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Abstract. In recent years, Transformers have become the de-facto ar-
chitecture for sequence modeling on text and multi-dimensional data,
such as images and video. However, the use of self-attention layers in
a Transformer incurs prohibitive compute and memory complexity that
scales quadratically w.r.t. the sequence length. A recent architecture,
Mamba, based on state space models has been shown to achieve compara-
ble performance for modeling text sequences, while scaling linearly with
the sequence length. In this work, we present Mamba-ND, a generalized
design extending the Mamba architecture to arbitrary multi-dimensional
data. Our design alternatively unravels the input data across different
dimensions following row-major orderings. We provide a systematic com-
parison of Mamba-ND with several other alternatives, based on prior
multi-dimensional extensions such as Bi-directional LSTMs and S4ND.
Empirically, we show that Mamba-ND demonstrates performance com-
petitive with the state-of-the-art on various multi-dimensional bench-
marks, including ImageNet-1K classification, HMDB-51 and UCF-101
action recognition, ERA5 weather forecasting and BTCV 3D segmenta-
tion. Code is available at https://github.com/jacklishufan/Mamba-ND
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1 Introduction

The design of flexible and scalable neural network architectures is fundamental
to the success of deep learning across diverse domains. Convolutional neural net-
works [31] excel at handling continuous data such as images, audio, and video.
Recently, they have been surpassed by Transformers [53], which process con-
tinuous data as a discrete sequence of patches [13]. Despite their superior per-
formance on many tasks, Transformer-based models struggle to scale to larger
patch sequence as they scale quadratically with respect to sequence length. Most
recently, a special kind of State Space Model (SSM) termed as Mamba [16], has
demonstrated stronger performance than Transformers while maintaining a lin-
ear complexity. However, the impressive performance of Mamba was shown on
1D text sequences. This leaves open the question whether Mamba can be ef-
fectively extended to multi-dimensional data such as images, video, or scientific
datasets, which is the focus of this work.
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Fig. 1: Mamba-ND outperforms Transformers while significantly reducing
the number of parameters. On ImageNet-1k, we compare against ViT [13]. On
HMDB-51 [29], we compare against Video-Swin [36]. On ERA5, we compare against
Cli-ViT. On BTCV, we compare against UNETR [19]. [42].

Unlike convolution or self-attention operations, which can be computed in
parallel across the ND input data, Mamba requires a specific ordering of the
data. Determining such an order is not an easy task. Building on past work
in architecture design, we could consider many choices. One naive approach is
to flatten the data in row-major order. Intuitively, this is non-optimal because
in this setting information only flows in one direction, which is suboptimal for
multi-dimensional data with no default ordering. Drawing inspiration from early
works on Bi-directional LSTM, another alternative is to process the sequence in
two directions at each layer and aggregate the results. We call this method Bi-
SSM. While this design, in principle, allows information exchange between two
arbitrary patches, two patches adjacent to each other spatially may have a huge
distance between them on the computation graph. A natural extension of this
method, which we call ND-SSM, is to process the input in 2D directions, where
D is the dimension of the data, and aggregate the results. Rather than picking
orders in sequence, another possibility is to borrow inspiration from multi-head
self-attention in transformers, wherein we can split the channels into multiple
heads and let each head process an SSM in a different direction. This design is
similar to ND-SSM but differs in that it has less computational burden per layer.

At a high level, there is also the question of block-level design, which specifies
how Mamba layers are organized. For example, using the vanilla Mamba layer
as a black box, one can still apply the bi-directional or N-directional design by
processing the same input through multiple layers with different directions.

In this work, we conducted an extensive study on these possible design
choices. Surprisingly, we find that simply alternating between three fixed row-
major orderings is one of the best-performing strategies on both 2D and 3D data.
Armed with these findings, we propose Mamba-ND, a surprisingly simple yet ef-
fective design to extend Mamba to multi-dimensional data. Mamba-ND does
not introduce any complicated changes to 1D-SSM layers. By stacking 1D-SSM
layers as black boxes and alternating the sequence order between each layer,
Mamba-ND was able to surpass Transformer-based models on various tasks, in-
cluding image classification, action recognition, and weather forecasting and 3D
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segmentation, with a lower parameter count. It also maintains a linear complex-
ity with respect to input sequence length.

In summary, our main contributions are as follows.

– We propose Mamba-ND , which extends SSM to higher dimension through
simply alternating sequence odering across layers.

– Compared with Transformers, our model is able to achieve stronger perfor-
mance at much lower parameter count on a diverse set of tasks.

– We conduct extensive ablation studies on various more complicated ap-
proaches that extend SSM to multi-dimensional inputs. We find that com-
plicated designs do not necessarily translate into stronger performance.

2 Related Works

Modeling 2D Data : Convolutional Neural Networks (CNNs) [20,23,27,31,46,48]
have historically been the state-of-the-art approach for image recognition tasks.
The receptive field of CNNs only grows linearly with the model depth. This
limitation restricts the ability of CNNs to effectively capture global context.

More recently, Vision Transformers (ViTs) [13] have emerged as a strong can-
didate for vision tasks. These models first divide an input image into a grid of
discrete patches and then process them as a 1D sequence. While they provide a
global receptive field through self-attention mechanisms at every layer, such ad-
vantages come with the cost of quadratic computational and memory complexity
with respect to input length, making them challenging to scale.

To address this limitation, several works have proposed hybrid architectures
that incorporate attention mechanisms into CNNs [7,32,55] or introduce hierar-
chical designs into transformers [9,11,12,33,35,38,49,54,58]. Other approaches,
such as PixelRNN [52], attempt to apply recurrent models, which are inherently
designed for linear complexity and global context, to images. There has also
been considerable efforts to apply state space models to 2D images, such as 2D-
SSM [3] and S4ND [41]. Our work falls within this final category, wherein we
specifically explore ways to adapt selective state space models to images.

Modeling 3D Data : Modeling videos has long presented a significant challenge.
Earlier works [6, 50] primarily focused on extending 2D ConvNets into the 3D
domain. More recently, 3D Transformers [1, 36, 40] have demonstrated superior
performance. The unique characteristics of the temporal dimension in video data
also inspired various video-specific high-performing designs. For example, some
works leverage extracted optical flow features [8, 15] or motion vectors [56, 57].
Others, like SlowFast [14], employ specific architectural designs to account for
the fact that pixel values change less in the temporal dimension than in the
spatial dimensions. In contrast to these approaches, our goal is to devise a
generic framework for modeling multi-dimensional data. Consequently, Mamba-
ND treats videos as simple 3D arrays of RGB pixels, making no additional
assumptions about the temporal structure. This is crucial because in certain use
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cases such as weather forecasting, the third dimension of the data represents an
additional spatial dimension instead of a temporal one.

S4ND [41] is a prior attempt to model videos using state space models
(S4 [17]) and has achieved competitive performance. It directly extends the S4
formulation to higher dimensions and leverages the time invariance constraint
to parallelize computations as the outer product of three 1D convolutions. In
contrast to S4ND, we aim to extend selective state space models, i.e. Mamba,
to higher dimensions, which do not adhere to linear time invariance (LTI). As a
result, the convolutional trick is not applicable, necessitating alternative designs.

In addition to videos, we also consider the 3D climate forecast and medical
image segmentation task. In both field transformers [5, 18, 19, 42] have achieved
successes. However they face similar scaling challenges as in typical vision prob-
lems.

3 Background

3.1 State Space Models

Recent state space models (SSMs) [17, 41] have shown superior performance
on long sequences. Formally, SSMs model the input data using the following
ordinary differential equation (ODE):

h′(t) = Ah(t) +Bx(t) (1)
y(t) = Ch(t) +Dx(t) (2)

Here, x(t) ∈ R is a continuous input signal in the time domain, and y(t) ∈ R is
a continuous output signal in the time domain. In modern SSMs, this ODE is
approximated through discretization. One common discretization method is the
zero-order hold (ZOH) rule, which gives the following difference equation:

Ā = exp(∆A) (3)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B (4)
ht = Āht−1 + B̄xt (5)
yt = Cht (6)

Early works such as S4 [17] and S4ND [41] assume linear time invariance (LTI).
This constraint makes it possible to solve the above difference equation using a
global convolution kernel. Selective state space models, i.e., Mamba [16], intro-
duce time-varying parameters that do not follow the LTI assumption. In partic-
ular, ∆, B, and C become functions of the input signal x(t). Consequently, from
Eqs. (3) to (6), Ā and B̄ also become dependent on time. This makes it hard to
parallelize the computation. A hardware-aware optimization that makes use of
associative scan is employed to mitigate this issue.
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Fig. 2: Mamba-ND Architecture. We visualize Mamba-3D as an example. Given
3D input, we patchify it into L patches. During this process, we maintain the original
3D structure of the input. This sequence is then passed through K Mamba-ND blocks,
each of which consists of a chain of 1D Mamba layers that process the sequence in
alternating orderings. In 3D space, we use the order H+H-W+W-T+T-. In 2D space,
the sequence would be H+H-W+W-. Finally, the sequence is reshaped back to its
original 3D structure and passed to task-specific heads for downstream processing.

3.2 Mamba Layers

Mamba [16] proposed an implementation of selective state space model (sSSM)
layer (Fig. 3 column 1). It consists of a 1D convolution, an SSM kernel, and a
residual connection. In each layer, the input sequence is first processed by the
convolution operation and then by the SSM kernel. The result is added back
to the input through the residual connection. While the Conv1D operation can
be easily extended to multiple dimensions with ConvND operations, it is non-
trivial to convert the SSM to multiple dimensions. Particularly, the convolution
trick is not applicable since Mamba is not a time-invariant system. In this work,
we discuss various alternative ways to extend SSM to higher dimensions by
flattening the input data into 1D sequences.

4 Methodology

We explores several approaches to adapt Mamba to multidimensional data. The
key element of these designs is to devise a combination of sequence orderings
to flatten the multidimensional data into 1D sequences. Intuitively, some level
of bidirectional or multidirectional design is required to allow information ex-
change between two arbitrary data points in multidimensional space. This can be
achieved at two levels: layer level and block level. As mentioned in Sec. 3.2,
a Mamba layer consists of a 1D convolution, an SSM kernel, and a residual
connection. One example of layer-level design is to pass the output of the con-
volution to two independent SSM kernels and sum up the results (Fig. 3, col
2). Contrary to layer-level designs, block-level designs keep the internal design
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of a Mamba layer unchanged. Instead, it tries to achieve bidirectionality at the
block level. For example, one such design is to alternate between each axis from
one layer to another and apply a bidirectional design for each axis (Fig. 5a, row
2). One possible benefit of layer-level design is that it keeps the optimized fused
kernel of a Mamba layer and the memory access pattern of the underlying array
unchanged.
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Fig. 3: Variations of SSM Layer Design. Col 1 represents the standard 1D SSM
layer. Col 2 represents Bi-SSM, which adds bidirectionality in a similar fashion as
LSTM. Col 3 represents ND-SSM block, which extends Bi-SSM to more directions. Col
4 represents multi-head SSM block inspired by multi-head attention in Transformers.
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W

Fig. 4: Visualization of 2D scan orderings. We visualize the set of possible all
scan ordering on 2D data. Arrow indicates the scan order.

4.1 Scan Orderings

Consider the input N-dimensional data X of shape D1 ×D2 × . . .×DN , where
Di is the length of data along the ith dimension. Let L =

∏N
i=1 Di be the

total sequence length. There are a total of L! possible ways of flattening X
into a 1D sequence. However, we only consider a subset of these choices, which
we call the scan orderings. Formally, a scan ordering is obtained by permuting
the order of axes of the original data X, and flattening it into a 1D sequence
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Fig. 5: Visualization of block level design and factorization policies.

either in the forward or reverse direction. Since there are N ! permutations of
N axes and 2 possible directions, there are a total of 2N ! scan orderings. We
denote a particular scan ordering s as (k1, k2, . . . , kN )±, which represents the
unique ordering obtained by first permuting the axis order from 1, 2, . . . , N to
k1, k2, . . . , kN , and then flattening the sequence in row-major order. The symbols
+ and − indicate whether the order of the final 1D sequence is in forward or
reversed direction.

We focus on 2D data of shape H ×W and 3D data of T ×H ×W . The 2D
data has 4 possible orderings: (HW )+, (HW )−, (WH)+, and (WH)−. The 3D
data has 12 possible orderings; examples include (HWT )+ and (WHT )−. To
provide a concrete example, the ordering (WH)− refers to first permuting the
2D data into a 2D array of W × H, then flattening it into a 1D sequence in
row-major order, and finally reversing the order of this 1D sequence.

For simplicity, we use H to represent WH and W to represent HW for 2D
data. Similarly, we use H to represent TWH, W to represent THW , and T
for HWT for 3D data. In this notation, (WH)− becomes H− and (HWT )+
becomes T+. We also use L to represent THW or HW , as this is the naive way
of flattening 3D and 2D data to a 1D sequence without changing the memory
layout. Notably, the last dimension will be traversed continuously. We visualize
2D scan orderings in Fig. 4.

4.2 Adapting the Mamba Layer

We explore three alterations to the standard Mamba layer design, which are
illustrated in Fig. 3.
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Bi-SSM layer passes the output of the convolution layer to two independent
SSM kernels, one in the forward direction and another in the reversed direction.
ND-SSM layer extends Bi-SSM by incorporating additional SSMs to accom-
modate other possible orderings. In the 2D case, there are four orderings W+,
W−, H+, H−.
Multi-head SSM layer is a mimic of the multi-head attention. It splits an input
sequence of dimension D into H sequences of dimension D/H, where H is the
number of orderings. Each of the heads is then passed to separate SSM kernels
in respective orderings. In the 2D case, the orderings are W+, W−, H+, H−.

4.3 Arranging Mamba Layers

In addition to making direct changes to the internal structure of Mamba, one
can also change the way in which the layers are organized to achieve multi-
directionality. We illustrate these variations in Fig. 5a.
Alternating-Directional: H+H-W+W-T+T- keeps the sequential ordering
of Mamba layers and changes the direction of SSM in each layer in an alternating
fashion. The ordering is H+H-W+W-T+T-
Bi-Directional: [H+H-][W+W-][T+T-] adopts a design on the block level.
In each block, the input is passed to two Mamba layers at opposite directions.
The ordering is [H+H-][W+W-][T+T-], where each [.] denotes a bidirectional
block consisting of two layers. To avoid confusion, we will explicitly refer to this
method as [H+H-][W+W-][T+T-]. The term Bi-Directional will mostly be used
for the Bi-SSM layer mentioned in Sec. 4.2.
Quad-Directional: [H+H-W+W-][T+T-] builds on top of the [H+H-][W+W-
][T+T-] design. It further groups the H and W directions. This design is inspired
by works in video recognition e.g., [51], which factorize 3D convolution into a 2D
operation on the spatial dimensions and a 1D operation in the temporal domain.

There are more possible ways to organize multi-directional blocks, but they
generally follow a similar design. Crucially, it is important to note that while
each layer has a specific ordering, the SSM kernel operates on a single flattened
input sequence. This means that all these layers have a global receptive field.

4.4 Scan Factorization

In order to mitigate the quadratic complexity of the Transformer, prior works [22]
factorize full 3D attention into three 1D attentions along each axis. While SSMs
already achieve linear complexity, the sequence length is still quadratic in the
length of a single dimension. In this work, we also explore various ways of factor-
izing an SSM scan into multiple smaller scans. For an input array of dimensions
T ×H×W , the standard approach is to flatten it into a single sequence of length
THW . Alternatively, we can factorize it into T sequences with length HW , or
TH sequences with length W . We visualize these factorization techniques in
Fig. 5b. Since SSM only retains one copy of a state per sequence in the linear
scan process, increasing the number of sequences in parallel actually leads to an
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increase in memory consumption and training time because more hidden states
need to be materialized in the GPU memory. However, we note that these sub-
sequences need not be computed in parallel. Hence a better implementation in
the future may reduce the memory cost of this design. Thus, we still investigate
the performance of this design.

4.5 Final Design

After extensive experiments, our final design uses the standard 1D-SSM layer and
an alternating-directional: (H+H-W+W-T+T-) at the block level. We find that
this simple design surprisingly outperforms more complicated ones. We provide
more details of our experiments in Sec. 5.

Our overall image is shown in Fig. 2. Given multi-dimensional input data,
we first patchify it into a 1D sequence. During this process, we keep track of
the original 3D structure of the input. This sequence is then passed through K
Mamba-ND blocks, each of which consists of a chain of 1-D SSM layers that
process the sequence in alternating orderings. In 2D space, we use the order
H+H-W+W-. In 3D space, we use the order H+H-W+W-T+T-. Finally, the
sequence is reshaped back to its original 3D structure and passed to task-specific
heads for downstream tasks.

5 Experiments

Datasets and Setups. We aim to evaluate the effectiveness of Mamba-ND on
various multi-dimensional data tasks. Specifically, we use ImageNet-1K [10] for
image classification, HMDB-51 [29] and UCF-101 [47] for action recognition,
ERA5 5.625-degree for weather forecasting [21] and BTCV [30] for 3D segmen-
tation. ImageNet-1K is a large-scale dataset containing 1.2 million images across
1000 classes, HMDB-51 and UCF-101 are action recognition datasets comprising
7,030 and 13,320 video clips respectively, BTCV consists of abdominal CT scans
of 30 subjects, among which 6 are selected as validation set. ERA5 consists of 3D
atmospheric weather measurements, such as temperature and wind speed, across
13 pressure levels. We use the standard train and validation split for ImageNet,
split1 of HMDB-51, and data from the years 1979-2016 for ERA5 as the training
set, data from 2017 as the validation set, and data from 2018 as the test set.

Metrics We measure top-1 accuracy for image classification and action recogni-
tion tasks. For weather forecasting, we report both the Residual Mean Squared
Error (RMSE) and the Anomaly Correlation Coefficient (ACC). For 3D CT
segmentation, we report the DICE score.

5.1 Image Classification

Following the approach of previous studies [13, 20, 41], Mamba-ND is trained
on the ImageNet-1K dataset for 300 epochs using the AdamW optimizer with
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Table 1: ImageNet 1K Classification Results. We report Top 1 Accuracy on
the validation set. Mamba-ND-S shows a remarkable improvement of +3.8 in accuracy
when compared to ViT-B while reducing the parameter count to 20.7%.

Model Image Size Params Acc.↑
ViT-B 384 86M 77.9
ViT-L 384 307M 76.5
S4ND-ViT-B 224 86M 80.4
Hynea-ViT-B 224 88M 78.5
DeiT-S 224 22M 79.8
DeiT-B 224 86M 81.8
Swin-T 224 28M 81.3
Swin-B 224 88M 83.5
Mamba-2D-S 224 24M 81.7
Mamba-2D-B 224 92M 83.0

Table 2: HMDB-51 and UCF-101 Video Classification Results. All models
are initialized with ImageNet weights. *: Numbers from S4ND [41] paper. †: Our re-
produced numbers. Memory: Training memory measured in GB on a A100 GPU. All
models are trained with a batch size of 16 per GPU, except S4ND, which has a batch
size of 8 (OOM at 16). We also report the samples per second.

Model HDMB-51 ↑ UCF-101 ↑ Params Memory Samples/s
ConvNeXt-I3D* 58.1 - 29M - -
S4ND-ConvNeXt-3D* 62.1 - 29M - -
Inception-I3D 49.8 84.5 25M - -
ConvNeXt-I3D† 53.5 87.6 29M 17GB 7.5
S4ND-ConvNeXt-3D† 56.6 69.3 29M 77GB 6.3
Video-Swin-T 53.0 88.3 30M 35GB 22.6
Video-Swin-S 58.1 88.7 54M 73GB 39.2
Mamba-2D 51.2 84.7 24M 12GB 39.2
Mamba-3D 60.9 89.6 36M 17GB 19.6

β = (0.9, 0.999) and a learning rate of 1e−3. We use a patch size of 8. The results
are presented in Tab. 1. Our model demonstrates superior performance compared
to transformer-based models when operating under similar conditions, and it
achieves results on par with the state-of-the-art state-space model, S4ND [13].
We compare our results with Hyena [45], ViT [13], and S4ND [41]. Notably,
Mamba-ND-S shows a remarkable improvement of +3.8 in accuracy when com-
pared to ViT, while simultaneously reducing the parameter count by 20.7%. This
performance gap is consistent with prior research on 1D sequences [16], where
Mamba consistently outperforms transformers with fewer parameters.

5.2 Video Action Recognition

Prior works [6,36] demonstrate strong performance on video datasets by adapting
ImageNet-pretrained vision models to 3D tasks. Following their strategies, we
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Table 3: Video Classification Results on Kinetics400 and Breakfast Classi-
fication Results. For Kinectics400, we report results using 32 frames (/32) and 64
frames (/64).

(a) Kinetics400 Video Clas-
sification Results.

Method Views Acc↑ Params
Swin-T 4×3 78.8 28M
Swin-S 4×3 80.6 49M
Swin-B 4×3 80.6 88M
ViViT-L 4×3 80.6 310M
TimeSformer-L 1×3 80.7 121M
Mamba-3D/32 4×3 80.9 38M
Mamba-3D/64 4×3 81.9 39M

(b) Long Video Classification Results on
Breakfast dataset.

Arch. Acc↑
Distant Supervision TimeSformer 89.9
ViS4mer Swin+SSM 88.2
TranS4mer SSM 90.3
Mamba-3D SSM 91.2

inflate Mamba-2D to Mamba-3D. Since we adopted an alternating design, each
layer only sees a 1D input sequence. This means the sizes of weights in Mamba-
2D and Mamba-3D layers are identical, and we can directly load the Mamba-2D
checkpoint. The only weight that have different shapes are the patch embeddings.
We adopted a temporal patch size of 2, so we duplicated the ImageNet weights
along the time dimension and divide the value by 2. To address the change in
ordering from H+H-W+W- to H+H-W+W-T+T-, we simply append new layers
for T+T- every other four layers.

We sample 32 frames at a frame interval of 2 from each video clip, which
amounts to around 2 seconds of video. We use the AdamW optimizer with
β = (0.9, 0.999) and a learning rate of 6e − 4. The learning rate on the back-
bone is multiplied by a factor of 0.1. We train our model with a global batch
size of 64 for 50 epochs. We select Inception-I3D [6] and ConvNeXt-I3D [37] as
our convolutional baseline. For transformer-based models, we select Video Swin
Transformer [36],TimeSfromerr [4], and ViViT [2]. We conducted experiments
of UCF-101 [47], HMDB-51 [29] and Kinects-400 [26] datasets. All models are
initialized with the ImageNet-1K pretrained checkpoints. We report the results
in Tab. 2 and Sec. 5.1. Our method achieves a +1.3 accuracy on Kinectics-400
dataset compared to Video Swin Transformer while using only 44% of the pa-
rameters.

To further explore the capabilities of Mamba-3D on video understanding
task, we evaluate Mamba-3D on long video classification task on Breakfast
[28] dataset. Mamba-3D outperforms previous state-of-the art models based on
Transformers (Distant Supervision [34]), SSMs (TranS4mer [25]), and hybrid
architectures (ViS4mer [24]).

5.3 Global Weather Forecasting

For weather forecasting, we use Cli-ViT [42–44] and Pangu-Weather [5] as our
baselines. Because these models were originally trained on terabytes of high-
resolution data, typically around 1◦, for a long time, we cannot directly compare
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Table 4: ERA5 5.625◦ Weather Forecasting Results. Anomaly Correlation Co-
efficient (ACC) and RMSE on geopotential at the 500 hPa level. Compared to Cli-ViT,
Mamba-3D achieved a +0.7 ACC while reducing the parameter count by 44.5%.

Arch Parms RMSE↓ ACC↑
Cli-ViT ViT 108M 467 89.3
Pangu Swin 50M 462 89.0
Mamba-3D Mamba 50M 433 90.1

Table 5: 3D Segmentation on BTCV Dataset. We report the score. Mamba-3D
consistently outperforms baseline architectures at with less parameter count.

Arch Arch Params DICE↑ Memory Patch Size
UNETR ViT 101M 81.4 10G [16, 16, 16]
Swin-UNETR Swin 63M 83.3 21G [2, 2, 2]
Mamba-3D-UNETR-S Mamba 36M 83.1 8G [16, 16, 16]
Mamba-3D-UNETR-S+ Mamba 55M 83.6 9G [16, 16, 16]
Mamba-3D-UNETR-B Mamba 107M 84.7 9G [16, 16, 16]

them due to computational constraints. Instead, we use the 5.625◦ version of the
ERA data across 7 pressure levels. Our baselines Cli-ViT are based on Vision
Transformer, and Pangu-Weather is based on Swin-Transformer. For Cli-ViT,
we use the official implementation from ClimaX [42]. For Pangu-Weather, we re-
implement it in PyTorch. We train all models from scratch for 50 epochs, using
a learning rate of 0.0005. The learning rate follows a cosine decay schedule with
a warm-up period of 5 epochs. For Mamba-3D, we use a patch size of 2× 2× 2.
We show the results in Tab. 4. Compared to Cli-ViT, Mamba-3D achieved a
+0.7 ACC while reducing the parameter count by 44.5%.

5.4 3D Medical Image Segmentation

We evaluate our model on BTCV [30] dataset. BTCV consists of abdominal CT
scans of 30 subjects. Each CT scan consists of 80 to 225 slices with 512×512 pix-
els. We use the report numbers on split0 provided by UNETR with 6 validation
samples and 24 training samples. We compare against ViT-Based method (UN-
ETR) [19] and Swin-Based method (Swin-UNETR) [18]. We keep the decoder
of UNETR unchanged and only replaced its ViT backbone. We use a patch size
of 16× 16× 16. All models have 12 layers. The Small, Small+, and Base variant
of Mamba-3D-UNETR has hidden sizes of 384, 512 and 768 respectively. We
train all models on a single GPU for 5000 epochs. Memory cost are reported ac-
cordingly. We report the DICE scores. Notably, Mamba-3D-S achieves +0.1 gain
while reducing the number of parameters by 64% when compared with UNETR.
Mamba-3D-B, which has a similar parameter count to UNETR, achieves a gain
of +2.7 compared with UNETR.



Mamba-ND 13

Table 6: Ablation Study on Layer Designs. We report top-1 accuracy on the
ImageNet-1K validation set. The Alt-Directional design is the top-performing one.

IN1K↑ HMDB-51 ↑
Alt-Directional Block Level 79.4 59.0
Multi-Head-SSM Layer-Level 77.6 51.5
ND-SSM Layer-Level 77.2 46.7
1D-SSM - 76.4 34.9
Bi-SSM Layer-Level 74.6 32.1

5.5 Meta Architectures

We perform extensive ablation studies on various design choices mentioned in
Sec. 4. We show that the alternating-directional design is the simplest and most
effective one among a wide range of possible choices.

Layer Design We use ImageNet-1K and HMDB-51 classification as our bench-
marks. We perform an ablation study on Mamba-2D and Mamba-3D. We adopted
various designs mentioned in Sec. 4.2. Results show that our final alternating-
directional design achieves stronger performance than all proposed layer-wise
changes. We show results in Tab. 6. Compared with the 1D-Mamba baseline, in
which no special design is adopted after naively flattening the multi-dimensional
sequence into a 1D sequence, we achieved a +4.8 accuracy on ImageNet and a
+26.9 accuracy on HMDB-51. Additionally, we observe that most of the proposed
multi-directional designs are able to outperform the naive and bi-directional
baselines by considerable margins.

Layer arrangement We perform comprehensive ablation studies on various or-
ganizations of SSM layers mentioned in Sec. 4.3 at the block level. In addition
to three choices discussed in Sec. 4.3, we also experiment with a hex-directional
design [H+H-W+W-T+T-], in which inputs of a block are processed by multiple
layers at different ordering in parallel, and the results are summed together in
the end. We show the results in Tab. 7a. Contrary to intuition and the layer-level
results, adding multi-directional design at the block level degrades the perfor-
mance. We hypothesize that this behavior is caused by the reduced number of
model depths. Since we keep the number of layers fixed across all designs, incor-
porating some level of multi-directional parallel processing will inevitably reduce
the depths of the computation graph. We provide more discussion in ??.

5.6 Scan Factorization

While factorizing the sequence in the current implementation of Mamba leads
to considerable memory and runtime overhead, these costs are external to the
designs themselves and may be patched in the future. For example, a scan of N
sequences of length L can be considered as a long scan of one sequence of NL
with Ā from Eq. (5) set to zero in places where the scan operation moves from
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Table 7: Ablation Studies

(a) Ablation Study on Layer Ar-
rangement. We report top-1 accuracy
on the HMDB-51 dataset. H+H-W+W-
T+T- is the top-performing design.

Ordering HMDB↑
H+H-W+W-T+T- 59.0
[H+H-W+W-T+T-] 38.3
[H+H-][W+W-][T+T-] 49.8
[H+H-W+W-][T+T-] 47.4

(b) Ablation Study on Various Factorization Poli-
cies + indicates layer factorization. In all studies, the
total number of layers is fixed. B: batch size, and D:
length of a single dimension.

Factorization HMDB↑ Mem #Sequences
1D+1D+1D 44.5 80GB O(BD2)
2D+1D 55.8 77GB O(BD2)
2D+3D 51.9 18GB O(BD)
3D 59.0 17GB O(B)

Multi-Directional Bi-Directional Uni-Directional

0.0

1.0

Fig. 6: Effective Receptive Field of Various Designs. Darkness indicates the
sensitivity of the central patch of the output to each pixel of the input image, normal-
ized to the range of (0, 1). All images are 224x224. We use ImageNet-1K pretrained
checkpoints for these visualizations.

one short sequence to another. Hence, we find it useful to study the effects of
various factorization techniques despite their inferior runtime efficiency.

We show such results in Tab. 7b. We also report the memory cost on a
single Nvidia A100 GPU. While all factorizations lead to worse performance,
we find that 2D+1D factorization outperforms the 2D+3D setup, suggesting
there may be merits of having certain layers dedicated to processing temporal
correspondence. Because the cost of 1D factorization is high, we choose not to
explore it further at this time.

6 Conclusion

Transformers have been the go-to choice in image, language, and video tasks in
recent years, just like ConvNets and RNNs in earlier years. Mamba [39] presents
itself as a competitive challenger to Transformers in 1D sequence modeling. In
this work, we proposed Mamba-ND which successfully extends the strong perfor-
mance of Mamba to multi-dimensional inputs. Mamba-ND outperforms Trans-
formers on a variety of tasks with significantly fewer parameters, while incurring
only subquadratic complexity. Through extensive experiments with alternative
designs, we demonstrate the importance of our multi-directional design choices
over uni-directional and bi-directional baselines.
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