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1 The Derivation Details in Deep Unfolding

Derivation of Eq. (5) : Follow the Eq. (4) in the paper, the GAP alternatively
solving two sub-problems. The sub-problem of x can be written as

xk+1 = argmin
x

1

2
∥x− vk∥22 +

λ

2
∥Ax− y∥22 , (S1)

where λ is a penalty factor. Then get the Lagrangian function of Eq. (S1) is

L(x, λ) =
1

2
||x− vk||22 + λ(Ax− y). (S2)

Then the optimal conditions of Eq. (S2) are

∂

∂x
L(x, λ) = (x− vk) +A⊤λ = 0, (S3)

∂

∂λ
L(x, λ) = Ax− y = 0. (S4)

According to Eq. (S3) and (S4), we have

λ = −(AA⊤)−1(y −Avk). (S5)

Replace the Eq. (S5) in the Eq. (S4)

x(k+1) = vk +A⊤(AA⊤)−1(y −Avk). (S6)

The Eq. (S2) is the Eq. (5) in the paper.
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Derivation of Eq. (6) : The v sub-problem can be written as

vk+1 = argmin
v

τR(v) +
λ

2

∥∥v − xk+1
∥∥2
2
. (S7)

In a deep unfolding framework, the constraint R(v) is learned rather than hand-
crafted. Thus R(v) is just implicitly expressed in a neural network, i.e., a ‘de-
noiser’ D in deep unfolding. The update of v is:

v(k+1) = Dk+1(x
(k+1)). (S8)

With the prior z introduced, we can get the Eq. (6) in the paper.

2 More Network Details

Aggregation Module The Fig. S1 shows the aggregation operation in Fig. 3
(a) of the paper Trident Transformer (TT). It includes a dual-step concatenation
and convolution to aggregate three types of flow features. The output feature
size is the same as the Trident Transformer input.

Unfolding Denoiser Structure The denoiser design follows the U-shape
backbone structure of RLDUF [2], including stage interaction and block inter-
action, but replaces the key encoder/decoder part by our Trident Transformer.
Following RLDUF [2], the 5-, 9-, and 10-stage unfolding network also uses the
‘share parameter’ strategy to share the 2 to N − 1 stage parameter in the un-
folding. Thus the total parameters for more stage unfolding are not increased.
However, in the ablation study of LDM guidance location in Table S1, we ob-
serve that when applying the ’share parameter’ strategy for training with more
than three stages, the network performance is suppressed upon incorporating
LDM guidance in every stage. This observation suggests that LDM guidance
may interfere with shared parameters, leading to a suboptimal local solution.
Consequently, we only use the prior and TT in the last stage for 5-, 9-, and
10-stage unfolding. This reduces the total parameters for 5-, 9-, and 10-stage
unfolding, making them fewer than the 3-stage’s.

Table S1: Ablation study of the location of using LDM
guidance in 3- and 9-stage unfolding. ‘Last stage’ de-
notes using LDM prior only in the last DUN stage.

Stage CPF position PSNR (dB) Params (M) FLOPs (G)
3 Last stage 38.21 2.78 31.84
3 All stages 38.40 3.01 33.80
9 Last stage 40.09 2.78 88.68
9 All stages 38.74 3.01 97.71

Table S2: The PSNR (dB)
comparisons of using LDM
prior in different model sizes.

Method Stage
3 5 9

Full Model 38.40 39.49 40.09
w/o LDM 38.11 39.17 39.66
Difference +0.29 +0.32 +0.43
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Fig. S1: The aggregation operation in the Trident Transformer.

3 More Ablation Studies

Impact of LDM Prior To assess the influence of the LDM prior, we conducted
experiments where both the LDM (LE, LE′, and the DM) and the ‘CPF’ module,
which is used to fuse priors in each DUN stage within the Trident Transformer,
were removed. The results in Table S2 illustrate that as the number of stages in
the DUN increases, the significance of the LDM prior becomes increasingly obvi-
ous. This observation can indicate the LDM’s growing contribution to enhancing
DUN to break the limitations of a regression model.

Updating the Diffusion Model We compare
the difference of training diffusion model (DM) in Ta-
ble S3. The ‘Separate’ training approach involves up-
dating DM by only predicting noise according to the
Eq. (12) in the paper instead of jointly training with
DUN. In contrast, the ‘Joint’ approach represents the

DM Train PSNR (dB)
Separate 37.81

Joint 38.40

Table S3: DM training
strategy comparison.

standard configuration, where Ldiff = ∥ẑ − z∥1 as described in the paper. The
result illustrates that the separate training detracts from the effective integration
of LDM priors with the DUN. This may be because of denoising the network’s
limitations, leading to discrepancies between the generated ẑ and the target
z. However, joint training enables the DUN to adapt and accommodate these
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variances.
Deep Unfolding Framework We com-

pare other deep unfolding frameworks used
in recent SOTA methods like HQS (used
in DAHUST [1] and PADUT [4]) and PGD
(RDLUF [2]) do not show better performance

Method w HQS w PGD w GAP
PSNR 37.87 37.90 38.01

Table S4: Unfolding framework
comparison in our 3-stage network.

than GAP according to Tab. S4 where we replaced GC-GAP in our paper with
HQS, PGD, and normal GAP in our 3-stage DUN for ablation study. We con-
jecture that it is the robustness of GAP [7] that enables it to demonstrate more
stable performance than other methods under the influences of additional LDM
priors and a two-stage training process.

4 More Real Data Results

RGB Images TwIST CST-L+ BIRNAT DAUHST-3 DADF-Plus-3 RDLUF-MixS2-3 Ours-3stagePADUT-3

551.4nm

636.3nm

575.3nm

614.4nm

648.1nm

636.3nm

Fig. S2: The comparisons of the remaining 2 real data reconstruction results.

Table S5: Numerical comparisons of average 5 real scene measurement reconstruc-
tion results by no-reference IQA. The traditional NIQE [6] and Transformer-based
MUSIQ [3] are selected for companies.

Metric TwIST DESCI CST-L-Plus BIRNAT DAUHST-3 PADUT-3 DADF RDLUF-3 Ours-3
NIQE ↓ 11.64 11.27 11.68 11.23 10.64 10.27 10.03 9.83 9.75

MUSIQ ↑ 3.82 3.99 4.04 4.21 4.26 4.10 4.25 4.27 4.31

We visually compare the remaining 4 out of 5 real-world data in Fig. S2. The
visual results show that our method has better reconstruction quality in real
data. The zoomed part Fig. S2 indicates our method not only preserves essential
texture details but removes more artefacts compared with other methods.

The real data does not have ground truth to compare, but for a more con-
vincing conclusion, we further calculate1 no-reference image quality assessment
1 We apply an open source IQA toolbox for calculation:

https://github.com/chaofengc/IQA-PyTorch.
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Ground Truth DAUHST-9stg DADF-Plus-3 RDLUF-9stg Ours-9stgPADUT-12stg

498nm

543.8nm

604.2nm

Fig. S3: The error maps of the other 3 synthetic data reconstruction results.

(NR-IQA) metrics. For our computational imaging task, we choose widely-used
NR-IQA metrics in low-level vision tasks including the traditional NIQE [6] and
the Transformer-based MUSIQ [3] in Table. S5. In the average NIQE and MUSIQ
scores of 5 scenes, our method still gains the best score which can support our
superiority in visual comparisons.

For calculation details, because the existing IQA tool only supports RGB
image assessment, following the previous work [5], we converted the output HSIs
to synthetic-RGB (sRGB) images via the CIE (International Commission on
Illumination) color-matching function for NIQE and MUSIQ calculation. The
conversation approximates a weighted average process of the intensity of different
wavelengths, and thus will not influence the spatial quality of images.

5 More Synthetic Data Results

Given that synthetic data is relatively difficult to distinguish visual differences,
we visualize error maps of each result in Table S3. The brighter parts denote
larger errors compared to the ground truth. The zoomed parts show our method
has fewer errors in reconstructing edges and textures.

6 More Implementation Details

In the paper, Table 2, the inference time and training time of all models are
calculated on a single Nvidia RTX3090 GPU. The training batch size is set to 1,
total epoch number is 300 with 5000 samples for each. The initial learning rate
is 4× 10−4. Other training of our model also follows these settings.
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The test batch size is 10 (i.e., the output size is 10 × 28 × 256 × 256). The
test process includes one iteration warm-up and 10 iteration time accumulation.
The final inference time is the average of 10 iterations. We also test 50 and 100
iteration average times, they are the same as the 10 iteration average, thus 10
iterations are enough for comparison.

For FLOPs (Floating Point Operations) and network parameters calculation,
we apply the code from the previous reconstruction method [2]2. The input is a
256× 256 measurement, and the output size is 28× 256× 256.

For a fair comparison, all models in our paper calculate the FLOPs during
inference shown in Tab. S6. Note that the latent encoder (LE) in our pre-trained
part is excluded since it is only used to encode ground truth. The excluded part
only needs 2.41G FLOPs, our method still provides fewer FLOPs than SOTA
even if this part is included.

Table S6: The FLOPs of each module in our 3-stage model.

Module Infer. Phase Model LE (Excluded) LE’ Diffusion DUN
FLOPs (G) 33.80 2.41 2.41 0.10 31.70
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