeleine, a method exploring multimodal pretrain-
ing for slide representation learning based on multistain alignment. Our method
utilizes extensive datasets of multistain slides, where we consider each stain as
a unique perspective of the standard H&E-stained slide, each revealing differ-
ent aspects of the tissue’s biological state. We demonstrate that Madeleine
slide encoder outperforms multiple instance learning and intra-modal pretrain-
ing models in few-shot and full classification scenarios across various tasks, rang-
ing from morphological and molecular subtyping to prognosis prediction to IHC
quantification. Our method currently incorporates four to five different stains
per sample, yet in clinical practice, more stains can be available to assist pathol-
ogists. This opens up promising avenues for expanding Madeleine pretraining
to include a broader range of stains. Furthermore, while our focus has been on
multimodal pretraining with multiple stains, there exists a potential to explore
other spatial modalities, such as those based on immunofluorescence, mass spec-
trometry, or spatial transcriptomics [28] for slide representation learning.
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