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Abstract. Snapshot compressive spectral imaging reconstruction aims
to reconstruct three-dimensional spatial-spectral images from a single-
shot two-dimensional compressed measurement. Existing state-of-the-art
methods are mostly based on deep unfolding structures but have intrinsic
performance bottlenecks: i) the ill-posed problem of dealing with heavily
degraded measurement, and ii) the regression loss-based reconstruction
models being prone to recover images with few details. In this paper, we
introduce a generative model, namely the latent diffusion model (LDM),
to generate degradation-free prior to enhance the regression-based deep
unfolding method by a two-stage training procedure. Furthermore, we
propose a Trident Transformer (TT), which extracts correlations among
prior knowledge, spatial, and spectral features, to integrate knowledge
priors in deep unfolding denoiser, and guide the reconstruction for com-
pensating high-quality spectral signal details. To our knowledge, this is
the first approach to integrate physics-driven deep unfolding with gener-
ative LDM in the context of CASSI reconstruction. Comparisons on syn-
thetic and real-world datasets illustrate the superiority of our proposed
method in both reconstruction quality and computational efficiency. The
code is available at https://github.com/Zongliang-Wu/LADE-DUN.
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1 Introduction

In contrast to normal RGB images which only have three spectral bands, hy-
perspectral images (HSIs) contain multiple spectral bands with more diverse
spectral information. The spectral information serves to characterize distinct
objects assisting high-level image tasks [31, 35, 50, 59, 60] and the observation of
the world like medical imaging [38,51] and remote sensing [18,39]. However, the
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Fig. 1: (a) Comparison of PSNR
(dB)-FLOPs (G) with previous HSI
reconstruction methods. (b) The abla-
tion study of using different time steps
in diffusion. Our method achieves the
desired results by only very few steps.
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Fig. 2: The top row: the error maps of
the previous SOTA and our method.
The bottom row: the feature map be-
fore and after applying LDM enhance-
ment. The enhanced features demon-
strate less noise and clearer edges.

capture of HSIs is a question that has been studied for a long time because we
need to collect 3-dimensional (3D) HSI signals by 2D sensors.

For many years, scientists have focused on how to collect HSIs in a quick
and convenient method. In 2007, based on compressive sensing theory, a single-
shot compressive spectral imaging way [17] was created to efficiently collect
HSIs, named coded aperture snapshot spectral imaging (CASSI). The later im-
provement works [44, 61] provide better imaging quality and lower cost. CASSI
modulates the HSI signal across various bands and combine all the modulated
spectra to produce a 2D compressed measurement. Consequently, the task of re-
constructing the 3D HSI signals from the 2D compressive measurements presents
a fundamental challenge for the CASSI system.

The reconstruction process can be viewed as solving an ill-posed problem.
Many attempts at solving this problem including traditional model-based meth-
ods [1,2,70] and the learning-based methods [9,45,47] have been proposed since
the inception of CASSI system. The deep unfolding network (DUN) is a com-
bination of convex optimization and neural network prior (denoiser), enjoying
both the interpretability of the model-based method and the power of learning-
based methods. This branch of methods leads the development trend in recent
years [6, 15,32,46,64] and achieves SOTA performance.

However, unlike super-resolution or deblurring that recovers from natural
images, CASSI reconstruction has to recover HSIs from the compressed domain
measurements, which results in severe degradation according to physical mod-
ulation, spectral compression, and multiple types of system noises. Thus, the
CASSI reconstruction problem is much harder to learn intrinsic HSI properties
than the normal image restoration tasks [30,33,34,40,66,75,76]. In the unfolding
framework of the CASSI reconstruction method, the denoising network plays a
critical role in deciding the final performance, which is embedded in each stage
of the DUN. However, it always suffers from the performance bottleneck due to
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the intrinsic ill-posed problem of dealing with heavily degraded measurements.
Thus, a high-performance denoiser with degradation-free knowledge is desired
for CASSI reconstruction. Another problem is that previous popular regression-
based reconstruction methods have difficulty in recovering details because the
widely used regression losses are conservative with high-frequency details [55].

To address these challenges, we introduce a generative prior in this paper to
guide the reconstruction process in an unfolding framework. During training, the
prior will be first learned from clean HSIs by an image encoder and then gener-
ated by a Latent Diffusion Model (LDM) from Gaussian noise and compressed
measurement. Then, the learned prior is embedded into the deep denoiser of the
DUN by a prior-guided Transformer. Significantly, our DUN is able to leverage
external prior knowledge from clean HSIs and the powerful generative ability
of LDM enhancing its reconstruction performance. The primary contributions
presented in this paper can be summarized as follows:

i) We propose a novel LDM-based unfolding network for CASSI recon-
struction, where the clean image priors are generated by a latent diffusion
model to facilitate high-quality hyperspectral reconstruction. There is no
additional data or training time required. To the best of our knowledge,
this is the first attempt to combine the physics-driven deep unfolding with
generative LDM in CASSI reconstruction.

ii) We design a three-in-one Transformer structure dubbed Trident Transformer
(TT) to extract the correlation among prior knowledge, spatial, and spectral
features. In TT, motivated by pansharpening techniques, we introduce an
asymmetric cross-scale multi-head self-attention (ACS-MHSA) mechanism
designed to efficiently fuse spatial-spectral features.

iii) Extensive experiments on the synthetic benchmark and real dataset demon-
strate the superior quantitative performances (Fig. 1), visual quality (Fig. 2),
and lower computational cost of our proposed method.

2 Related Work

2.1 Diffusion Model in Low-level Vision

Diffusion models (DMs) [22,56] are probabilistic generative models, which model
the data distribution by learning a gradual iterative denoising process from
the Gaussian distribution to the data distribution. Notably, they demonstrate
promising capabilities in generating high-quality samples that encompass a wide
range of modes, including super-resolution [16] and inpainting [41]. In light of
the impressive achievements of diffusion models in image domains, numerous
research endeavors [3, 19, 21, 23] have extended it to video generation. How-
ever, diffusion models suffer from significant computation inefficiency regarding
data sampling, primarily due to the iterative denoising process required for in-
ference. To address this challenge, several methods propose effective sampling
techniques from trained diffusion models [57, 73], or alternatively learning the
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data distribution from a low-dimensional latent space [53], i.e. the latent dif-
fusion model. The latent diffusion has a relatively faster speed and powerful
generative ability for super-resolution and inpainting, but similar to the nor-
mal diffusion model, it is also prone to issues such as misaligned distribution
of fine details and the occurrence of unwanted artifacts, leading to suboptimal
performance in distortion-based metrics, e.g., PSNR. Moreover, latent diffusion
costs large computational resources both for training and inference due to its
large-size encoder and denoiser. Towards this end, some works combine the gen-
erative diffusion model with the regression restoration network and work well on
distortion-based metrics like deblurring [52]. The recent works [12, 68] employ
LDM on many low-level vision tasks and achieve SOTA with reasonable compu-
tational cost. We name these methods ‘integrated diffusion’ to distinguish them
from the pure diffusion method. Nevertheless, employing diffusion models for
the efficient reconstruction of hyperspectral images from highly compressed and
degraded measurements presents significant challenges.

2.2 Hyperspectral Image Reconstruction

Before the advent of the deep learning wave, traditional model-based meth-
ods iteratively solved this inverse problem by convex optimization [62, 63, 74]
with some hand-crafted constraints based on image priors, like sparsity [29] and
low-rank [37]. These methods are robust and interpretable but require man-
ual parameter tuning with low reconstruction speed and performance. With the
help of deep learning, Plug-and-play (PnP) algorithms [8, 10, 11, 49, 54, 71, 72],
embeds pre-trained denoising networks into convex optimization to solve the re-
construction problem, but still has limitations on performance because of the
pre-trained denoiser. In recent years, the End-to-end (E2E) reconstruction di-
rectly trains a powerful deep neural network, like convolutional neural network
(CNN) [13, 25, 39] and Transformers [4, 5, 7], to learn the recovery process from
inputs (measurements) to outputs (desired HSIs). However, this simple design
lacks interpretability and robustness for various hardware systems. Therefore,
an interpretable design of a reconstruction network that unfolds a convex opti-
mization process named DUN is proposed to leverage these problems. A series
of CASSI reconstruction works based on DUN [6, 15, 32, 42, 43, 69] are proposed
and become the state-of-the-art (SOTA) method. DUN can combine both in-
terpretability in model-based methods and performance in deep learning-based
methods to reconstruct CASSI at a fast speed. It changes iterative steps in op-
timization into several stages in a single network. The prior for optimization
becomes a deep neural network denoiser. Since the DUN needs to define the for-
ward model of imaging, it is also considered a physics-driven network. However,
the recent DUNs still have bottlenecks for their regression-based denoiser design
and the difficulty of dealing with compressive measurement features. Bearing
these concerns, we propose an ‘integrated diffusion’ module and integrate it into
the physics-driven DUN framework and design an efficient way to aggregate
complex features during reconstruction.
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Fig. 3: (a) The single disperser CASSI imaging process. HSI data cube is captured by
a monochromatic sensor. (b) GC-GAP projection. (c) Latent encoder. (d) Simplified
Denoiser. (e) The measurement y and masks A pass through an N-stage DUN, where
each stage is composed of a GC-GAP projection and a denoiser. The denoiser follows
a U-shape structure and consists of five Trident Transformers (TT), where each TT is
assisted with prior knowledge zGT generated from the diffusion model.

3 Problem Formulation

The CASSI system has high efficiency in capturing 3D spectral signals by initially
coding spectral data with different wavelengths in an aperture and then integrat-
ing them into a 2D monochromatic sensor. The mathematical forward process
of the widely used single-disperser CASSI (SD-CASSI) [62] can be illustrated as
Fig. 3 (a). As can be seen, the original HSI data, denoted as X ∈ RW×H×Nλ , is
coded by the physical mask M ∈ RW×H , where W , H, and Nλ denote the width,
height, and the number of spectral channels, respectively. The coded HSI data
cube is represented as X′(:, :, nλ) = X(:, :, nλ) ⊙M, nλ = 1, 2, . . . , Nλ, where ⊙
represents the element-wise multiplication. After light propagating through the
disperser, each channel of X′ is shifted along the H-axis. The shifted data cube is
denoted as X′′ ∈ RW×H̃×Nλ , where H̃ = H+dλ. dλ is the shifted distance of the
Nλ-th wavelength. This process can be formulated as modulating the shifted ver-
sion X̃ ∈ RW×H̃×Nλ with a shifted mask M̃ ∈ RW×H̃×Nλ , where M̃(i, j, nλ) =
M(w, h+ dλ). At last, the imaging sensor captures the shifted image into a 2D
measurement Y, calculated as Y =

∑Nλ

nλ=1 X̃(:, :, nλ) ⊙ M̃(:, :, nλ) + B, where
B ∈ RW×H̃ denotes the measurement noise. By vectorizing the data cube and
measurement, that is x = vec(X̃) ∈ RWH̃Nλ and y = vec(Y) ∈ RWH̃ , this
model can be formulated as

y = Ax+ b, (1)

where A ∈ RWH̃×WH̃Nλ denotes the sensing matrix (coded aperture) which is
a concatenation of diagonal matrices, that is A = [D1, . . . ,Dλ], where Dλ =
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Diag(vec(M̃(:, :, nλ))) is the diagonal matrix with vec(M̃(:, :, nλ)) as the diag-
onal elements. In this paper, we will propose a method to solve the ill-posed
problem, reconstructing the HSI x from the compressed measurement y.

4 Proposed Model

To solve the problem in Eq. (1), we proposed a novel unfolding enhanced by
latent diffusion prior. As shown in Fig. 3(e), in the inference phase, the measure-
ment and masks pass through an N-stage DUN, where each stage is composed of
a GC-GAP projection and a denoiser. The denoiser follows a U-shape structure
and consists of Trident Transformers (Fig. 3(d)), where each TT is assisted with
the LDM prior. We’ll describe these modules in more detail in this section.

4.1 The Unfolding GAP Framework

Eq. (1) can be typically solved by convex optimization by the objective below:

x̂ = argmin
x

1
2∥y −Ax∥22 + τR(x), (2)

where τ is a noise-balancing factor. The first term guarantees that the solution
x̂ fits the measurement, and the term R(x) refers to the image regularization.

To solve the optimization problem, we employ GAP (Generalized Alternating
Projection) as our optimization framework, which extends classical alternating
projection to the case in which projections are performed between convex sets
that undergo a systematic sequence of changes. It can be interrupted anytime to
return a valid solution and resumed subsequently to improve the solution [36].
This property is very suitable for DUN which has very limited ‘optimization
iterations’ (stages in the DUN). Specifically, we introduce an auxiliary parameter
v, Eq. (2) can be written as:

(x̂, v̂) = argmin
x,v

1

2
∥x− v∥22 + τR(v), s.t. y = Ax. (3)

Then, the problem can be solved by the following sub-problems: Firstly, we aim
at updating x :

x(k+1) = v(k) +A⊤(AA⊤)−1(y −Av(k)). (4)

This step projects measurement to a 3D signal space by Euclidean projection.
Secondly, we aim at updating v:

v(k+1) = Dk+1(x
(k+1), z), (5)

where Dk is the neural network denoiser of the k − th stage and z is prior
knowledge which will be described in Sec. 4.2. This step tries to map x(k+1) to
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the target signal domain. Considering the projection step Eq. (4), assisted by
deep network, we can modify it as follows:

x(k+1) = v(k) + DSC(A⊤(AA⊤)−1(y −Av(k))), (6)

where DSC(·) denotes a set of depthwise separable convolution and GELU [20]
operations. The detailed process is shown in Fig. 3(b). Considering the stage
number is much less than the iteration numbers in traditional model-based meth-
ods, it is difficult to achieve convergence with limited steps of gradient descent.
Thus, we utilize these learnable parameters to rectify the gradients in the limited
stage, and we refer to this method as the Gradient Correction GAP (GC-GAP).
The overall unfolding framework is shown in Fig. 3(e), where mask A and mea-
surement y are inputs of the network. According to the Eq. (6) and (5), the first
stage outputs v1 can be obtained.

4.2 Latent Diffusion Prior Assisted Unfolding Denoising

The denoising process in DUN leads to a natural performance bottleneck due
to the intrinsic problem of heavily degraded input. Thus, we introduce external
degradation-free prior knowledge to compensate for the denoising process. We
will then introduce this process in a two-phase manner.
Phase I: Learning Prior Knowledge from clean HSIs. In this phase, we use
an image encoder to compress both compressive measurement y and clean HSIs
(Ground-Truth hyperspectral images) x into latent space. However, instead of
simply using measurement y, we transfer y by Euclidean projection to 3D HSIs
space and normalize it by sensing matrix ynorm ∈ RW×H×Nλ = A⊤ (

AA⊤)−1
y.

This will improve the balance between two different inputs and easier for the
encoder to learn their relation. The input of the encoder in the first phase is
IE ∈ RW×H×2Nλ = concatenate(ynorm,x). Thus the latent encoder process can
be written as zGT ∈ RN×C = LE(IE), where N ≪ W×H, C is the latent feature
channel number. The LE can be seen in Fig. 3 (c): to alleviate the computational
burden within LDM, we employ mobile blocks (MBlocks) [24], devoid of batch
normalization instead of normal convolution. It aims at efficiently extracting rep-
resentative visual features while maintaining computational efficiency. Moreover,
considering the limitations in convolution, we add an MLP-Mixer [58] in LE to
provide fast information exchange between patches by token-mixing MLP. Then
the zGT will be used as prior in the denoiser to compensate for the denoising
errors. The DUN will reconstruct HSI signals using measurement and mask with
the assistance of zGT , i.e. x̂ = DUN(y,A, zGT ). Note that unlike the original
LDM having its entire ‘Auto Encoder’, there is no corresponding ‘decoder’ spec-
ified here, because z is sent to DUN for ‘decoding’. In this phase, we only use
the reconstruction loss: Lrec = ∥x− x̂∥1.
Phase II: Generating Prior by Latent Diffusion Model. After learning
the prior representation from clean HSIs, we aim to learn an LDM to generate
this prior condition on measurement y in the second phase. Specifically, the
encoder in the first phase LE is fixed to encode clean HSIs and measurements
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to zGT as the generative object of latent space, i.e. the starting point of the
forward Markov process in the diffusion model. Then as usual forward process,
Gaussian noise will be gradually added on zGT across T time steps according to
the parameter βt:

q (z1:T | z0) =
∏T

t=1 q (zt | zt−1) ,∀t = 1, . . . , T,

q (zt | zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
,

(7)

where zt represents the noisy features at the t-th step, and z0 = zGT is the
generative target. β1:T ∈ (0, 1) are hyperparameters that control the variance of
the Gaussian distribution N . Through iterative derivation with reparameteriza-
tion [28], Eq. (7) can be written as:

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt) I

)
,

α = 1− βt, ᾱt =
∏t

i=1 αi.
(8)

The reverse process involves generating the prior features from a pure Gaus-
sian distribution step-by-step condition on the measurement. The reverse pro-
cess operates as a T -step Markov chain that runs backward from zT to z0.
Specifically, the posterior distribution of the reverse step from zt to zt−1 can be
formulated as:

q (zt−1 | zt, z0) = N
(
zt−1;µt (zt, z0) ,

1−ᾱt−1

1−ᾱt
βtI

)
,

µt (zt, z0) =
1√
αt

(
zt − 1−αt√

1−ᾱt
ϵ
)
,

(9)

where ϵ represents the noise added on zt. Thus, a denoising network ϵθ is used
to predict the noise ϵ at each step, following the previous works [22, 53]. In
order to encode condition y to latent space, another encoder LE′ is applied
to extract features, with the same structure as the LE of Phase I. Specifically,
LE′ compresses the normalized measurement ynorm into latent space to get the
latent condition features c ∈ RN×C . In the end, we use the denoising network to
predict the noise ϵt according to zt of the previous step in reverse process and
the condition c, stated as ϵ = ϵθ (zt, c, t). With the substitution of ϵθ in Eq. (9)
and set the variance as 1− αt, the reverse inference can be stated as:

zt−1 = 1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ (zt, c, t)

)
+

√
1− αtϵt, (10)

where ϵt ∼ N (0, I). Finally, we can generate the target prior feature ẑ ∈ RN×C

after T iterative sampling zt by Eq. (10). As shown in Fig. 3(e), the predicted
prior feature is then used to guide the Transformer in denoiser. Notably, since
the distribution of the latent space with the size of RN×C (e.g, 16 × 256) is
much simpler than that of images with size RH×W×Nλ , the prior feature can be
generated with a small number of iterations T , corresponding to paper [53].

Typically, training the diffusion model refers to training the denoising net-
work ϵθ. Following the previous works [22,57], we train the model by optimizing
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the weighted variational bound. The training objective is:

∇θ

∥∥ϵ− ϵθ
(√

ᾱtzGT +
√
1− ᾱtϵ, c, t

)∥∥2
2
, (11)

where zGT and c are ground-truth prior features and the latent condition rep-
resentations defined above; t ∈ [1, T ] is the randomly sampled time step; ϵ ∼
N (0, I) denotes the sampled Gaussian noise. We employ DDPM [22] for diffu-
sion as the original LDM [53]. Considering small prior size and time efficiency,
we adopt a simple denoising network consisting of several MLP layers for fast
diffusion denoising. All the parameters are jointly updated in the network with
the objective loss function of the second phase, including: the DUN, the feature
encoder LE′, and the diffusion denoising network ϵθ. The objective loss function
of the second phase can be stated as:

Ldiff = ∥ẑ − z∥1, Lall = Lrec + Ldiff. (12)

Here, we do not use Eq. (11) as Ldiff because it only trains diffusion at ‘t’-th step
while we execute the all-time-step together and let the LDM directly predict ẑ.
The entire two-phase training procedure is summarized in Algorithm 1.

4.3 Aggregate Features by Trident Transformer
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Fig. 4: (a) The Trident Transformer in Fig. 3(d). (b)-(d) are the detailed sub-modules.
Ui is the input feature. The prior feature Zi is sent into the prior flow.

Previous HSI reconstruction methods usually only exploit the relation be-
tween spatial and spectral, both externally and internally. However, the spatial-
spectral relations are challenging to explore only with compressed measurements.
Therefore, we design a Transformer, named Trident Transformer (TT), to effec-
tively aggregate high-quality degradation-free prior knowledge for compensation.

Firstly, inspired by the multi-scale operations in previous papers [12,68] with
hierarchical structures, we downsample the prior to obtain the multi-scale prior
representations along with the U-shape levels in Fig. 3(d). Specifically, three
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downsampling layers are employed, and the outputs contain prior features of
three scales, stated as:

zi =

{
zGT or ẑ, if i = 1,

downsample(zi−1), if i > 1
, (13)

where zi ∈ R
N

2i−1
×2i−1C

, i = 1, 2, 3. For Phase I, z1 = zGT , which is computed
in the first phase training; For Phase II, z1 = ẑ, which is utilized for training
and inference in the second phase.

As shown in Fig. 4, our Trident Transformer includes three branches: spatial
flow, cross-spectral flow, and cross-prior flow. Each branch shares the information
flow with others and is then fused by the aggregation layer and a feed-forward
network (FFN). Before the embedding layer, the input feature at i-th scale Ui ∈
RHi×Wi×Ci is split into UC

i ∈ RHi×Wi×
Ci
2 and US

i ∈ RHi×Wi×
Ci
2 along the

channel dimension, denoting cross flow input and spatial flow input respectively.
The spatial flow consists of a series of MBlocks without batch norms.
Cross Spectral Flow In the cross spectral flow (CSF) module, as shown in
Fig. 4 (c), we design asymmetric cross-scale multi-head self-attention (ACS-
MHSA). Pansharpening (PAN) is a technique of using a high-resolution (HR)
panchromatic and a lower-resolution (LR) HSI to generate an HR-HSI. Com-
pared with directly capturing HR-HSI, it requires less amount of data. Inspired
by the PAN, this flow primarily focuses on the spectral dimension and aims to
save computational burden according to the spatial size. Specifically, we com-
press the spatial resolution of the query embedding (Q) and key embedding (K)
to 1

4 and expand its channel twice. Considering that CASSI measurements are
shifted along one axis, there are more spatial correlations along this axis. Thus,
after establishing the spectral correlation, we use an asymmetric dilation con-
volution (DConv) with kernel size 3 × 5 on the value embedding (V) to obtain
larger perceptual field information along the shifted axis with expanded channel
dimension and unchanged spatial dimension. Embedding Q, K, V, and spatial
compensation PS

i from spatial flow are formulated as:

QCS
i = WQCSUi, KCS

i = WKCSUi, VCS
i = WV CSUi, (14)

PSQK
i =↓ (WPSQQS

i ), PSV
i = WPSV QS

i , Mi = QCS
i (KCS

i )⊤, (15)

where W∗ represents the weights of bias-free convolution, and ↓ is downsampling.
The procedure of asymmetric cross-scale self-attention can be formulated as:

ACS-MHSAi(Ui) = PSV
i ⊙WCS

c1 VCS
i Softmax(PSQK

i ⊙Mi/α), (16)

Cross Prior Flow Cross prior flow (CPF) in Fig. 4 (d) is a variable shared
multi-head cross-attention. The query in this flow is borrowed from the value of
CSF which is extracted from a large perceptive field with more spatial informa-
tion. In this way, the prior could facilitate to compensate for spatial deficiency.
Compared to the spectral recovery, the spatial recovery is typically more chal-
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lenging. Our manipulation can be formulated as:

MHSACP
i (Ui) = Wc1V ⊙ Softmax(K⊙Q/α), (17)

QCP
i = QCS

i , KCP
i = WK

z zi, VCP
i = WV

z zi, (18)

where zi, i = 1, 2, 3 denotes the prior feature of different spatial levels.
Flow Interaction and Aggregation In order to compensate for the defi-
ciency of spatial information in CSF and CPF, and the spectral information in
the spatial flow, we fuse the compensation information together to reconstruct
hyperspectra images. As shown in Fig. 4, the colorful arrows represent the infor-
mation interactions between each flow. Specifically, information of each module
modulates with other flows, where the 1× 1 convolutions serve as compensation
bridges. The aggregation part consists of concatenation, convolution layers, and
an activation function (details can be seen in SM) for a weighted combination of
each flow output. In our Trident Transformer, the prior knowledge learned from
the clean images will provide compensation for reconstruction in both spatial
and spectral details, avoiding the influence of degraded measurements.

Algorithm 1 Two-phase Training Strategy

Require: Dataset D = {(x(n),y(n)}Nn=1; Sensing matrix A; Random ini-
tialized parameter of DUN ϕDUN , latent encoder LE network ϕLE , con-
ditional encoder LE’ network ϕCLE , diffusion denoising network ϕϵ;

1: while Not Converge do ▷ Phase I training, ‘←’ denotes update
2: zGT ← LE(IE|ϕLE); x̂← DUN(y,A,zGT |ϕDUN )
3: Jointly update ϕDUN and ϕLE by Lrec;
4: Freeze ϕLE ;
5: while Not Converge do ▷ Phase II training
6: c← LE′(ynorm|ϕCLE); ẑ ← Diff(c|ϕϵ);
7: zGT ← LE(IE|ϕLE); x̂← DUN(y,A, ẑ)|ϕDUN );
8: Jointly update ϕDUN , ϕCLE , and ϕϵ by Lall in Eq. (12);

TwIST MST++ BIRNAT DAUHST-9stg DADF-Plus-3 PADUT-12stg RDLUF-9stg Ours-9stg Ground TruthRGB Reference

Spectral Curves

Fig. 5: The visualization result on synthetic data. 3 out of 28 wavelengths are selected
for visual comparison. ‘Corr’ in the top left curve is the correlation coefficient between
one method curve and the ground truth curve of the chosen (golden box) region.
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Table 1: The results of PSNR in dB (top entry in each cell), SSIM (bottom entry
in each cell) on the 10 synthetic spectral scenes.‘-3stg’ denotes the network with 3
unfolding stages. ‘Avg’ represents the average of 10 scenes. Bold: Best.

Algorithms Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg

TwIST 25.16 23.02 21.40 30.19 21.41 20.95 22.20 21.82 22.42 22.67 23.12
0.700 0.604 0.711 0.851 0.635 0.644 0.643 0.650 0.690 0.569 0.669

DNU 31.72 31.13 29.99 35.34 29.03 30.87 28.99 30.13 31.03 29.14 30.74
0.863 0.846 0.845 0.908 0.833 0.887 0.839 0.885 0.876 0.849 0.863

MST++ 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 32.50 35.99
0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.951

BIRNAT 36.79 37.89 40.61 46.94 35.42 35.30 36.58 33.96 39.47 32.80 37.58
0.951 0.957 0.971 0.985 0.964 0.959 0.955 0.956 0.970 0.938 0.960

LRSDN 35.44 34.89 38.90 45.29 34.71 33.18 37.76 30.57 39.49 30.62 36.08
0.923 0.909 0.961 0.985 0.949 0.930 0.964 0.901 0.963 0.889 0.938

DAUHST-9stg 37.25 39.02 41.05 46.15 35.80 37.08 37.57 35.10 40.02 34.59 38.36
0.958 0.967 0.971 0.983 0.969 0.970 0.963 0.966 0.970 0.956 0.967

DADF-Plus-3 37.46 39.86 41.03 45.98 35.53 37.02 36.76 34.78 40.07 34.39 38.29
0.965 0.976 0.974 0.989 0.972 0.975 0.958 0.971 0.976 0.962 0.972

PADUT-5stg 36.68 38.74 41.37 45.79 35.13 36.37 36.52 34.40 39.57 33.78 37.84
0.955 0.969 0.975 0.988 0.967 0.969 0.959 0.967 0.971 0.955 0.967

RDLUF-MixS2-3stg 36.67 38.48 40.63 46.04 34.63 36.18 35.85 34.37 38.98 33.73 37.56
0.953 0.965 0.971 0.986 0.963 0.966 0.951 0.963 0.966 0.950 0.963

37.14 39.60 41.78 46.57 35.57 37.02 36.80 35.22 40.15 34.17 38.31Ours-3stg 0.963 0.975 0.978 0.990 0.971 0.975 0.960 0.973 0.976 0.962 0.972

37.88 40.92 43.41 47.18 37.12 37.74 38.28 35.73 41.48 35.18 39.38Ours-5stg 0.968 0.980 0.983 0.992 0.978 0.980 0.969 0.977 0.981 0.967 0.977

PADUT-12stg 37.36 40.43 42.38 46.62 36.26 37.27 37.83 35.33 40.86 34.55 38.89
0.962 0.978 0.979 0.990 0.974 0.974 0.966 0.974 0.978 0.963 0.974

RDLUF-MixS2-9stg 37.94 40.95 43.25 47.83 37.11 37.47 38.58 35.50 41.83 35.23 39.57
0.966 0.977 0.979 0.990 0.976 0.975 0.969 0.970 0.978 0.962 0.974

38.08 41.84 43.77 47.99 37.97 38.30 38.82 36.15 42.53 35.48 40.09Ours-9stg 0.969 0.982 0.983 0.993 0.980 0.980 0.973 0.979 0.984 0.970 0.979

38.08 41.85 43.83 48.04 38.00 38.32 38.94 36.20 42.81 35.54 40.16Ours-10stg 0.970 0.984 0.984 0.993 0.982 0.982 0.974 0.979 0.984 0.970 0.980

Table 2: Performance and computational efficiency comparisons with recent methods.

Method Venue PSNR (dB) Params (M) FLOPs (G) Infer. Time (ms) Training Time (h)
PADUT-12stg ICCV’23 38.89 5.38 90.46 749.94 123.3
RDLUF-9stg CVPR’23 39.57 1.89 231.09 913.34 155.5

Ours-9stg - 40.09 2.78 88.68 1096.58 143.6

Table 3: Ablation study of different modules in our 3-stage unfolding network. ‘PSNR’
is the average of 10 synthetic scenes. ‘FLOPs (G)’ denotes the FLOPs in testing.

Method Projection SF CSF Atten. CPF LE Input Diffusion PSNR FLOPs (G)
w/o GC-GAP Basic GAP ! ACS ! IE ! 38.01 29.84

w/o spatial flow GC-GAP % ACS ! IE ! 37.66 30.13
Basic MHSA GC-GAP ! Basic ! IE ! 38.31 36.80
w/o prior flow GC-GAP ! ACS % IE ! 37.89 30.37

Inaccurate guidance GC-GAP ! ACS ! y ! 37.63 33.80
w/o diffusion GC-GAP ! ACS ! IE % 37.61 33.70

Our full model GC-GAP ! ACS ! IE ! 38.40 33.80
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TwIST MST++ BIRNAT DAUHST-3 DADF-Plus-3 RDLUF-MixS2-3 Ours-3stagePADUT-3RGB Images

648.1nm

636.3nm

Fig. 6: The real data visual comparisons. 2 out of 28 wavelengths are selected.

5 Experiments

We conduct experiments on both simulation and real HSI datasets. Following
the approaches in [5, 26, 43, 45], we select a set of 28 wavelengths ranging from
450-650nm by employing spectral interpolation applied to the HSI data.

5.1 Experimental Settings

Simulation and Real Datasets: We adopt two widely used HSI datasets,
i.e., CAVE [48] and KAIST [14] for simulation experiments. The CAVE dataset
comprises 32 HSIs with a spatial size of 512 × 512. The KAIST dataset includes
30 HSIs with a spatial size of 2704 × 3376. Following previous works [5,26,43,45],
we only employ the CAVE dataset as the training set both in Phase I and II, while
10 scenes from the KAIST dataset are utilized for testing. During the training
process, a real mask of size 256 × 256 pixels is applied. In our real experiment, we
utilized the HSI dataset captured by the SD-CASSI system in [45]. The system
captures real-world scenes of size 660 × 714× 28 with wavelengths spanning
from 450 to 650 nm and dispersion of 54 pixels.

Implementation Details: For the diffusion settings, the iteration number T
of the diffusion is set to 16, and the latent space dimension N is set to 16. Training
Phase I (train DUN and LE) needs 200 epochs and Phase II (train DU, ϵθ, and
LE’) needs 100 epochs. For all phases of training, we use the Adam [27] optimizer
and cosine scheduler. PSNR and SSIM [67] are utilized as our metrics. Our
method is implemented with the PyTorch and trained using NVIDIA RTX3090
GPUs. More details can be seen in the supplementary material (SM).

5.2 Compare with State-of-the-art

We compare our method with previous methods including the end-to-end net-
works: DADF-Net [69], MST [5], BIRNAT [13]; the deep unfolding methods:
RDLUF-MixS2 [15], PADUT [32], DAUHST [6], DNU [65]; the self-supervised
method: LRSDN [11]; and traditional model-based method: TwIST [2]. The com-
parisons are conducted on both synthetic and real datasets.

Synthetic data: The numeric comparisons on synthetic data can be seen
in Table 1. Our proposed method surpasses the recent SOTA method RDLUF-
MixS2 according to average PSNR (+0.59 dB) and SSIM (+0.06). Fig. 5 shows
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the visual reconstruction results. Three wavelengths including striking colors
in RGB reference red, yellow, and green are selected to compare. The golden
box part in the reference was chosen to calculate and compare the wavelength
accuracy. The accuracy metric is the correlation coefficient with the ground truth
of the chosen region, i.e. the ‘Corr’ in the curves. According to the ‘Corr’, our
method (0.9995) has a more accurate wavelength curve than others. The zoomed
part in the figure also demonstrates that our method has clearer edges on the hat
than others. In Table. 2, we list the performance, parameter number, FLOPs,
inference time, and training time of our method and other recent unfolding
methods. ‘Infer. Time’ denotes the total inference time of each method dealing
with 10 synthetic test scenes. ‘Training Time’ is under 300 total epochs setting.
The table illustrates that our methods exhibit superior performance, the lowest
FLOPs, along with reasonable parameter counts and times. Real data: Two
scenes of real SD-CASSI measurement reconstruction results are shown in Fig. 6,
and two obvious color regions in RGB references are selected to compare. Our
method shows less noise and artefacts on the plastic toy surface.

6 Ablation Study

In this ablation study, we train our model on the synthetic training data with
models with 3 unfolding stages. The results are summarized in Table 3. ‘Inac-
curate guidance’ denotes that we only use measurement as the latent encoder
input instead of clean HSIs. ‘w/o prior flow’ denotes that using simple MLP
layers instead of CPF. ‘w/o diffusion’ denotes removing diffusion in Phase II.

The ablation illustrates that with LDM prior
assistance, we can achieve better reconstruction
results, and our design of the Trident Transformer
successfully aggregates three types of information

z scale (N) 4 16 64 256
PSNR 37.99 38.40 38.40 38.41
FLOPs 33.31 33.80 34.49 36.99

Table 4: z scale comparisons.
and effectively compensates for some reconstruction defects. Fig. 2 also visual-
izes the feature map changes before and after prior enhancement. The enhanced
features demonstrate increased concentration on edges and reduced noise. More-
over, without accurate guidance, the LDM will even harm the reconstruction.
The method ‘Basic MHSA’ illustrates that ACS-MHSA in CSF has better per-
formance and higher computational efficiency than basic MHSA. The diffusion
steps shown in Fig. 1(b) illustrates that 16 steps are enough for good reconstruc-
tion results. Table 2 illustrates that inference time is still in a reasonable range
even using diffusion 16 steps. For the scale of z, we compared different values
of N in Table 4, and we find that N = 16 can keep the balance of performance
and efficiency. More ablation studies can be seen in SM.

7 Conclusion

In this paper, we introduce a novel deep unfolding network that leverages prior
knowledge from the latent diffusion model for spectral reconstruction. It achieves
SOTA performance on both simulated data and real data.
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