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1 Implementation Details

TRG is trained end-to-end using a mini-batch size of 256 and the number of
epochs is set to 30. The Adam optimizer [5] is utilized, starting with an initial
learning rate of 10−4, which is decreased by a factor of 10 after 20 epochs.
During the training of TRG, we employ augmentation techniques such as random
cropping, resizing, color jittering, mask patch augmentation, image rotation, and
horizontal flip augmentation on the training images. When training the TRG
with multiple datasets, we utilized only the 2D sparse landmarks from the 300W-
LP [8]. The face mesh and head rotation labels from the 300W-LP were not used
in the training process. The training process is completed in approximately 16
hours on a single RTX 3090 GPU.

2 Calculation of Head Translation from Correction
Parameters

Fig. I illustrates the method for calculating head translation Tt from correction
parameters ct and bounding box information Ibbox. Through Fig. I, we can derive
Eqs. I, II, III, and IV:
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By substituting Eq. I into Eq. III, the following can be obtained:
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Fig. I: Calculation of head translation Tt from correction parameters ct and bounding
box information Ibbox. Best viewed in color.

Table I: Comparison with previous methods for face size estimation on ARKitFace
test dataset. The unit is mm2.

Method Face Size Error ↓
JMLR [3] † ⋆ 937.92
PerspNet [4] 768.58
TRG (Ours) 713.95
TRG (Ours) ⋆ 706.86

By inserting Eqs. II and V into Eq. IV, the following is obtained:

T x
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b

τx,bbox +
0.2st
b

τx,facet , (VI)

where τx,facet represents the x-axis image coordinate of the head center relative to
the bounding box center. The normalized value, τ̃x,facet , is obtained by dividing
τx,facet by b, indicating that τx,facet = bτ̃x,facet . Substituting bτ̃x,facet for τx,facet in
Eq. VI leads to Eq. 2, as discussed in the main paper. The calculation of T y

t

follows the identical procedure used for T x
t .

3 Comparison with Existing Methods for Estimating
Face Size

This section demonstrates that the depth-aware landmark prediction architec-
ture of TRG is effective in inferring face size. For the experiment, we measured
the face size error (in mm2) of JMLR [3], PerspNet [4], and TRG using ARKit-
Face test data. The ARKitFace test data includes a variety of face appearances
and head sizes for subjects ranging in age from 9 to 60 years. We defined face
size as the sum of the areas of all triangles belonging to the face geometry and
calculated the MAE between the GT and the prediction for face size error.

Table I shows the face size error for TRG and existing models. According
to Table I, TRG significantly outperforms optimization-based methods [3, 4].
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Table II: Comparison with existing method for translation estimation.

Method ARKitFace BIWI
Mean ↓ MAEr ↓ MAEt ↓ ADD ↓ MAEr ↓ MAEt ↓ ADD ↓

Local-to-global 1.61 0.89 3.64 8.71 6.02 27.00 62.91
Camera space offset 1.60 0.90 3.63 8.72 2.76 13.82 31.25
TRG (Ours) 1.58 0.91 3.62 8.68 2.75 12.97 29.46

This result demonstrates the superiority of the depth-aware landmark predic-
tion architecture that utilizes head depth information in the face size inference
process.

4 Comparison between TRG with a Smaller Amount of
Training Data and Head Rotation Estimator

In this section, we demonstrate that the high accuracy of TRG in head rotation
estimation on BIWI [2] is not simply due to the use of a large amount of train-
ing data [4]. Existing models for estimating head rotation are trained on the
300W-LP dataset [8] and their performance is evaluated on the BIWI dataset.
However, TRG is trained on the ARKitFace training dataset, which contains
approximately 5.9 times more data frames than the 300W-LP dataset. For our
experiment, we sample the ARKitFace training data at a 1/10 rate to train
‘TRG (1/10)’ and compare its performance with existing head rotation estima-
tors. Note that TRG (1/10) is trained using approximately 0.58 times fewer data
frames and about 10 times fewer subjects than the head rotation estimators. The
performance of TRG (1/10) on BIWI still surpasses other head rotation estima-
tors: MAEr = 3.07, MAEt = 13.91, ADD = 32.00, GE = 6.08. The performance
of the head rotation estimators evaluated on the BIWI dataset is shown in Ta-
ble 4 of the main manuscript. This result supports our claim that the superior
head rotation estimation performance of TRG is due to the landmark-to-image
alignment framework rather than the amount of training data.

5 Comparison with Existing Methods for Translation
Estimation

Comparison with img2pose [1]. We compare the ‘local-to-global’ method
utilized in img2pose for estimating head translation to our method, which esti-
mates bounding box correction parameters. The ‘local-to-global’ method involves
directly inferring the 6DoF local head pose from cropped image features, then
converting this local head pose into a global head pose. The term ‘global head
pose’ refers to the head pose as it would appear in uncropped images, essentially
the 6DoF head pose defined in camera space. For our experiments, we devel-
oped a baseline model employing the local-to-global approach. This allows us to
directly compare its performance against that of TRG. The primary difference
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Fig. II: The distribution of ground-truth local head translation [1] and correction pa-
rameters in ARKitFace and BIWI. The first and second columns visualize the distribu-
tion of local head translation. The third and fourth columns visualize the distribution
of the correction parameters. The colors blue, green, and brown represent the dis-
tributions of the ARKitFace training data, ARKitFace test data, and BIWI dataset,
respectively. The symbol ∗ denotes ground-truth. Best viewed in color.

between the two models lies in their respective methodologies for estimating
the 6DoF head pose. Apart from this, all other aspects of the models remain
unchanged.

According to Table II, the local-to-global baseline exhibits high head pose es-
timation performance on the ARKitFace test dataset [4], which has a distribution
similar to the training data. However, when evaluated across different dataset,
specifically on the BIWI dataset [2], the local-to-global baseline significantly lags
behind TRG in terms of head pose estimation accuracy. This underperformance
is noteworthy in the context of cross-dataset evaluation.

The local-to-global baseline method shifts the focus from estimating global
head translation to estimating local head translation. Despite this shift in fo-
cus, the disparity in the distribution of the z-axis direction between out-of-
distribution dataset and the training dataset remains markedly evident. This
disparity is visually demonstrated in Fig. II. According to Fig. II, the local-
to-global baseline, trained on the ARKitFace training dataset, must effectively
extrapolate head translation in the z-axis direction to generalize to the BIWI
dataset. However, this poses a significant challenge for learning-based models.

As discussed in the main paper, specifically in ‘Section 4.4 - Use of correc-
tion parameter’, our approach involves shifting the estimation target from head
translation to correction parameters. This strategic change significantly boosts
the model’s ability to generalize. The effectiveness of this strategic redefinition
is quantitatively demonstrated in Table II, providing solid proof of our method’s
superiority.
Comparison with CLIFF [6]. In this paper, we elucidate the technical dis-
tinctions between the bounding box correction parameter estimation method
and CLIFF’s method of estimating camera space offsets. The latter involves es-
timating the x- and y-axis offsets of a target defined in 3D camera space. In
contrast, our approach technically differs by estimating the x- and y-axis offsets
in image space, rather than in camera space.

For experimental purposes, we designed a baseline model focused on camera
space offset. The primary distinction between this baseline and TRG is the
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Table III: Ablation study for using bounding box information.

Method ARKitFace BIWI
Mean ↓ MAEr ↓ MAEt ↓ ADD ↓ MAEr ↓ MAEt ↓ ADD ↓

w/o Ibbox 1.60 0.92 3.70 8.89 2.70 14.13 32.51
w/o b 1.58 0.89 3.66 8.82 2.67 14.19 32.79
TRG (Ours) 1.58 0.91 3.62 8.68 2.75 12.97 29.46

Table IV: Ablation study on the loss functions. The models are evaluated on the
BIWI dataset.

Method MAEr GE MAEt ADD
w/o Lrot 3.02 5.91 14.50 33.84
w/o Lcam 3.01 5.85 14.92 35.17
w/o LL 3.21 6.20 14.80 33.40
TRG (Ours) 2.75 5.35 12.97 29.46

method used to estimate head translation, while all other aspects of the models
are identical.

Table II shows that TRG slightly outperforms the camera space offset base-
line in the ARKitFace test dataset. However, in cross-dataset evaluations with
the BIWI dataset, TRG demonstrates a significant advantage in head translation
estimation accuracy.

Our method employs a geometrical approach to estimate the x- and y-axis
offsets τ̃x,facet , τ̃y,facet in image space, which are then used to compute 3D head
translation through inverse projection transformation. This geometrical method
ensures stable and consistent estimation even across datasets with distributions
different from the training data. Conversely, the method used by CLIFF bypasses
geometrical transformations and instead directly estimates 3D space offsets us-
ing learnable layers. This estimation process, being highly non-linear, may not
exhibit stability, especially with out-of-distribution data.

The results of our experiments underscore the excellence of integrating learning-
based methods with geometrical transformations through the correction param-
eter approach. This not only underscores our method’s superiority in managing
complex, real-world scenarios but also sets the stage for future enhancements in
accurate 6DoF head pose estimation.

6 Ablation Experiments

Utilizing bounding box information. We present experimental evidence ex-
plaining the rationale behind using bounding box information Ibbox, as input for
the face regressor. Specifically, we explore the impact of incorporating bounding
box size information on estimating head translation.

In our experiments, Table III presents the results of three models: one ex-
cluding all bounding box information (w/o Ibbox), one excluding bounding box
size information (w/o b), and the TRG.
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Table V: Comparison with previous methods for 6DoF head pose estimation on ARK-
itFace test dataset. Models trained with multiple datasets are marked with the symbol
⋆, and retrained model is indicated by the symbol †.

Method Yaw Pitch Roll MAEr GE tx ty tz MAEt ADD
img2pose [1, 4] 5.07 7.32 4.25 5.55 - 1.39 3.72 15.95 7.02 20.54
Direct 6DoF Regress [4] 1.86 2.72 1.03 1.87 - 2.80 5.23 19.16 9.06 21.39
Refined Pix2Pose [4, 7] 1.95 2.62 2.48 2.35 - 2.43 4.23 35.33 14.00 36.44
JMLR [3] † ⋆ 1.13 1.75 0.61 1.16 2.39 0.98 2.48 11.13 4.86 11.87
PerspNet [4] 0.98 1.43 0.55 0.99 1.81 1.00 2.41 9.73 4.38 10.30
TRG (Ours) 0.89 1.30 0.57 0.92 1.80 0.83 1.88 8.22 3.64 8.74
TRG (Ours) ⋆ 0.88 1.29 0.57 0.91 1.84 0.81 1.90 8.17 3.62 8.68

According to the results from the ARKitFace test dataset, TRG shows a
marginal improvement in head translation accuracy compared to the models
that do not incorporate bounding box size information. However, the benefits
of using bounding box size information become more apparent in cross-dataset
evaluations.

These experimental results suggest that bounding box size information plays
a critical role in estimating head translation, primarily due to its strong correla-
tion with the camera-to-face distance. Based on these findings, we advocate for
incorporating bounding box information into head pose estimation strategies.
Loss functions. We conduct an ablation study to investigate the influence of
each loss function. We evaluate the model’s performance on the BIWI dataset
when LL,Lcam, and Lrot are individually excluded. Table IV presents the abla-
tion study results for the loss functions. The results indicate that excluding either
the rotation loss or the translation loss leads to a performance degradation. Ad-
ditionally, omitting the sparse 2D landmark loss LL significantly increases the
head rotation and translation error of TRG. This is because the sparse 2D land-
mark loss substantially contributes to the quality of the multi-scale feature map
generated by the feature extractor.

7 Detailed Quantitative Results on ARKitFace Test Data

For the benefit of our readers’ research, we provide results detailing the perfor-
mance of existing models and TRG on the ARKitFace test data. Table V shows
a detailed comparison of head rotation error and translation error between TRG
and existing 6DoF head pose estimation methods.

8 Qualitative Results

We present additional qualitative results of JMLR [3], PerspNet [4], and TRG,
not included in the main manuscript due to space limitations. Figs. III and IV
display the results from the ARKitFace test data and BIWI dataset, respectively.
Moreover, to illustrate our proposed method’s effectiveness in real-world condi-
tions, we provide further qualitative results for images sourced from the internet
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in Figs. V and VI. Figs. V and VI show results inferred without knowledge of
camera intrinsics, where the focal length was simply determined by the sum of
the image’s width and height. Our method shows reasonable performance even
without precise knowledge of the camera intrinsic. Also, please see the attached
supplementary videos, which include the results for image sequences.
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Fig. III: Qualitative comparison on ARKitFace test dataset. The colors cyan, pink,
gold, and gray represent JMLR, PerspNet, TRG, and ground truth, respectively. The
red, green, and blue axes respectively represent the X, Y, and Z axes of the camera
coordinate system. Best viewed in color.
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Fig. IV: Qualitative comparison on BIWI dataset. The colors cyan, pink, gold, and
gray represent JMLR, PerspNet, TRG, and ground truth, respectively. The red, green,
and blue axes respectively represent the X, Y, and Z axes of the camera coordinate
system. Best viewed in color.
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Fig.V: Qualitative results of TRG on in-the-wild data.
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Fig.VI: Qualitative results of TRG on in-the-wild data. For each case, the left side
shows the face rendered on the image, while the right side shows the face rendered in
camera space. In camera space, the blue and red axes represent the Z- and X-axes,
respectively. Best viewed in color.
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