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A Appendix

A.1 Parallel Representation of NC-RetNet

In this section, we formulate the parallel representation of NC-RetNet, especially
the D matrix. Denote the length of training sequences as L and the training
chunk size as T , then the D matrix is as in Eq. (6).

Dnm =

{
γ|n−m|, m ≤ ⌈n/T ⌉ ∗ T
0, m > ⌈n/T ⌉ ∗ T

, n,m ∈ {1, ..., L} (6)

Given this D matrix, the parallel representation of NC-RetNet is the same as
Eq. (1). This representation is equivalent to the chunkwise recurrent represen-
tation using the D matrix in Eq. (4), because only the temporal information
from previous chunks (m ≤ ⌊n/T ⌋ ∗ T ) and the current chunk (⌊n/T ⌋ ∗ T <
m ≤ ⌈n/T ⌉ ∗ T ) is available in both representations. Therefore, the NC-RetNet
trained in the parallel representation can be used to infer test sequences directly
in the chunkwise recurrent representation.

A.2 Overall Architecture

In this section, we introduce the model architecture built on MixSTE. Given a
stream of 2D keypoints, the model processes the stream every T frames, where
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Fig. 5: Architecture of the human pose estimation model based on NC-RetNet.
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the T frames is referred to as a chunk. The 2D keypoints in the ith chunk are first
embedded using a linear layer, and then the fixed spatial position encoding is
added. The resulting embedding is then passed into the spatial-temporal encoder.
There are N blocks in the spatial-temporal encoder, and each block consists of a
transformer-based spatial encoder and an NC-RetNet based temporal encoder.
This alternating way of integrating spatial and temporal information is borrowed
from [13]. Since the transformer-based spatial encoder has been widely used by
previous methods, we only formulate the temporal encoder below.

The temporal encoder is composed of a Multi-Scale Non-Causal Retention
Module, a Layer Normalization [1] and an MLP. Similar with the transformer
block, the skip connection is applied. Denote the input tokens of the ith to the
lth temporal encoder as Xi

l ∈ RT×J×d, where J is the number of human joints.
The Multi-Scale Non-Causal Retention Module divides the input tokens into H
parts along the feature dimension, i.e. Xi

l,h ∈ RT×J×(d/H), h ∈ {1, ...,H}. Each
part is then processed by a simple Non-Causal Retention Module as described
in Sec. 3.2, and the output tokens of H simple modules are concatenated to-
gether before being fed into a Group Normalization [11]. The γh for each simple
module is different, so the whole module is termed Multi-Scale Non-Causal Re-
tention (MS-NC-Retention), which can be formulated in Eq. (7). Since different
decay coefficients are integrated into one MS-NC-Retention, it can capture the
temporal information of multiple frequencies.

Y i
l,h, S

i
l,h = NC-Retention(Xi

l,h, S
i−1
l,h )

Y i
l = GroupNorm(Concat(Y i

l,h)), h ∈ {1, ...,H}
(7)

Note that we does not formulate the joint-related decay coefficients above for
simplicity. Intuitively speaking, this design further allows capturing temporal
information of different ranges of frequencies for different joints.

Finally, a regression head built on MLP is used to regress the 3D poses within
the current chunk.

A.3 Hyper-parameter Settings

We use the Adam optimizer [4] and train the model for 150 epochs. The dimen-
sion of the model d is 512, and the number of spatial-temporal blocks N is 8. We
use DropPath [5] when training and the drop path rate is 0.1. Data augmenta-
tion of horizontal flipping is applied during training and testing. To diversify the
chunk segmentation, a random shift is implemented on both datasets. Specifi-
cally, the initial index for segmenting the sequences is not consistently the first
frame, but a randomized one.

For training on the Human3.6M dataset, we set L to 900 and sample the
training sequences with a stride of 450. The initial learning rate is 4e-5 and the
learning rate decay for each epoch is 0.99. The batch size on each GPU is 1.

For training on the MPI-INF-3DHP dataset, we set L to 600 and sample the
training sequences with a stride of 600. The initial learning rate is 1e-4, and the
learning rate decay for each epoch is 0.98. The batch size on each GPU is 2.
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A.4 Comparison with STCFormer

Although the reported accuracy of our method at T = 243 does not surpass
STCFormer [10] with a clear margin, we argue that our method is better. First,
we does not use the tricks used by STCFormer, including Temporal Downsam-
pling Strategy [8] and integrating results with T = 81. Without the latter one,
STCFormer only achieves an MPJPE of 41.0 mm when T = 243. Second, the
STCFormer adopts the seq2frame framework, which only predicts one frame
given a lot of input frames. In contrast, our method predicts the results for all
input frames, which is a much more efficient way.

A.5 Comparison with More SOTA Methods

In this section, we list the results of more SOTA methods in Tab. 6 (top 5 rows).
It can be seen that our method is still the best. We also conduct the experiment
by building our model on another state-of-the-art architecture, DSTformer pro-
posed by MotionBERT [15]. The results are shown in Tab. 6 (bottom 4 rows). In
this experiment, the model estimates the image-normalized 3D pose and uses ad-
ditional scaling factors during testing as MotionBERT does. The training chunk
size is 243. With the same architecture and data, our method is better than the
original DSTformer when T is 243, and the performance of our method does
not deteriorate rapidly as T becomes smaller. These results demonstrate the
effectiveness of our module with different architectures.

Table 6: Comparison of MPJPE on the Human3.6M dataset with more SOTA meth-
ods. SH is short for Stacked Hourglass [6]. T is the test chunk size.

Publication 2D detector T MPJPE
PoseformerV2 [14] CVPR’23 CPN 243 45.2
UPS [3] CVPR’23 CPN 243 40.8
Einfalt et al. [2] WACV’23 CPN 351 41.7
GLA-GCN [12] ICCV’23 CPN 243 44.4
Ours + MixSTE CPN 243 40.4
MotionBERT [15] ICCV’23 SH 243 39.2
Ours + DSTformer SH 27 40.4
Ours + DSTformer SH 81 39.4
Ours + DSTformer SH 243 38.9

A.6 Ablations on Joint-Related Decay Coefficients

To validate the effectiveness of the joint-related decay coefficients, we train the
models using the same γ for all human joints, and we test four values, 1− 1/4,
1 − 1/8, 1 − 1/12 and 1 − 1/16. The results are in Tab. 7. It can be seen that
using none of the four base γ’s for all human joints beats using joint-related decay
coefficients, demonstrating the effectiveness of joint-related decay coefficients.
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Fig. 6: Visualization of some in-the-wild examples predicted by our method.
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Table 7: Ablation study of effect of joint-related decay coefficients compared with
using the same decay coefficient for all human joints.

base γ MPJPE PA-MPJPE
1− 1/4 41.0 33.0
1− 1/8 40.7 32.7
1− 1/12 40.8 32.8
1− 1/16 41.1 33.1
Joint-Related 40.4 32.5

A.7 More Visualization Results

Performance on In-the-wild Data Using YOLOv3 [7] as the bounding box
detector and HRNet [9] as the 2D keypoints detector, we test our method on
some in-the-wild examples, and the results are shown in Fig. 6. It can be seen
that our method is able to predict accurate and continuous 3D poses despite
noisy 2D input caused by motion blur, occlusion or rare pose. This shows that
our method generalizes well to unseen data samples. More results of in-the-wild
videos are included in the ZIP file.

Visualization of Feature Similarity We visualize the similarity of joint fea-
tures under different timesteps, seen in Fig. 7. The two skeletons at t1 and t2
are similar, and the difference mainly lies in the pose of upper arms. Therefore,
the similarities of other human parts are very high. For example, the similar-
ities between t1 and t2 of the left hip, right hip, head and nose reach nearly
1.0. But those of the left elbow, right elbow, left wrist and right wrist are lower
(approximately 0.95). This result demonstrates that our model extracts mean-
ingful features for human joints that can reflect the similarity. Moreover, it can
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Fig. 7: Visualization of the similarity of the features along the time axis of different
human joints.
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be seen that the similarities along the time axis of the limb joints are generally
lower than those of the torso and head joints. Specifically, most of the similarities
of the limb joints are lower than 0.9. This results show that the design of the
joint-related decay coefficients is reasonable.

A.8 Throughput

We test the throughput of the above pipeline, which includes YOLOv3, HRNet,
and NC-RetNet on a single GeForce RTX 3090 GPU. The throughput of 2D
bounding box detection and 2D keypoint detection is 16.23 items per second,
while the throughput of 2D-to-3D lifting using our method is 1059.48 items per
second. Overall, the throughput of this pipeline is 15.99 items per second, which
is very close to the detection and 2D estimation step. Therefore, our 2D-to-3D
lifting method is highly efficient.
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