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Abstract. We address a novel cross-domain few-shot learning task (CD-
FSL) with multimodal input and unlabeled target data for egocentric
action recognition. This paper simultaneously tackles two critical chal-
lenges associated with egocentric action recognition in CD-FSL settings:
(1) the extreme domain gap in egocentric videos (e.g ., daily life vs. in-
dustrial domain) and (2) the computational cost for real-world appli-
cations. We propose MM-CDFSL, a domain-adaptive and computation-
ally efficient approach designed to enhance adaptability to the target
domain and improve inference cost. To address the first challenge, we
propose the incorporation of multimodal distillation into the student
RGB model using teacher models. Each teacher model is trained inde-
pendently on source and target data for its respective modality. Leverag-
ing only unlabeled target data during multimodal distillation enhances
the student model’s adaptability to the target domain. We further intro-
duce ensemble masked inference, a technique that reduces the number
of input tokens through masking. In this approach, ensemble prediction
mitigates the performance degradation caused by masking, effectively ad-
dressing the second issue. Our approach outperformed the state-of-the-
art CD-FSL approaches with a substantial margin on multiple egocentric
datasets, improving by an average of 6.12/6.10 points for 1-shot/5-shot
settings while achieving 2.2 times faster inference speed. Project page:
https://masashi-hatano.github.io/MM-CDFSL/
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1 Introduction

The field of egocentric vision research, primarily facilitated by wearable devices
such as smart glasses [6], has seen significant development over the last decades,
owing to its wide range of application domains, including daily life, industry,
AR/VR, and medicine. In response to the growing demand across multiple
domains, several large-scale egocentric datasets, such as Ego4D [12] and Ego-
Exo4D [13], have been proposed to provide a variety of research tasks with vari-
ous modalities [11,17,37,42,43,56]. Recognizing the action of the camera wearer
(egocentric action recognition) is one of the fundamental tasks in the egocentric
video understanding domain.
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Fig. 1: Problem setup. In our problem setup, a model is trained using source data
and unlabeled target data for multiple modalities during the meta-training stage. In the
meta-testing stage, a few examples of novel classes from the support set are provided
to learn a classifier. Then, the network predicts the categories of different samples from
the query set, which are the same classes as the support set. Unlike existing setups, we
leverage multimodal data (e.g ., optical flows or hand poses) during the meta-training
stage. During the meta-testing stage, only RGB videos are used as inputs.

Despite these advancements, a scarcity of egocentric datasets persists in var-
ious domains, such as industry [40,41,45,46] and the medical field [8,59]. Cross-
domain approaches [2, 28, 54] effectively transfer the knowledge acquired from
the training on large-scale datasets (i.e., source domain) to the target domain.
Since the actions taken in the target domain may differ from those in the source
domain, the time-consuming manual annotation of the action labels is required.
Therefore, cross-domain few-shot learning (CD-FSL) [16, 25, 26, 67, 68] emerges
as a crucial strategy, merging cross-domain adaptability with the efficiency of
few-shot learning [7, 24, 47, 49, 55, 66] which only uses a few labeled samples on
the target domain. Recently, using unlabeled data on the target domain has
proven effective in enhancing the adaptability against the domain without in-
creasing the annotation cost [19, 34, 44]. These approaches further improve the
task performance in the CD-FSL setting.

The CD-FSL with unlabeled target data [19,34,44] adopts two meta-training
stages (pretraining and domain adaptation) and two meta-testing stages (few-
shot training and inference). For example, Dynamic Distillation [19] first trains
the visual encoder on the source dataset (pretraining stage), subsequently train-
ing with labeled source and unlabeled target data via pseudo distillation [64,65]
(domain adaptation stage). Lastly, a classifier is trained on the few-shot support
data of novel classes (few-shot training stage) and evaluated on the query sam-
ples (inference). Building upon this, CDFSL-V [44] proposed to use the recent
self-supervised technique, VideoMAE [52], for the pretraining stage, enabling
the pretraining with the unlabeled target data to enhance the adaptability to
the target domain on the action recognition task.
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Although the CD-FSL task with unlabeled target data has been widely in-
vestigated, two significant issues remain when applying the previous works [19,
34,44] to the egocentric action recognition task.

Adaptability to the Target Domain. Solely relying on visual information is
susceptible when performing on the target domain despite using domain adapta-
tion techniques. While the previous works have focused only on RGB modality
for image or video classification tasks, it is known that using multimodal infor-
mation (e.g ., optical flows or poses) helps to mitigate the domain gap between
the source and target domains for the action recognition task [30,31]. Especially
on the egocentric action recognition task, since the background’s visual informa-
tion vastly changes, solely relying on the RGB information to adapt the domain
is infeasible.

Inference Cost. Despite the advancements in the CD-FSL task expanding for
videos [44], processing densely-sampled input frames with temporal-aware op-
erations is necessary, making the process computationally expensive [23,57,58].
This computational intensity hampers the practical applications on edge devices
with limited resources. Therefore, reducing the inference cost is essential for
egocentric action recognition.

In this work, for the first time, we study cross-domain few-shot learning for
egocentric action recognition using multimodal input and unlabeled target data
(Fig. 1). We propose MM-CDFSL, a novel CD-FSL approach utilizing multi-
modal input and unlabeled target data to enhance the adaptability to the target
domain. In our meta-training framework, we first pretrain the domain-adapted
and class-discriminative features at the pretraining stage. Subsequently, we con-
duct multimodal distillation to bridge the domain gap further. This work capi-
talizes on incorporating multiple modalities to alleviate the extreme domain gaps
on the CD-FSL task. Additionally, we consider the computational cost during
inference by reducing the number of input tokens without compromising the ac-
tion recognition accuracy. We aim to simultaneously achieve strong adaptability
to the target domain where the shift between the source and target domain is
significant while improving the runtime during the inference.

To address the first challenge, we propose to (1) incorporate supervised train-
ing on source-labeled data in the pretraining stage and (2) additionally introduce
the multimodal distillation stage to transfer the knowledge obtained during the
pretraining to a network with RGB input. In the pretraining stage, domain-
adapted and class-discriminative features are obtained using labeled source and
unlabeled target data. Utilizing VideoMAE [52] for reconstructing source and
target inputs, our model aims to capture discriminative and shared represen-
tations between source and target domains. This pretraining process is applied
independently for all input modalities. Subsequently, we perform multimodal
feature distillation on the unlabeled target dataset to transfer knowledge from
the teacher models trained on source and target domains for multiple modali-
ties to the student RGB encoder. Since the teacher networks are trained on both
source and target data, leveraging only unlabeled target data during multimodal
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distillation helps improve the adaptability of the student network to the target
domain.

To address the challenge of computational efficiency, we propose an Ensem-
ble Masked Inference, which reduces the number of input tokens by randomly
masking tokens from the input data and then ensembling multiple classifica-
tion results estimated from these inputs. However, naively masking the input
data during inference can lead to a severe performance drop since the feature
extractor and the classifier are trained on the unmasked inputs. Therefore, draw-
ing inspiration from the Tube Masking operation in VideoMAE [52], originally
proposed to randomly mask input tokens in videos to obtain meaningful rep-
resentations during pretraining, we propose to apply this operation across all
stages, including pretraining, multimodal distillation, few-shot training, and in-
ference. By applying masking throughout these stages, we prevent distribution
drift while simultaneously improving inference speed.

In summary, our contributions are as follows:

– We propose a novel, challenging, but practical problem: cross-domain few-
shot learning with multimodal input and unlabeled target data in egocentric
scenarios.

– We propose MM-CDFSL, a novel approach for the CD-FSL for egocentric ac-
tion recognition task that utilizes a domain-adapted and class-discriminative
pretraining and multimodal feature distillation. Furthermore, we propose en-
semble masked inference to reduce the computational cost.

– We simultaneously achieve state-of-the-art performance in terms of the ac-
curacy and inference speed on multiple egocentric action recognition bench-
marks [1, 5, 40] with the CD-FSL settings. Specifically, our method outper-
forms the prior state-of-the-art in accuracy by an average of 6.12/6.10 points
for 1-shot/5-shot settings, while our approach is 2.2x faster than the previous
approaches.

2 Related Work

First, we discuss the most relevant work on egocentric action recognition and
then review previous efforts on cross-domain few-shot learning (CD-FSL). Our
work intersects with prior research from several perspectives: few-shot learning,
cross-domain adaptability, the utilization of unlabeled target data, and the in-
corporation of multimodal inputs. To provide a clear and concise comparison,
we have summarized the differences in Tab. 1.
Egocentric Action Recognition. Egocentric action recognition has gained
popularity [35, 38, 51, 62] with the advent of affordable, lightweight wearable
cameras, such as GoPro. This increase in egocentric data has sparked signifi-
cant interest in understanding and recognizing actions within these videos [33].
One of the key challenges for egocentric action recognition is an environmental
bias where egocentric videos are captured in different locations. For example,
some researchers [36,48] have aimed to acquire a domain generalized or domain
adapted representation. Also, the lack of large-scale datasets with annotations is
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Table 1: Comparative overview of methodological features.

Methods Few-shot Cross-domain Unlabeled target data Multimodal
[7, 24,47,49,55,66] ✓

[14, 27,53,60] ✓ ✓
[19, 34,44] ✓ ✓ ✓

[39, 50] ✓
[11] ✓ ✓

MM-CDFSL (Ours) ✓ ✓ ✓ ✓

a fundamental problem in egocentric vision, especially in the industrial and med-
ical fields. This necessitates the few-shot learning technique, which enables the
inference of novel classes with limited labeled samples, thereby fueling research
in this domain [11,61]. In contrast to the previous work, we simultaneously tackle
these two key challenges.

On the other hand, incorporating additional multimodal information is es-
sential for identifying activities for egocentric activity recognition. Several stud-
ies have demonstrated that leveraging supplementary modalities at inference
time significantly enhances performance [9, 21, 22, 29, 32, 39, 63]. However, ac-
quiring and processing the additional modalities typically demands significant
computational resources. This limitation renders these methods cumbersome or
impractical, particularly on constrained computing budgets such as embedded
devices. To benefit from multimodal information without increasing computa-
tional cost at inference time, the distillation technique has attracted numerous
researchers [39,50]. Following this success, our approach incorporates multimodal
distillation. However, unlike the existing work [39,50], we focus on a challenging
but practical scenario: cross-domain and few-shot settings for egocentric action
recognition.
Cross-Domain Few-Shot Learning. Guo et al . [14] introduced the Cross-
Domain Few-Shot Learning (CD-FSL) challenge, which assesses the capability
of deep neural networks to adapt image classification to novel domains that
present classes not encountered during their training. Research has explored
numerous strategies, such as fine-tuning [4], feature-wise transformation [53],
prototype learning [60], and the training with multiple domains [27], all aimed
at enhancing the networks’ generalization capabilities. Among these strategies,
using unlabeled target data stands out for its ability to increase adaptability
to target domains, offering a practical approach akin to unsupervised domain
adaptation [10,15], as the annotation for large-scale target data is not required.

To incorporate unlabeled target data during training, STARTUP [34] and
Dynamic Distillation [19] employ a pseudo-labeling technique based on the self-
training strategy. Both methods first pretrain the visual feature extractor on the
labeled source dataset, subsequently training with student-teacher networks ini-
tialized from the pretrained weights. CDFSL-V [44] addresses challenging cross-
domain few-shot learning for action recognition. The method incorporates the
recent self-supervised technique for video understanding, VideoMAE [52], to uti-
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lize unlabeled target data during the pretraining stage, leading to better adapt-
ability to the target domain.

However, neither of these approaches investigates the leverage of multiple
modalities, which is crucial in egocentric action recognition, and considers infer-
ence time. In contrast, we explore utilizing multiple modalities for adaptability
to the target domain and consider the computation cost.

3 Method

The proposed method consists of two meta-training and two meta-testing stages:
the first involves domain-adapted and class-discriminative feature pretraining,
the second benefits the domain adaptability from multimodal distillation, the
third trains a classifier to adapt novel classes using labeled few-shot samples,
and the fourth infer the action class of query data while reducing the inference
time. We first introduce a new problem setup of the cross-domain few-shot learn-
ing task with multimodal input and unlabeled target data (Sec. 3.1). Then, we
introduce the proposed method, including (1) pretraining (Sec. 3.2), (2) mul-
timodal distillation (Sec. 3.3), (3) few-shot training and (4) ensemble masked
inference (Sec. 3.4). Fig. 2 provides an overview of our approach. For readabil-
ity, the following section is explained with RGB, optical flow, and heatmap of
the hand pose (referred to as hand pose) as multimodal information, known
as effective modal information for egocentric action recognition. However, our
method can use any modality information (e.g ., IMU, audio).

3.1 Problem Definition

The goal of the cross-domain few-shot learning (CD-FSL) task with multimodal
input and unlabeled target data is to classify novel classes within the target
dataset DT , leveraging both a labeled source dataset DS and an unlabeled target
dataset DTu . Both DS and DTu comprise data across m modalities. Ensure
there is no class overlap between the source and target datasets to maintain the
integrity of the few-shot learning scheme. To infer novel classes in the target
dataset, the data DTu

is split into a support set S, which contains K data from
N classes for the N -way K-shot task, and a query set Q consisting of data from
only the N classes of the support set, same as the standard few-shot learning
setting.

3.2 Domain-adapted and Class Discriminative Feature Pretraining

In the pretraining stage, the VideoMAE [52] for each modal is independently
trained to learn the representation shared among the source/target domain and
discriminative features on the source domain via two objective functions: (1) joint
reconstruction of the source and target domain data and (2) the classification of
the action categories on the source dataset. In contrast to the pretraining stage
in CDFSL-V [44], which only reconstructs the data on the source and target
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Fig. 2: The framework of our proposed method. Our approach has two
meta-training and two meta-testing stages: 1. learning domain-adapted and class-
discriminative features for all modalities, 2. distilling the multimodal features into
student RGB encoders, 3. few-shot learning for adapting novel classes, and 4. ensemble
masked inference using P Tube Masking during inference.

dataset to mitigate the domain shift, we train the model via a joint optimization
of the above two objectives to effectively learn the shared and discriminative
feature representation.

Specifically, given an input xm ∈ RT×Hm×Wm×Cm consisting T frames of im-
age size Hm×Wm with a channel size Cm for modality m ∈ {RGB, optical flow,
hand pose heatmap}, respectively, we train a VideoMAE [52], which consists
of encoder (feature extractor) Em and decoder Dm, per modality m. Following
the training framework of VideoMAE, the tokenized input data are randomly
masked with the masking ratio ρpretrain by Tube Masking ψ and reconstructed
as follows:

x̂m = Dm(Em(ψ(xm))), (1)

where x̂m denotes reconstructed input. Additionally, a classifier Gm is employed
to input the averaged embedding extracted from Em and estimates the logit
lm ∈ Rnc (nc denotes the number of the classes in source dataset) as follows:
lm = Gm(Em(ψ(xm))).

We train Em, Dm, and Gm for each modal with the combination of three
losses: the reconstruction loss for source data Lsource

recon, the reconstruction loss for
target data Ltarget

recon, and the cross entropy loss for action classification in the
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source dataset Lsource
ce with a balancing hyperparameter λcem :

Lpretrain = Lsource
recon + Ltarget

recon + λcemLsource
ce . (2)

Note that we only calculate Lsource
ce against labeled source data, and we employ L2

loss for the reconstruction loss.

3.3 Multimodal Distillation

Next, we further improve the adaptability to the target domain by distilling the
domain-adapted multimodal features to the RGB feature extractor ERGB. Using
multiple modalities helps mitigate the domain shift between source and target
domain compared to using only RGB modality, as visual information is suscepti-
ble to lighting, background, and appearance variations. Incorporating additional
modalities like optical flow and hand pose introduces complementary informa-
tion that is less sensitive to these visual changes. Furthermore, distilling the
multimodal features, which are domain-adapted and class-discriminative, into
the RGB modality reduces the model complexity while alleviating the domain
gap. It aims to imbue the RGB model with domain-adapted characteristics of
multimodal learning without the overhead of processing and integrating multiple
modality data types during inference.

Given multimodal input for unlabeled target data xtarget
m , we train the student

RGB encoder E student
RGB using the teacher encoder E teacher

m for all modalities, including
RGB. Distilling features from the RGB modality ensures that it regularizes the
multimodal distillation from other modalities to prevent forgetting the RGB
element and biasing the other modalities. It is noted that all student and teacher
encoders are initialized from the pretrained weights in the previous domain-
adapted and class-discriminative feature pretraining section, and the weights of
teacher encoders are kept frozen during the multimodal distillation stage. Also,
we mask the input tokens like the previous self-supervised training, with the same
mask ratio ρdistill across the modalities. The masking is adopted as the model
is required to make predictions based on masked inputs during inference (See
Sec. 3.4). The unlabeled target RGB data is fed to the student RGB encoder;
subsequently, the extracted features are projected into modalities by projection
layers (e.g ., multilayer-perceptrons) Mm:

f̂m = Mm(E student
RGB (ψ(xtarget

RGB ))), (3)

where f̂m are projected features from RGB to the modality m.
We aim to minimize its L2 distance from the real embedding of the modality

m. Specifically, the loss is computed as a linear combination of the L2 losses
corresponding to each modality, and the feature distillation loss is defined as
follows:

Lfdm =
∥∥∥sg[fm]− f̂m

∥∥∥2
2
, (4)

where sg[.] stands for the stop gradient operator that is defined as an identity at
forward computation time and has zero partial derivatives, and fm denotes the
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extracted features of the unlabeled target data xtarget
m from the teacher encoder of

the modality m:
fm = E teacher

m (ψ(xtarget
m )). (5)

The final training loss in the multimodal distillation stage is the linear combi-
nation of these losses for each modality:

Ldistill =
∑
m

Lfdm
. (6)

3.4 Ensemble Masked Inference

The computation cost is one of the fundamental problems for a real-time appli-
cation or inference on limited-resourced devices. Processing all tokens in input
frames for the Transformer model for action recognition is computationally ex-
pensive [23,57,58]; however, the computation cost can be modulated depending
on how many tokens from input frames are used. On the one hand, existing
methods using the ViT architecture process all tokens from input frames to
achieve strong action recognition performance, but this comes at a high compu-
tational cost. The attention mechanism demands computational complexity of
O
(
I2
)

where I denotes the number of input tokens. On the other hand, reducing
the number of input tokens helps mitigate the computation cost but results in a
drop in performance. To this end, we propose the ensemble masked inference to
reduce the computation cost by reducing the number of input tokens by masking
with the mask ratio ρinfer and alleviate the performance drop by utilizing the
ensemble prediction with the ensemble number P : O

(
P ((1− ρinfer)I)

2
)
.

Few-Shot Training. Following the existing work [19, 34, 44], we learn a new
classifier for adapting the novel classes in the target domain with a few numbers
of labeled data. The RGB student encoder is retained, and the classifier head
G′ on top of the encoder is trained with a sampled N -way K-shot data from
the support set S. The Tube Masking is applied to the input with the mask
ratio ρinfer during the few-shot training process, enabling the model to make
predictions based on masked input at the inference time. Note that the Tube
Mask is varied across the input data from the support set to prevent the model
from overly relying on identical masking patterns, which may inadvertently mask
all-important content.
Inference. Once the classifier G′ is adapted to the novel classes in the target
domain, q samples from each N class from the query set Q are used to eval-
uate the few-shot action recognition. We apply the Tube Masking ψ with the
same mask ratio ρinfer used during the few-shot training. Various mask ratios
ρinfer are applied depending on the specific requirements for a trade-off between
accuracy and inference speed. Adjusting the mask ratio allows us to tailor the
model’s performance according to the computational constraints or the precision
demands of the application at hand. Furthermore, we adopt ensemble learning
to mitigate the drop in performance caused by masking the input frames. We
generate P data from one sample by applying varied Tube Masking and then
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average the predicted probabilities:

ŷ =
1

P

∑
p

Softmax(G′(ERGB(ψ(xRGB)))). (7)

4 Experiments

In this section, we elaborate datasets used for training and evaluation, com-
parison methods, quantitative comparison, and ablation study of our proposed
design. (See Suppl. for implementation details and more results).

4.1 Datasets

We employ the most large-scale egocentric video dataset, Ego4D [12] as a source
dataset and multiple egocentric datasets [1, 5, 40] as a target dataset.
Ego4D [12]. The Ego4D dataset is one of the large-scale egocentric video
datasets in a daily life domain. It contains 3,670 hours of egocentric videos of
people performing diverse tasks, such as gardening or crafting, and is collected
by 931 people from 74 locations across nine different countries worldwide. We
utilize annotations for short-term action anticipation, including both the clip
frame and the corresponding time to contact for the egocentric action recog-
nition task. For our experiment, we constructed annotations by selecting clip
frames, including the frame at which contact occurs within the input sequence.
This results in a 204-class action recognition dataset with 15.5k training clips.
EPIC-Kitchens [5]. EPIC-Kitchens is a dataset captured in the cooking do-
main, where 32 participants have recorded 432 egocentric videos. The dataset
encompasses a total of 286 action classes. For our cross-domain few-shot study,
we partitioned these videos into training (unlabeled) and validation subsets, com-
prising 58 and 228 action classes with 3.6k and 17.2k video clips, respectively.
To adhere to the few-shot learning task settings, we ensured no class overlap
between the training (unlabeled) and validation sets.
MECCANO [40]. The MECCANO dataset was collected in an industrial-like
setting, where 20 participants were asked to assemble a toy model of a motorbike.
We partitioned the MECCANO dataset into training and validation subsets.
This partition yielded 10 and 40 action classes, accompanied by 1.3k and 7.4k
action segments for the training and validation sets.
WEAR [1]. The WEAR dataset, curated explicitly for human activity recogni-
tion within the outdoor sports domain, features egocentric video data capturing
a wide array of athletic activities in natural settings. It encompasses recordings
from 18 participants engaging in 18 distinct workout activities across ten diverse
outdoor locations. To facilitate our study, we divided the dataset into training
and validation subsets, allocating 3 and 15 activity classes to each, accompanied
by 1.8k and 8.0k activity segments, respectively.
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Table 2: Cross-domain few-shot action recognition accuracy. We assess the
performance of 5-way 1-shot and 5-shot top-1 action recognition accuracy on three
egocentric datasets, EPIC-Kitchens (EPIC), MECCANO (MEC), and WEAR. The
Ego4D dataset is used as the source dataset. We report an average of 600 runs of few-
shot evaluation with 95% confidence interval. We present the results of our method
that adopts the mask ratio ρinfer = 0.75 and ensemble number P = 2. The best values
are shown in bold.

Method
1-shot 5-shot

EPIC MEC WEAR EPIC MEC WEAR

Random Initialization 29.20±.37 23.10±.24 25.96±.27 40.28±.42 27.04±.28 38.71±.36

VideoMAE [52] 35.07±.41 27.75±.31 44.65±.38 47.13±.43 35.92±.33 63.92±.35

STARTUP++ [34] 35.18±.43 26.84±.30 39.15±.35 50.24±.45 34.05±.31 59.88±.36

Dynamic Distill++ [19] 36.96±.43 27.87±.30 35.84±.32 53.78±.47 37.87±.33 56.23±.35

CDFSL-V [44] 38.17±.44 26.03±.29 39.11±.35 53.72±.91 35.64±.32 58.27±.36

Ours 41.97±.46 28.34±.30 51.25±.40 58.70±.90 37.80±.46 69.57±.37

4.2 Comparison Methods

– Random Initialization is used as our baseline for the experiment. This
method entails learning a logistic regression classifier on top of an untrained
VideoMAE encoder.

– VideoMAE [52] is used as our baseline, whose parameters are initialized
with pretrained on the source (Ego4D) and fine-tuned on the support set.

– STARTUP++ [34] is a modified version of STARTUP, used in CDFSL-V
for a fair comparison. It replaces supervised training during the pretrain-
ing stage of the STARTUP with self-supervised pretraining on the source
dataset using VideoMAE. Subsequently, following STARTUP, it performs
the representation learning with the KL-divergence loss and self-supervised
contrastive loss [3].

– Dynamic Distillation++ [19] adopts self-supervised training instead of
supervised training, similar to the STARTUP++, to ensure a fair compari-
son. Then, it trains the student network with pseudo-labeling while dynam-
ically updating the teacher network’s parameters throughout training. This
approach involves aligning the student network’s predictions for strongly
augmented versions of unlabeled target data with the teacher network’s
weakly augmented counterpart.

– CDFSL-V [44] proposed to use the recent self-supervised technique, Video-
MAE [52], for the pretraining stage, enabling the pretraining with the unla-
beled target data to enhance the adaptability to the target domain. CDFSL-
V also adopts pseudo distillation as a consistency regularization, similar to
Dynamic Distillation, during the second training stage.

Note that for all comparison methods except random initialization, the weights
are initialized from the pretrained model on the Kinetics-400 at the pretraining
stage, the same as our initialization.
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Table 3: Inference cost. Ours adopts the mask ratio ρinfer = 0.75 and ensemble
number P = 2. Note that existing methods use all tokens from input frames; thus,
they have the same values across all metrics. We use a machine equipped with Intel
Xeon W-3235 CPU, 128GB RAM, and the NVIDIA Titan RTX GPU to compute the
inference cost.

Method Runtime
(ms) GFLOPs Memory

(MiB)

Random Initialization

22.1 68.5 2782
VideoMAE [52]
STARTUP++ [34]
Dynamic Distillation++ [19]
CDFSL-V [44]

Ours 9.64 37.0 968

Table 4: Loss component ablation study in
the pretraining stage. Only reconstruction is
when λcem = 0 in Eq. (2). All results are reported
with the same mask ratio and ensemble number
(ρinfer = 0.75, P = 2)

Method Lsource
recon Ltarget

recon Lsource
ce 1-shot 5-shot

Only reconstruction ✓ ✓ 35.42 49.82
Only source ✓ ✓ 40.50 56.43
Ours ✓ ✓ ✓ 41.97 58.70

Table 5: Ablation study on
the multimodal distillation
stage. Only RGB Training row
shows the accuracy without dis-
tilling the multimodal informa-
tion at the second training stage.

Method 1-shot 5-shot

Only RGB Training 46.17 67.19
RGB+Pose 49.39 67.90
Ours 51.25 69.57

4.3 Quantitative Comparison

We compare the performance of 5-way 1-shot and 5-shot top-1 action recognition
accuracy and inference cost with the prior methods, trained on the Ego4D [12]
dataset as the source domain, on three egocentric datasets as the target domain:
EPIC-Kitchens [5] in the cooking domain, MECCANO [40] in the industrial-like
domain, and WEAR [1] in the outdoor workout domain. We report the accuracy
and inference cost of our proposed method with the mask ratio of ρinfer of 0.75,
using the ensemble number P = 2. Tab. 2 and Tab. 3 show that the proposed
method consistently outperforms the state-of-the-art CD-FSL with unlabeled
target data methods regarding action recognition accuracy and inference cost.
Few-Shot Action Recognition Accuracy. Our proposed model outperforms
the CDFSL-V by 6.10 points and the Dynamic Distillation++ by 6.07 points on
the average of three datasets regarding the 5-shot action recognition accuracy.
Significant improvement can be seen in 5-shot accuracy on the WEAR dataset
(from 58.28 to 69.57) as our method leverages the multiple modalities during
training, further mitigating the domain gap between source and target. Also,
our model outperforms the CDFSL-V by 6.12 points and the Dynamic Distilla-
tion++ by 6.95 points on average of three datasets in the 1-shot setting, even
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though only one labeled target sample from the support set S is available during
the few-shot training stage.
Inference Cost. As shown in Tab. 3, our approach achieves 2.2x faster inference
speed (ms) than the previous approaches while achieving state-of-the-art few-
shot classification performance. Furthermore, our method reduces 46% of the
theoretical computational cost (GFLOPs), and use only 34% of memory con-
sumption (MiB) compared to the previous methods. The existing approaches in
Tab. 3 employ the same architecture (ViT-S) and the same number of input to-
kens; thus, their inference times remain consistent across implementations. Our
approach enhances efficiency and retains high accuracy, making it particularly
advantageous for applications demanding online processing without compromis-
ing prediction accuracy.

4.4 Ablation Analysis
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Fig. 3: Accuracy vs. inference time.
The trade-off analysis between action recog-
nition accuracy and inference speed is con-
ducted for the existing method and our pro-
posed approach, examining various mask-
ing ratios ρinfer and ensemble numbers P .
The number near the plots for our proposed
method denotes the ensemble number.

In this section, we conduct the abla-
tion study of the proposed framework.
Class-discriminative Training in
the Pretraining Stage. We con-
duct an ablation analysis on employ-
ing the cross-entropy loss during the
pretraining stage in Eq. (2) to as-
sess its impact on class-discriminative
feature learning in conjunction with
self-supervised learning. We report
the performance of the best trade-
off model, which incorporates mul-
timodal feature distillation to de-
termine the impact of this cross-
entropy loss ablation. As shown in
Tab. 4, the results verify the im-
portance of cross-entropy loss in ob-
taining class-discriminative represen-
tations, thereby significantly boosting
the model’s accuracy and reliability for few-shot action recognition in cross-
domain scenarios.
Adaptability of the Pre-trained Model. Our teacher encoders in the multi-
modal distillation depend on pre-trained models. The distillation process using
target domain data fails if the pre-trained models do not adequately capture
the target domain characteristics. We leverage unlabeled target data during pre-
training to adapt the model to the target domain. As shown in Tab. 4, ablation
study of the target domain data during the pre-training stage verifies that our
method prevents the above issue.
Multimodal Distillation. We also conduct an ablation study during the sec-
ond stage of training to assess the benefits of multimodal feature distillation.
Tab. 5 presents the 1-shot and 5-shot few-shot action recognition accuracy on
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the WEAR dataset. The results confirm that omitting the multimodal distilla-
tion stage leads to a decrease in action recognition accuracy. This decline un-
derscores the significance of multimodal distillation for enhancing performance
in cross-domain few-shot action recognition tasks.
Accuracy and Speed Trade-off. The ablation study examines the impact
of the masking ratio ρinfer, applied to input frames during inference, and the
ensemble number P . This investigation aims to explore the trade-off between
model accuracy and inference speed, providing insights into how variations in
ρinfer and P influence the overall performance and efficiency of the model.

Fig. 3 illustrates the accuracy vs. inference time trade-off on the EPIC-
Kitchens dataset. Our most accurate model (ρinfer = 0, P = 1) significantly
surpasses CDFSL-V by 5.23 points with the same inference speed as the existing
method. Moreover, our fastest model (ρinfer = 0.9, P = 1) achieves 7.65 ms in
inference speed, which is 2.9x faster than the previous method and still out-
performs the previous method in terms of accuracy. Although the fastest model
suffers a drop in performance compared to our most accurate model, this per-
formance degradation is modulated by increasing the number of ensemble pre-
dictions without sacrificing the inference speed (e.g . P = 3).

5 Conclusion

Conclusion. We present MM-CDFSL, the first work to explore the multimodal
data for egocentric action recognition in cross-domain and few-shot settings. We
propose training the models for each input modality during the first pretraining
stage to gain domain-adapted and class-discriminative features. Then, we per-
form multimodal distillation to the student RGB models using teacher models for
all modalities to mitigate the domain gap further. Moreover, we propose ensem-
ble masked inference to reduce the computation cost during inference by masking
the input frames while alleviating the drop in performance via ensemble learning.
Experiments on egocentric datasets from three domains, EPIC-Kitchens, MEC-
CANO, and WEAR datasets, demonstrate that our approach outperforms the
state-of-the-art CD-FSL with unlabeled target data methods regarding action
recognition accuracy and inference speed.
Limitations and future work. Our proposed method leverages the optical
flow and 2D hand keypoints based on the off-the-shelf optical flow estimator [18]
and 2D hand keypoints detector [20]. Thus, the bias and errors from the off-the-
shelf detector may still affect the input modality information. In addition, our
approach applies constant loss weights for feature distillation losses during the
multimodal distillation process, regardless of the specific target dataset. This
strategy does not account for the varying significance of modalities based on
the target domain; for instance, motion information may hold greater relevance
than hand pose data in outdoor environments. Dynamically adjusting distillation
weights according to the modality’s relevance in the target domain is crucial for
achieving more targeted and efficient training outcomes. We will leave this for
our future efforts.
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