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Abstract. A novel algorithm for video lane detection is proposed in
this paper. First, we extract a feature map for a current frame and
detect a latent mask for obstacles occluding lanes. Then, we enhance
the feature map by developing an occlusion-aware memory-based re-
�nement (OMR) module. It takes the obstacle mask and feature map
from the current frame, previous output, and memory information as
input, and processes them recursively in a video. Moreover, we apply
a novel data augmentation scheme for training the OMR module e�ec-
tively. Experimental results show that the proposed algorithm outper-
forms existing techniques on video lane datasets. Our codes are available
at https://github.com/dongkwonjin/OMR.
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1 Introduction

Lane detection aims to localize lanes in a road scene, which is essential for
either enabling autonomous driving or assisting human driving. It is, however,
di�cult to detect lanes, which may be unobvious due to occlusions by nearby
vehicles or severe weather conditions. For lane detection, early methods tried
to �nd visible lane cues by extracting low-level features [1, 7, 8, 42]. Recently,
many techniques have been developed to deal with implied lanes using deep
features. Some adopt the semantic segmentation framework [9,10,21,24,40] and
classify each pixel into either the lane category or not. Several attempts have
been made to extract continuous lane information, including curve modeling
[5, 16, 19, 29, 31] and keypoint association [25, 32, 37]. Meanwhile, anchor-based
lane detectors [12, 13, 28, 34, 41] have been proposed. They prede�ne a set of
lane anchors and then detect lanes through the classi�cation and regression
of each anchor, ensuring lane continuity. However, all these methods are image-
based detectors that process each frame independently, so they often fail to yield
temporally stable detection results, especially when some lanes are occluded by
objects, as illustrated in Fig. 1.

Video lane detectors also have been developed. These techniques exploit past
information to detect lanes in a current frame, which may help to identify implied
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Fig. 1: Examples of road scenes, in which some lane parts are occluded by several
objects. Visible lanes and obstructing objects are depicted by white lines and orange
polygons, respectively.

lanes more reliably. Most of them [27, 33, 38, 39, 44] adopt the framework in
Fig. 2(a). These video detectors extract the features of several past and current
frames, aggregate those features, and detect lanes in the current frame using
the mixed features. However, they do not reuse the mixed features in future
frames. Recently, a recursive video lane detector (RVLD) [11] was proposed. As
in Fig. 2(b), RVLD enhances the features of a current frame using the single
previous frame only through motion estimation and feature re�nement. Also,
it passes the state of the current frame recursively to the next frame. RVLD
outperforms existing image and video lane detectors, but it may detect lanes
inaccurately because it heavily relies on the information in a current frame.
In particular, when lanes in a current frame are severely occluded by nearby
vehicles, RVLD tends to produce unreliable detection results.

In this paper, we propose a novel video lane detector incorporating an occlusion-
aware memory-based re�nement (OMR) module. As in Fig. 2(c), it utilizes a
latent obstacle mask and memory information to enhance the feature map of
a current frame. First, we extract a feature map and detect latent obstacles,
hindering lane visibility, from the current frame. Then, we re�ne the feature
map through the OMR module, which takes the obstacle mask and feature map
from the current frame, the previous output, and the memory information as
input. Moreover, we develop an e�ective data augmentation scheme for training
the OMR module robustly. Experimental results demonstrate that the proposed
algorithm outperforms existing techniques on both VIL-100 [39] and OpenLane-
V [11] datasets.

This work has the following major contributions:

� The proposed OMR module improves lane detection results in a current
frame by exploiting an obstacle mask and memory information.

� We introduce a novel training strategy for video lane detection to identify
lanes more robustly.

� The proposed algorithm yields outstanding lane detection results on video
datasets.

2 Related Work

2.1 Image-Based Lane Detection

Various techniques have been developed to detect lanes in a still image. Some
are based on semantic segmentation [9, 10, 21, 24, 40], in which each pixel is
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Fig. 2: There are three approaches to video lane detection. In (a), the feature maps of
a current frame It and the past T frames are extracted and mixed to re�ne the feature
map of It. In (b), only a single previous frame is used to enhance the feature map of
It, and the enhanced one is passed recursively to the subsequent frame. The proposed
algorithm in (c) utilizes obstacle and memory information to improve the feature map
of It via the OMR module. Note that gray, blue, green, and orange boxes represent
intra-frame features, re�ned features, recorded memory, and a latent obstacle mask,
respectively.

dichotomized into the lane category or not. To boost the pixelwise classi�cation,
Pan et al . [21] propagated the information of pixels spatially. In [24,40], recurrent
or multi-scale feature aggregation was performed. Hou et al . [10] performed self-
attention distillation, while Hou et al . [9] employed teacher and student networks.
For e�cient lane detection, Qin et al . [23] determined the location of each lane on
selected rows only. Liu et al . [15] developed a conditional lane detection scheme
based on the row-wise approach.

Several methods attempt to maintain lane continuity by regressing curve
parameters [5,16,19,29,31] or associating multiple keypoints [25,32,37]. Neven et

al . [19] did the polynomial �tting of segmented lane pixels. In [29,31], polynomial
coe�cients of lanes were regressed using neural networks. Also, Liu et al . [16]
predicted cubic lane curves based on a transformer network. Feng et al . [5]
employed Bezier curves. In [25], Qu et al . extracted multiple keypoints and
linked them to reconstruct lanes. Wang et al . [32] estimated the o�sets from a
starting point to keypoints and grouped them into a lane instance. Xu et al . [37]
predicted four o�sets bilaterally from each lane point to the two nearest ones
and the two farthest ones.

Meanwhile, the anchor-based detection framework has been adopted in [3,
12, 13, 28, 34, 36, 41]. These techniques form lane anchors and then classify and
regress each anchor by estimating the lane probability and the positional o�set.
In [3, 36], vertical line anchors were employed. In [13, 28], straight line anchors
were used to extract global features of lanes. Zheng et al . [41] extracted multi-
scale feature maps and re�ned them by aggregating global features of learnable
line anchors. Jin et al . [12] introduced data-driven descriptors called eigenlanes.
They generated curved anchors as well as straight ones by clustering all training
lanes in the eigenlane space. Xiao et al . [34] produced a heat map to estimate
the starting points and directions of anchors.
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Fig. 3: Overview of the proposed algorithm, which performs four steps: encoding, la-
tent obstacle detection, OMR, and decoding. In this example, the rightmost lane is
partially occluded by nearby vehicles, so the encoded features are defective, making
lane detection di�cult. The proposed algorithm, however, can detect the implicit lane
precisely by re�ning the features within the occluded regions e�ectively. As depicted
by dotted red boxes, we see that the proposed OMR module enhances the features of
the occluded lane into more discriminative ones.

2.2 Video-Based Lane Detection

There are several video-based lane detectors. Most of them combine the features
of a current frame with those of several past frames to detect lanes in the current
frame, as in Fig. 2(a). To exploit temporal correlation, Zou et al . [44] and Zhang
et al . [38] employed recurrent neural networks. Zhang et al . [39] aggregated
features of a current frame and multiple past frames based on the attention
mechanism [20, 30]. Tabelini et al . [27] fused global features of lanes in video
frames after extracting them using the anchor-based detector in [28]. Wang et

al . [33] modi�ed the feature aggregation module in [40] to exploit spatiotemporal
information in neighboring video frames. However, these video detectors do not
reuse the aggregated features in future frames. Recently, Jin et al . [11] developed
the RVLD method, which uses only a single previous frame but propagates the
state of the current frame to the next frame recursively. As in Fig. 2(b), RVLD
estimates a motion �eld, warps the previous output to the current frame, re�nes
the feature map of the current frame, and passes it to the subsequent frame.
Despite promising results, RVLD often misses or incorrectly detects unobvious
lanes, especially highly occluded lanes. In contrast, the proposed algorithm ef-
fectively processes those lanes by detecting latent obstacles and utilizing both
memory information and previous output, as shown in Fig. 2(c).

3 Proposed Algorithm

Given a video sequence, we perform lane detection, which is composed of en-
coding, latent obstacle detection, feature re�nement, and decoding steps. Fig. 3
shows an overview of the proposed algorithm. For clarity, we describe the encod-
ing and decoding processes in advance. Notice that the proposed OMR module
is performed in the feature re�nement step.
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Fig. 4: Architecture of the encoder and the decoder: (a) Given an image I, three
coarsest feature maps are extracted using a backbone network. After matching their
channel dimensions and resolutions, they are encoded into a combined feature map F .
(b) From a feature map F , a lane probability map P is estimated. Then, by applying
a deformable convolution, a lane coe�cient map C is predicted from P .

3.1 Encoding

Given an image I, we extract a convolutional feature map F ∈ RH×W×K , as
done in [12, 23]. Fig. 4(a) shows the encoding process. First, we extract multi-
scale feature maps using ResNet18 [6] as the backbone. Then, we combine the
three coarsest maps, which have 1/8, 1/16, and 1/32 of the resolution of I,
respectively. Speci�cally, we match the channel dimensions of the feature maps
to K. We then match the resolutions of the two coarser maps to the �nest one
via bilinear interpolation and concatenate them. From the concatenated feature
map, we obtain F via convolutional and up-sampling layers. We set K to 64.

3.2 Decoding

From a feature map F , we produce two output maps to determine lanes in I,
as shown in Fig. 4(b). We obtain a lane probability map P ∈ RH×W×1 using a
series of convolutional layers and a sigmoid function. Let x denote the position
vector of a pixel, and let P (x) be the probability that pixel x belongs to a lane.
Also, we estimate a lane coe�cient map C ∈ RH×W×M . Each element in C is a
coe�cient vector in the M -dimensional eigenlane space [12], in which lanes are
represented compactly with M basis vectors. Since C(x) represents geometric
information for a lane containing x, we use a positional bias [30] to regress the
coe�cient vector more accurately. To this end, we obtain a sinusoidal positional
bias B ∈ RH×W×K and combine it with F via element-wise addition. From the
combined feature map, we generate an o�set map E1 ∈ RH×W×50, a weight map
E2 ∈ RH×W×25, and a transformed feature map, and then perform deformable
convolution [43] with a 5× 5 kernel to regress C.

Using the probability map P and the coe�cient map C, we determine re-
liable lanes through non-maximum suppression (NMS), as done in [11]. First,
we select the optimal pixel x∗ with the highest probability in P . Then, we form
the corresponding lane r by linearly combining M eigenlanes with the coe�cient
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Fig. 5: Block diagrams of the latent obstacle detection and OMR: (a) From the en-
coded feature map F , a binary probability map S for latent obstacles is predicted. By
thresholding S, a binary obstacle mask O is determined. To obtain its ground-truth
S̄, SegFormer [35], which is a semantic segmentation algorithm, is employed. (b) In
OMR, four input maps Lt−1, Ft−1, Õt, and F̃t are aggregated to Z. Then, using the
combined feature map Z, ConvLSTM [26] is used to update (ht−1, ct−1) to (ht, ct) via
(4). Then, ht is added to F̃t to re�ne it into Ft. Blue boxes represent a series of 2D
convolution operations with batch-normalization and ReLU function.

vector C(x∗), which is given by

r = UC(x∗) = [u1, · · · ,uM ]C(x∗) (1)

where u1, · · · ,uM are the M eigenlanes [12]. Note that r is a column vector
containing the horizontal coordinates of lane points, which are uniformly sampled
vertically. After dilating the lane curve r, we construct a mask and remove the
pixels within it to prevent their selection in the remaining iterations. We iterate
this NMS process until P (x∗) is higher than 0.5.

Finally, using the selected lanes, we output a lane mask L ∈ RH×W×1: L(x) =
1 if x belongs to a lane, and L(x) = 0 otherwise.

3.3 Latent Obstacle Detection

Various objects appear in road environments, such as trucks on highways or
pedestrians on crossroads. These objects hinder the visibility of lanes, posing
signi�cant challenges in lane detection. To address such occlusion, we treat them
as latent obstacles and detect them accordingly. Fig. 5(a) shows the obstacle
detection process. More speci�cally, we predict a binary probability map S ∈
RH×W×1 from the feature map F of I by

S = σ(w1(F )), (2)

where σ is the sigmoid function and w1 is composed of 2D convolutional layers.
S(x) is the probability that pixel x belongs to an obstacle on a road surface.
Then, we obtain an obstacle mask O ∈ RH×W×1, in which O(x) is assigned to 1
if S(x) is higher than a threshold, and 0 otherwise. We set the threshold to 0.3.

Since there is no ground-truth (GT) segmentation of those obstacles in ex-
isting lane datasets, we generate their pseudo-labels by employing a semantic



OMR 7

segmentation algorithm. In this work, we adopt SegFormer [35], which is e�-
cient and yields high performance on the Cityscapes dataset [4]. Eight of the 19
categories in the dataset, including `car,' `bus,' and `rider' classes, are regarded
as potential lane-occluding obstacles. Then, we perform SegFormer to produce
a GT binary segmentation mask S̄ ∈ RH×W×1 for those candidates in I. Using
the predicted map S and its GT mask S̄, the obstacle detector in (2) is trained.
The training process is detailed in Section 3.5.

3.4 Occlusion-Aware Memory-Based Re�nement

In a current frame It, some lanes may be unobvious due to the occlusions by
neighboring obstacles, as mentioned previously. Furthermore, various factors
such as poor lighting and adverse weather conditions a�ect the visibility of lanes.
To deal with these issues, we utilize the obstacle detection results from It, pre-
vious output from It−1, and memory information through the proposed OMR
module. Fig. 5(b) shows the structure of the OMR module.

Let F̃t be the feature map of It obtained by the encoder. In F̃t and the
following notations, tilde represents output produced from a still image. Thus,
the probability map P̃t, the coe�cient map C̃t, the lane mask L̃t, and the obstacle
mask Õt are decoded from F̃t. Using the OMR module, we aim to re�ne F̃t to Ft

and improve the detection results from L̃t to Lt. To this end, we �rst obtain a
feature map Z ∈ RH×W×K by aggregating Õt and F̃t with the previous output
Lt−1 and Ft−1 via

Z = w4([w2(Lt−1), Ft−1, w3(Õt), F̃t]) (3)

where [·] is channel-wise concatenation, and w2, w3, and w4 are 2D convolution
layers. Also, notice that Lt−1 and Ft−1 are already re�ned in the previous step
and recursively used in the current step. Then, we exploit memory information
by employing a variant of ConvLSTM [26]. Speci�cally, from the mixed feature
map Z, we perform a series of ConvLSTM operations by

ft = σ(w5(Z) + w6(ht−1)),

it = σ(w7(Z) + w8(ht−1)),

gt = σ(w9(Z) + w10(ht−1)),

ot = tanh(w11(Z) + w12(ht−1)),

ct = ft ⊙ ct−1 + it ⊙ gt, ht = ot ⊙ ct.

(4)

Here, w5, . . . , w12 are 2D convolutional layers, and ⊙ is element-wise multiplica-
tion, respectively. Also, ht and ct are a hidden state and cell state, and ft, it, gt,
and ot are a forget gate, input gate, control gate, and output gate, respectively.
The four gates are used to update the cell state and hidden state sequentially.
h1 and c1 are initialized by learnable parameters. Also, we do not use the cell
vectors for estimating the gate parameters. Then, we produce the re�ned feature
map Ft by

Ft = F̃t + ht, (5)
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It Õt F̃t Ft P̃t Pt Ground-truth

Fig. 6: Visualization of the obstacle mask Õt, the feature map F̃t, the probability map
P̃t, and their enhanced ones Ft and Pt. In the current frame It, some lane parts are
occluded by nearby vehicles. The visible lane parts of F̃t are su�ciently discriminative
for identifying them. In contrast, the features for the occluded parts are not so infor-
mative. Thus, P̃t is poorly estimated around the occlusions. However, in Ft and Pt,
the lane features and lane probabilities for the occluded regions are restored faithfully
using the proposed OMR module. To visualize these feature maps, min-max normal-
ization is done.

Fig. 6 illustrates that the OMR module re�nes F̃t to Ft reliably, even though
some lane parts are obstructed by vehicles.

Lastly, using the re�ned feature map Ft, we produce a reliable lane mask Lt

by performing the decoding process, as described in Section 3.2.

3.5 Training

Data con�guration: For each image I, we generate a GT lane probability
map P̄ ∈ RH×W×1, a GT coe�cient map C̄ ∈ RH×W×M , and a GT obstacle
mask S̄ ∈ RH×W×1. First, P̄ (x) = 1 if pixel x belongs to a lane, and P̄ (x) = 0
otherwise. To obtain C̄, M eigenlanes are extracted by processing all lanes in a
training set, as done in [12]. Then, each lane in an image is transformed to an
M -dimensional coe�cient vector. In the image, C̄(x) is assigned the coe�cient
vector if x belongs to one of the lanes. Otherwise, if x does not belong to any
lane, C̄(x) is assigned the zero vector. To obtain S̄, we adopt Segformer [35],
which predicts the semantic segmentation mask for 19 categories. Thus, S̄(x) is
set to 1 if x belongs to eight of those categories, such as `car,' `bicycle,' `bus,'
`truck,' `train,' `motorcycle,' `person,' and `rider,' and 0 otherwise.
Loss function: We perform training in two steps. First, we de�ne the loss for
training the encoder and decoder as

ℓstep1 = ℓcls(P̃ , P̄ ) + ℓreg(C̃, C̄) + ℓcls(S̃, S̄). (6)

Here, P̃ , C̃, and S̃ are the decoded output from the encoded feature map F̃ of I.
Also, ℓcls is the focal loss [14] over binary classes, and ℓreg is the LIoU loss [41]
between a predicted lane contour r in (1) and its ground-truth r̄. Then, we de�ne
the loss for training the proposed OMR module as

ℓstep2 = ℓcls(P, P̄ ) + ℓreg(C, C̄) (7)

where P and C are the output from the re�ned feature map F . Also, during the
training of the OMR module, we freeze the parameters of the pretrained encoder
and decoder.
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(a) (b)

Fig. 7: (a) In a training set, each image is synthesized by overlaying new objects, such
as vehicles or cyclists, from the KINS dataset. (b) Additionally, video sequences are
regenerated by linearly varying the sizes and positions of these objects over frames.
The resulting images appear natural because fully shaped objects are extracted from
KINS.

Data augmentation: In real-world environments, lanes unexpectedly disappear
and reappear due to occlusions by nearby objects. To cope with such challenging
scenarios reliably, we introduce a data augmentation scheme, which is applied to
the training of the OMR module. To this end, we employ the KINS dataset [22].
It is an amodal instance segmentation dataset, in which a fully-shaped mask
per each object is given involving its occluding parts. Given an original video
sequence, we randomly select an object from the KINS dataset and then attach
its full shape to the video frames. We also vary the size and position of the object
linearly over frames. Fig. 7 shows some examples of the synthetically generated
frames.

4 Experimental Results

4.1 Implementation Details

We adopt ResNet18 [6] as a backbone. We use AdamW optimizer [18] with an
initial learning rate of 10−1 and halve it after every 100,000 iterations four times.
Also, we use a batch size of four for 400,000 iterations. We resize an input image
to 384 × 640. As the default setting, we set H = 96, W = 160, K = 64, and
M = 6. We also employ SegFormer-B5 [35] for the semantic segmentation.

4.2 Datasets

VIL-100 [39] is the �rst dataset for video lane detection containing 100 videos. It
is split into 80 training and 20 test videos. Each video has 100 frames. VIL-100
includes some challenging scenes in which some lanes are highly occluded by
big trucks or buses. In each frame, 2D lane coordinates up to 6 road lanes are
annotated.

OpenLane-V [11], which is modi�ed from OpenLane [2], is a huge and diverse
video lane dataset. It consists of about 90K images from 590 videos. It is split
into a training set of 70K images from 450 videos and a test set of 20K images
from 140 videos. As in the CULane dataset [21], up to 4 road lanes are annotated
in each image, corresponding to ego and alternative lanes. OpenLane-V is more
di�cult for lane detection than VIL-100, because of various challenging factors:
lane occlusions, severe weather conditions, poor illumination, or lack of lane
marking on crossroads.
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Table 1: Comparison of mIoU, F1 scores, �ickering, and missing rates on VIL-100:
image lane detectors and video ones are listed separately.

Approach mIoU(↑) F1(↑) RF(↓) RM(↓)
LaneNet [19]

Image-based

0.633 0.721 - -
ENet-SAD [10] 0.616 0.755 - -
LSTR [17] 0.573 0.703 - -
RESA [40] 0.702 0.874 - -
LaneATT [28] 0.664 0.823 - -
MFIALane [24] - 0.905 0.047 0.128
ADNet [34] 0.781 0.920 0.039 0.043

MMA-Net [39]

Video-based

0.705 0.839 0.042 0.127
LaneATT-T [27] 0.692 0.846 - -
TGC-Net [33] 0.738 0.892 - -
RVLD [11] 0.787 0.924 0.038 0.050

Proposed Video-based 0.774 0.936 0.026 0.038

4.3 Evaluation Metrics

Image metrics: For lane detection, image-based metrics are generally em-
ployed. Each lane is regarded as a thin stripe with a 30-pixel width [21]. Then,
a predicted lane is declared correct if its IoU ratio with GT is greater than 0.5.
The precision and the recall are computed by

Precision = TP
TP+FP , Recall = TP

TP+FN (8)

where TP is the number of correctly detected lanes, FP is that of false positives,
and FN is that of false negatives. Then, the F-measure is de�ned as

F1 = 2×Precision×Recall
Precision+Recall . (9)

Also, mIoU is computed by averaging the IoU scores of correctly detected lanes.

Video metrics: In autonomous driving systems, achieving temporally stable
lane detection is crucial to prevent hazardous situations caused by the sudden
detection or absence of a lane within a frame. To assess the temporal stability
of detected lanes, two video metrics [11] are employed. There are three cases
for a matching pair of lanes at adjacent frames: Stable, Flickering, and Missing.
A stable case is one where a lane is detected successfully in both frames. In a
�ickering case, a lane is detected in one frame but missed in the other. A missing
case is the worst one in which both frames miss a lane consecutively.

Let N be the number of GT lanes that have matching instances at previous
frames, and let NS, NF, NM be the numbers of stable, �ickering, and missing
cases, respectively. Note that N = NS+NF+NM. Then, the �ickering and missing
rates are de�ned as

RF = NF

N , RM = NM

N , (10)

where the IoU threshold for correct detection is 0.5.
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Fig. 8: Comparison of lane detection results on the VIL-100 dataset.

4.4 Comparative Assessment

VIL-100:We compare the proposed algorithm with conventional image lane de-
tectors [10,17,19,24,28,34,40] and video ones [11,27,33,39] on VIL-100. Table 1
lists the mIoU, F1 scores, RF rates, and RM rates. The proposed algorithm out-
performs the existing techniques in every metric, except for mIoU. Especially,
the proposed algorithm is better than the state-of-the-art video lane detector
RVLD by the same margins of 0.012 in F1, RF, and RM. RVLD improves the
detection results in a current frame using a single previous frame only based on
motion estimation and feature re�nement. However, it may fail to detect implied
lanes occluded by neighboring vehicles. This is because the motion estimator in
RVLD tends to produce inaccurate motion �eld for occluded regions. In con-
trast, the proposed algorithm detects those lanes more reliably by exploiting
the obstacle masks and memory information. ADNet [34], a recent image-based
detector, yields decent performances, but the scores are inferior to those of the
proposed algorithm in most metrics.

Fig. 8 presents some detection results. Both MFIALane and ADNet fail to
detect unobvious lanes precisely, for it is image-based. MMA-Net does not detect
those lanes, even though it uses several past frames as input. RVLD is better
than these techniques, but it also processes the occluded lanes poorly. In contrast,
the proposed algorithm provides better results based on the obstacle reasoning
e�ectively.
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Fig. 9: Comparison of lane detection results on the OpenLane-V dataset.

Table 2: Comparison on OpenLane-V.

Approach mIoU(↑) F1(↑) RF(↓) RM(↓)
MFIALane [24]

Image-based

0.697 0.723 0.061 0.300
CondLaneNet [15] 0.698 0.780 0.047 0.239
GANet [32] 0.716 0.801 0.048 0.198
CLRNet [41] 0.735 0.789 0.054 0.224

ConvLSTM [44]

Video-based

0.529 0.641 0.058 0.282
ConvGRUs [38] 0.540 0.641 0.064 0.288
MMA-Net [39] 0.574 0.573 0.044 0.461
RVLD [11] 0.727 0.825 0.014 0.167

Proposed Video-based 0.742 0.836 0.016 0.162

OpenLane-V: Table 2 compares the proposed algorithm with the image lane
detectors [15,24,32,41] and the video lane detectors [11,38,39,44] on OpenLane-
V. We see that the proposed algorithm outperforms the existing techniques in
most metrics. GANet [32] and CLRNet [41], which are recent image-based de-
tectors, perform well in image metrics. But, their �ickering rates RF and missing
rates RM are relatively high. RVLD [11] yields the lowest RF, but it is inferior
to the proposed algorithm in other metrics. Speci�cally, the proposed algorithm
outperforms RVLD by margins of 0.015, 0.011, and 0.005 in mIoU, F1, and RM,
respectively. Note that reducing RM is more critical than reducing RF because
missing lanes consecutively at both frames represents the worst scenario in video
lane detection. These experimental results indicate that the proposed algorithm
is temporally more stable than RVLD.

Fig. 9 shows detection results. Image-based techniques inaccurately detect
implied lanes or simply miss them in challenging scenes. RVLD is better than
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Table 3: Ablation studies of the proposed algorithm on VIL-100.

Obstacle mask Memory Synthetic data F1 RF RM

I ✓ ✓ 0.933 0.026 0.043
II ✓ ✓ 0.932 0.024 0.041
III ✓ ✓ 0.929 0.036 0.043
IV ✓ ✓ ✓ 0.936 0.026 0.038

these detectors but underperforms for highly occluded lanes. In contrast, the
proposed algorithm detects those lanes reliably.

4.5 Ablation Studies

We conduct ablation studies to analyze the e�cacy of the proposed algorithm
and its components. Table 3 compares several ablated methods on VIL-100.
Method I detects lanes in a current frame It without exploiting the latent ob-
stacle mask in the proposed OMR module. In other words, it excludes Õt in (3).
Method II does not use the memory information by removing the ConvLSTM
block in the OMR module. Thus, Z directly becomes Ft in (5). In Method III, the
OMR module is not trained using synthetically generated data. Method IV, the
proposed algorithm, applies the OMR module along with the data augmentation
scheme.
E�cacy of obstacle mask:As compared with the proposed algorithm (Method
IV), Method I yields inferior scores in terms of F1 and RM. This indicates that
utilizing obstacle masks is bene�cial for accurate and temporally stable lane
detection. Some detected obstacle masks are presented in the second column in
Fig. 10.
E�cacy of memory information: Compared to Method IV, Method II yields
slightly lower scores of RF, but its F1 score and missing rate RM become worse.
This indicates that, rather than using previous output only, it is more e�ective
to exploit memory information for reliable lane detection.
E�cacy of synthetic training data:Without using synthetic data in Method
III, the performances drop signi�cantly in every metric, especially for RF and
RM. The synthetic data augmentation is helpful for enhancing the temporal
stability of lanes.
E�cacy of OMR module: Fig. 10 visualizes the obstacle mask Õt, the feature
map F̃t and the lane probability map P̃t of a current frame It, and their re�ned
ones Ft and Pt. Some lane parts in It are occluded by nearby obstacles, and
thus their features and probabilities are erroneous. These results, however, are
restored faithfully through the proposed OMR module.
Runtime: Table 4 lists the runtime for each stage of the proposed algorithm.
The processing speed is about 105 frames per second, surpassing RVLD [11].
RVLD demands high computational costs due to local correlation in the motion
estimator. In contrast, the proposed algorithm consists of simpler operations.
The key parts, the latent obstacle detection and OMR, take less time to process.
The decoding part requires the longest time, containing the NMS process.
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It Õt F̃t Ft P̃t Pt Ground-truth

Fig. 10: Visualization of the obstacle mask Õt, the feature map F̃t, and the probability
map P̃t, and their enhanced ones.

Table 4: Runtime analysis and comparison of the proposed algorithm with RVLD.
LOD refers to latent obstacle detection. The processing times are reported in seconds
per frame.

RVLD [11]
Proposed

Encoding LOD OMR Decoding Total

0.0125s 0.0026s 0.0002s 0.0010s 0.0057s 0.0095s

5 Conclusions

We proposed a novel video lane detector. First, the proposed algorithm extracts
a feature map for a current frame and detects latent obstacles obstructing lane
visibility. Then, it enhances the feature map using the occlusion-aware memory-
based re�nement (OMR) module, which takes the detected obstacle mask and
the feature map from the current frame, the previous output, and the memory
information as input. The enhanced feature map is used for more reliable lane
detection. Moreover, we developed a data augmentation scheme for training the
OMR module robustly. Experimental results demonstrated that the proposed
algorithm outperforms existing techniques meaningfully.

Acknowledgements

This work was conducted by Center for Applied Research in Arti�cial Intelligence
(CARAI) grant funded by DAPA and ADD (UD230017TD) and was supported
by the National Research Foundation of Korea (NRF) grants funded by the
Korea government (MSIT) (No. NRF-2022R1A2B5B03002310 and No. RS-2024-
00397293).



OMR 15

References

1. Aly, M.: Real time detection of lane markers in urban streets. In: Intelligent Vehicles
Symposium (2008)

2. Chen, L., Sima, C., Li, Y., Zheng, Z., Xu, J., Geng, X., Li, H., He, C., Shi, J.,
Qiao, Y., Yan, J.: PersFormer: 3D lane detection via perspective transformer and
the OpenLane benchmark. In: Proc. ECCV (2022)

3. Chen, Z., Liu, Q., Lian, C.: PointLaneNet: E�cient end-to-end CNNs for accurate
real-time lane detection. In: Intelligent Vehicles Symposium (2019)

4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes dataset for semantic urban scene
understanding. In: Proc. IEEE CVPR (2016)

5. Feng, Z., Guo, S., Tan, X., Xu, K., Wang, M., Ma, L.: Rethinking e�cient lane
detection via curve modeling. In: Proc. IEEE CVPR (2022)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. IEEE CVPR (2016)

7. He, Y., Wang, H., Zhang, B.: Color-based road detection in urban tra�c scenes.
IEEE Trans. Intel. Transp. Syst. 5(4), 309�318 (2004)

8. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progresss in road and lane de-
tection: A survey. Mach Vis. Appl. 25(3), 727�745 (2014)

9. Hou, Y., Ma, Z., Liu, C., Hui, T.W., Loy, C.C.: Inter-region a�nity distillation for
road marking segmentation. In: Proc. IEEE CVPR (2020)

10. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by
self attention distillation. In: Proc. IEEE ICCV (2019)

11. Jin, D., Kim, D., Kim, C.S.: Recursive video lane detection. In: Proc. IEEE ICCV
(2023)

12. Jin, D., Park, W., Jeong, S.G., Kwon, H., Kim, C.S.: Eigenlanes: Data-driven lane
descriptors for structurally diverse lanes. In: Proc. IEEE CVPR (2022)

13. Li, X., Li, J., Hu, X., Yang, J.: Line-CNN: End-to-end tra�c line detection with
line proposal unit. IEEE Trans. Intel. Transp. Syst. 21(1), 248�258 (2019)

14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proc. IEEE CVPR (2017)

15. Liu, L., Chen, X., Zhu, S., Tan, P.: CondLaneNet: A top-to-down lane detection
framework based on conditional convolution. In: Proc. IEEE ICCV (2021)

16. Liu, R., Yuan, Z., Liu, T., Xiong, Z.: End-to-end lane shape prediction with trans-
formers. In: Proc. IEEE WACV (2021)

17. Liu, R., Yuan, Z., Liu, T., Xiong, Z.: End-to-end lane shape prediction with trans-
formers. In: Proc. IEEE WACV (2021)

18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proc. ICLR
(2019)

19. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: To-
wards end-to-end lane detection: An instance segmentation approach. In: Intelli-
gent Vehicles Symposium (2018)

20. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time
memory networks. In: Proc. IEEE ICCV (2019)

21. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: Spatial CNN for
tra�c scene understanding. In: Proc. AAAI (2018)

22. Qi, L., Jiang, L., Liu, S., Shen, X., Jia, J.: Amodal instance segmentation with
KINS dataset. In: Proc. IEEE CVPR (2019)



16 D. Jin and C.-S. Kim

23. Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. In: Proc.
ECCV (2020)

24. Qiu, Z., Zhao, J., Sun, S.: MFIALane: Multiscale feature information aggregator
network for lane detection. IEEE Trans. Intel. Transp. Syst. (2022)

25. Qu, Z., Jin, H., Zhou, Y., Yang, Z., Zhang, W.: Focus on local: Detecting lane
marker from bottom up via key point. In: Proc. IEEE CVPR (2021)

26. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional
LSTM Network: A machine learning approach for precipitation nowcasting. In:
Proc. NeurIPS (2015)

27. Tabelini, L., Berriel, R., De Souza, A.F., Badue, C., Oliveira-Santos, T.: Lane
marking detection and classi�cation using spatial-temporal feature pooling. In:
International Joint Conference on Neural Networks (2022)

28. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos,
T.: Keep your eyes on the lane: Real-time attention-guided lane detection. In: Proc.
IEEE CVPR (2021)

29. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos,
T.: PolyLaneNet: Lane estimation via deep polynomial regression. In: Proc. IEEE
ICPR (2021)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�., Polosukhin, I.: Attention is all you need. In: Proc. NeurIPS (2017)

31. Wang, B., Wang, Z., Zhang, Y.: Polynomial regression network for variable-number
lane detection. In: Proc. ECCV (2020)

32. Wang, J., Ma, Y., Huang, S., Hui, T., Wang, F., Qian, C., Zhang, T.: A keypoint-
based global association network for lane detection. In: Proc. IEEE CVPR (2022)

33. Wang, M., Zhang, Y., Feng, W., Zhu, L., Wang, S.: Video instance lane detection
via deep temporal and geometry consistency constraints. In: Proc. ACM Multime-
dia (2022)

34. Xiao, L., Li, X., Yang, S., Yang, W.: ADNet: Lane shape prediction via anchor
decomposition. In: Proc. IEEE ICCV (2023)

35. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer:
Simple and e�cient design for semantic segmentation with transformers. In: Proc.
NeurIPS (2021)

36. Xu, H., Wang, S., Cai, X., Zhang, W., Liang, X., Li, Z.: CurveLane-NAS: Unifying
lane-sensitive architecture search and adaptive point blending. In: Proc. ECCV
(2020)

37. Xu, S., Cai, X., Zhao, B., Zhang, L., Xu, H., Fu, Y., Xue, X.: RCLane: Relay chain
prediction for lane detection. In: Proc. ECCV (2022)

38. Zhang, J., Deng, T., Yan, F., Liu, W.: Lane detection model based on spatio-
temporal network with double convolutional gated recurrent units. IEEE Trans.
Intel. Transp. Syst. 23(7), 6666�6678 (2021)

39. Zhang, Y., Zhu, L., Feng, W., Fu, H., Wang, M., Li, Q., Li, C., Wang, S.: VIL-100:
A new dataset and a baseline model for video instance lane detection. In: Proc.
IEEE ICCV (2021)

40. Zheng, T., Fang, H., Zhang, Y., Tang, W., Yang, Z., Liu, H., Cai, D.: RESA:
Recurrent feature-shift aggregator for lane detection. In: Proc. AAAI (2021)

41. Zheng, T., Huang, Y., Liu, Y., Tang, W., Yang, Z., Cai, D., He, X.: CLRNet: Cross
layer re�nement network for lane detection. In: Proc. IEEE CVPR (2022)

42. Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection
based on geometrical model and Gabor �lter. In: Intelligent Vehicles Symposium
(2010)



OMR 17

43. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: More deformable, better
results. In: Proc. IEEE CVPR (2019)

44. Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q.: Robust lane detection
from continuous driving scenes using deep neural networks. IEEE Trans. Veh.
Technol. 69(1), 41�54 (2019)


	OMR: Occlusion-Aware Memory-Based Refinement for Video Lane Detection

