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Fig. 4: Samples from each dataset. A curated selection of RGB images from each
dataset showcases the domain gap between the source and target datasets.

A Datasets

In this section, we delve into the datasets used in our study, highlighting the
significant domain gap observed in RGB images between the source (Ego4D [3])
and target (EPIC-Kitchens [2], MECCANO [9], and WEAR [1]) datasets. Fig. 4
presents a curated selection of RGB images drawn from each dataset. These
visual examples underscore the diversity and complexity of cross-domain few-
shot learning (CD-FSL) tasks.

– Ego4D. The Ego4D dataset comprises a diverse range of activities, includ-
ing domestic chores in houses, gardening, cleaning, building, cooking, and
arts/crafting. These actions contain those performed using a single hand,
both hands, and various tools, demonstrating the diversity of human ac-
tivities. Thus, this dataset is well-suited for learning generalizable features
required for cross-domain and few-shot settings.

– EPIC-Kitchens. The EPIC-Kitchens dataset, serving as the target, is cen-
tered around kitchen activities, encompassing actions like “pouring flour”,
“opening the refrigerator”, “moving a pizza”, and “pouring a smoothie”, each
composed of a verb-noun pair. Such activities in the kitchens are also present
within the Ego4D dataset, our source. However, the EPIC-Kitchens dataset
distinguishes itself by its fine-grained action categories, with some actions
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sharing verbs but differing in nouns and others vice versa. This granular dif-
ferentiation of actions introduces a challenge for few-shot learning models,
necessitating nuanced discernment in action categorization.

– MECCANO. The MECCANO dataset comprises detailed recordings of the
assembly process for a toy bicycle in an industrial-like scenario. It contains
fine-grained actions, including “aligning a screwdriver to screw”, “aligning
objects”, “putting a tire”, and “putting a screw”. The diminutive size of the
components poses a substantial challenge for action recognition, requiring
exceptional precision to identify and understand the intricate interactions.

– WEAR. This dataset captures outdoor workout actions such as “stretch-
ing hamstrings”, “jogging”, “pushing-ups”, and “sitting-ups”. Unlike the other
datasets, WEAR focuses on activities not involving hand-object interactions
but body movements.

B Implementation Details

Experimental Setup. We utilize the three modalities: RGB, optical flow, and
hand pose. For each modality, we select an input sequence comprising T = 16
frames sampled at a frequency of 8 FPS (frames per second). Spatial dimensions
are standardized at 224 × 224 for RGB and optical flow inputs, while hand
pose inputs, represented by the heatmap, are resized to 56× 56. The number of
channels Cm are 3, 2, and 21 for RGB, optical flow, and hand pose, respectively.
We employ FlowFormer [4] for estimating the optical flow between consecutive
frames. For the prediction of 2D hand keypoints, which include 21 joints, we
use RTMPose [5] trained on five public hand pose datasets available through
MMPose 3. Subsequently, the Gaussian heatmap of size 56 × 56 is produced,
with a standard deviation σ set to 10. Following the VideoMAE [10] experimental
setup, we adopt the mask ratio ρpretrain of 0.9 during our pretraining stage. In
addition, we use the mask ratio ρdistill = 0.75 during the multimodal distillation
for all experiments. We use a machine equipped with Intel Xeon W-3235 CPU,
128GB RAM, and the NVIDIA Titan RTX GPU to compute the inference speed.
Training. In the pretraining stage, we train the model, which consists of ViT-S
models, pretrained on the Kinetics-400 dataset [6] and a classifier head, which is
attached to the ViT-S backbone, for all modalities for 100 epochs. For training
settings, we generally follow the VideoMAE [10]. During the multimodal distil-
lation stage, we train the student RGB model for 100 epochs using the AdamW
optimizer [8], with a peak learning rate of 2e− 3, linearly increased for the first
10 epochs of the training and decreased to 1e− 6 until the end of training with
cosine decay [7]. Note that we linearly scaled the peak learning rate with respect
to the overall batch size. Regarding the parameters for the loss function, we
empirically adapt the balancing hyperparameters λcem to 5e − 2 for RGB, and
1e− 2 for optical flow and hand pose input modality.
Evaluation Metrics. Following the existing CD-FSL work, we report the top-
1 accuracy on the query set Q in the target validation set over 600 runs to
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(a) Only RGB (only reconstruction) (b) Only RGB (c) Ours

Fig. 5: Comparative UMAP visualization of feature representations. UMAP
plot of 10 classes from EPIC-Kitchens validation set with features obtained from (a)
Only RGB (only reconstruction), (b) Only RGB, and (c) Ours.

measure action recognition performance. To benchmark efficiency, we quantify
the model’s performance by measuring the forward pass time during inference.
We report the inference time averaged over 600 iterations.

C Visualization of Feature Representations

We compare the class-discriminativeness of embeddings extracted from three
encoders: Only RGB (only reconstruction), Only RGB, and Ours. The only
RGB (only reconstruction) model is trained without multimodal distillation, and
λceRGB = 0 is used during the pretraining stage. The only RGB model is trained
without multimodal distillation, and λceRGB = 0.05 is used during the pretraining
stage. Fig. 5 shows the UMAP plot of 10 classes from EPIC-Kitchens datasets.
We see that only RGB model creates better grouping on the embeddings of the
target datasets than only RGB (only reconstruction) model. This result supports
that using the cross-entropy loss helps learn the class-discriminative features
during the pretraining stage. We further see that the multimodal distillation
also helps learn discriminative features compared to the only RGB model.

D Loss Weight Ablation

We present an ablation study focused on the impact of adjusting the loss weight
for the cross-entropy loss on the RGB modality λceRGB during the pretraining
stage. The loss weight for the cross-entropy loss λceRGB serves as a critical hy-
perparameter that balances the contribution of the cross-entropy loss to the
total loss function. For the ablation study, we varied the value of the loss weight
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Table 6: Loss wight ablation. We conduct an ablation study on the loss weight for
cross-entropy loss on RGB modality pertaining.

λceRGB 1 0.1 0.05 0.01

5-shot 54.58 56.68 57.07 52.40

across a predefined range λceRGB ∈ {1, 0.1, 0.05, 0.01}. We report the 5-way 5-
shot action recognition accuracy on the EPIC-Kitchens dataset of the only RGB
model with varied hyperparameter λceRGB in Tab. 6. Our ablation analysis re-
veals a critical insight: a high or low loss weight for the RGB modality, λceRGB,
during the pretraining stage can detrimentally affect the acquisition of class-
discriminativeness on the target data. Assigning a high loss weight to the cross-
entropy reduces the relative contribution of learning from unlabeled target data.
Conversely, a low loss weight fails to capture class discriminativeness adequately.
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