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In light of the main paper’s page constraints, we have included comprehen-
sive details and extended results in this supplementary document. The content
is structured as follows: Section 1 elucidates the evaluation metrics employed in
our study. Section 2 details the reproduction process of the competing models.
In Section 3, we explore our model’s performance across a spectrum of fre-
quency domain inputs. Visual representations, including Grad-CAM, features
after Wavelet-like Frequency Enhancement and model predictions, are provided
in Section 4. Lastly, Section 5 addresses the limitations of our research.

1 Evaluation Metrics

To rigorously assess the performance of the proposed model, we employ a suite
of evaluation metrics that are standard in the field of computer vision and object
detection. These metrics provide a comprehensive understanding of the model’s
effectiveness from various perspectives:

– Precision (P): This metric quantifies the accuracy of the positive predic-
tions made by the model. It is defined as the ratio of true positive detections
to the total number of positive detections (both true positives and false pos-
itives). Mathematically, it is expressed as P = TP

TP+FP , where TP represents
true positives and FP represents false positives.

– Recall (R): Also known as sensitivity, this metric measures the model’s
ability to correctly identify all relevant instances. It is calculated as the ratio
of true positive detections to the actual number of positive samples, which
includes both true positives and false negatives. The formula for recall is
R = TP

TP+FN , with FN denoting false negatives.
– F1-score: The F1-score is the harmonic mean of precision and recall, provid-

ing a single score that balances both the false positives and false negatives. It
is particularly useful when the class distribution is imbalanced. The F1-score
is computed using the relation F1 = 2·P ·R

P+R .

* Work done during an internship at YouTu Lab, Tencent.
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Table 1: Performance comparison of our model with the integration of different fre-
quency domain features.

DocTamper-T DocTamper-FCD DocTamper-SCD

IoU P R F IoU P R F IoU P R F

+ RGB 0.842 0.804 0.762 0.782 0.602 0.783 0.652 0.712 0.628 0.731 0.716 0.723
+ High Pass 0.839 0.803 0.762 0.782 0.589 0.767 0.654 0.706 0.625 0.730 0.720 0.725
+ NoisePrint 0.844 0.807 0.768 0.787 0.617 0.750 0.675 0.711 0.649 0.740 0.732 0.736
+ SRM 0.849 0.814 0.770 0.791 0.636 0.777 0.682 0.726 0.655 0.740 0.720 0.730
+ FFT 0.856 0.818 0.794 0.806 0.700 0.809 0.750 0.779 0.664 0.729 0.770 0.748
+ Bayar 0.867 0.833 0.795 0.813 0.714 0.816 0.768 0.791 0.681 0.750 0.769 0.760
+ DCT 0.895 0.873 0.840 0.857 0.878 0.927 0.905 0.916 0.748 0.806 0.818 0.812

– Intersection over Union (IoU): This metric, also known as the Jaccard
index, evaluates the overlap between the predicted and ground truth bound-
ing boxes. It is defined as the size of the intersection divided by the size of
the union of the predicted and true bounding box. The formula for IoU is
IoU = TP

TP+FP+FN .

These metrics collectively provide a robust framework for evaluating the pro-
posed model’s detection capabilities, ensuring a well-rounded analysis of its per-
formance.

2 Detailed Reproduction of Competing Models

In our study, we replicated the performance of ten different competing models.
These include UperNet [14], SegFormer [15], Swin-UPer [8], Mask2Former [1],
ConvNext [9], ConvNextV2 [13], InterImage [12] and DTD [10], all of which were
implemented using the mmsegmentation framework [2]. PCSS-Net [7], CAT-
Net [6] were reproduced using publicly available code. For consistency, we em-
ployed the default configurations provided by mmsegmentation [2], which encom-
passed settings for the optimizer, learning rate scheduler, and other parameters.
Notably, during our reproduction efforts, we identified and corrected data load-
ing errors in the publicly available test code for DTD [10]. These errors had
previously caused a marked decline in the performance of the pretrained mod-
els. After making the necessary corrections, our reproduced model’s performance
aligned closely with the results reported in the original publications.

3 Evaluation with Varied Frequency Domain Inputs

Our investigation into the influence of different frequency domain inputs on our
model’s performance is documented in Table 1. We systematically integrated a
series of frequency-specific features—High Pass, SRM [4], NoisePrint [3], Fast
Fourier Transform (FFT), Bayar convolution, and Discrete Cosine Transform
(DCT)—into the model. To mitigate the effects of potential complexity increases,
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we included a configuration that incorporated RGB data as an additional input
for comparison.

The experimental outcomes reveal that the inclusion of Bayar convolution
and FFT features notably improves the model’s performance. The most sub-
stantial enhancement, however, is achieved with the addition of DCT features,
underscoring their pivotal role in bolstering the model’s ability to detect tam-
pered content.

4 Additional Visualizations

4.1 Visualizations of Grad-CAM

Image GT Baseline Ours Image GT Baseline Ours

Fig. 1: Comparative visualizations of Class Activation Mapping (CAM) highlighting
the detection areas in both the baseline model and our proposed Feature Fusion and
Decomposition Network (FFDN). The baseline model activations are concentrated at
the tampered edges, while the FFDN model shows expanded activations that cover
both the edges and the internal textures of the tampered regions, demonstrating the
FFDN’s superior capability to identify and analyze tampering traces.

To demonstrate the effectiveness of our Feature Fusion and Decomposition
Network (FFDN), we compared Class Activation Mapping (CAM) [11] visu-
alizations of our model against a baseline model, both trained with identical
hyper-parameters on RGB and DCT inputs. Our FFDN’s Wavelet-like Frequency
Enhancement (WFE) module is designed to explicitly decompose and separate
features into high and low-frequency bands, enhancing the model’s ability to
detect and retain high-frequency tampering indicators.

As discussed in the main text, potential high-frequency tampering traces
include artifacts primarily found at the tampering edges, such as blending traces
left behind, and inconsistencies within the tampered area’s texture, which may
arise from transformations like affine changes.
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As depicted in Figure 1, the activation areas of the baseline model are pre-
dominantly located at the edges of the tampered regions, suggesting that the
baseline model primarily detects tampering by identifying blending traces at the
edges. In contrast, the activation areas of our FFDN model are notably more
extensive, encompassing not only the edges but also the internal texture informa-
tion of the tampered regions, indicating a more holistic analysis of the tampered
regions.

This comprehensive detection is made possible by the WFE’s proficiency
in preserving high-frequency textures, which are essential for identifying sub-
tle tampering traces. Consequently, our FFDN model not only outperforms the
baseline in detecting tampering but also provides a more detailed representa-
tion of the tampered areas, leading to a significant advancement in tampering
detection accuracy.

4.2 Visualization of Features After WFE

Image GT 𝐹ଵ 𝐹ଵ′ 𝐹ுி 𝐹ସ 𝐹ସ′ 𝐹ி

Fig. 2: Visualization of high- and low-frequency components before and after applying
our Wavelet-like Frequency Enhancement (WFE) module

Figure 2 illustrates the high- and low-frequency components before and after
the application of our Wavelet-like Frequency Enhancement (WFE) module.
Among them, F1 and F4 are the original features, F ′

1 and F ′
4 denote the features

enhanced by this module. The F̂HF and F̂LF symbolize the aggregated high-
frequency and low-frequency features, respectively. The enhanced high-frequency
component exhibits a significant improvement in delineating subtle boundary
traces. Correspondingly, the aggregated low-frequency features more precisely
demarcate the tampered regions.

4.3 Visualizations of Model Ablation

To demonstrate the distinct impact of our model’s components, we conducted
a visual ablation study, the results of which are depicted in Figure 3. Perfor-
mance comparisons were drawn among four configurations: the baseline Con-
vNextV2 [13] model enhanced with DCT information, the model sans Visual
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Fig. 3: A visual ablation study showcasing the performance impact of individual com-
ponents in our model. The comparison includes the baseline ConvNextV2 model with
DCT information, the model without the Visual Enhancement Module (w/o VEM),
the model without the Wavelet-like Frequency Enhancement ( w/o WFE), and our
fully integrated model.
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Enhancement Module (w/o VEM), the model lacking Wavelet-like Frequency
Enhancement (w/o WFE), and our fully equipped model.

The comparative analysis revealed that both VEM and WFE modules con-
tribute to performance gains, notably in the precise detection and localization
of tampered areas. Furthermore, when combined, these modules operate in har-
mony, yielding a synergistic effect that significantly elevates the overall efficacy
of our model.

4.4 More Visualizations of Model Predictions

We provide additional visualizations of model predictions on the DocTamper-
T, DocTamper-FCD, and DocTamper-SCD datasets [10] in Figure 4, Figure 5,
and Figure 6, respectively. These visualizations further demonstrate the robust-
ness and effectiveness of our model in detecting tampered text regions across
diverse tampering scenarios. Also the visualizations of model predictions on the
T-SROIE dataset [5] are shown in Figure 7.

5 Limitations

Our research marks progress in the field of document image tampering detec-
tion, yet it is imperative to recognize its limitations. One primary constraint
is the potential vulnerability of our model to sophisticated tampering meth-
ods. For instance, large-scale generative models like stable-diffusion can closely
replicate genuine image attributes. These methods produce highly realistic tam-
pered images that may evade detection by our system, highlighting the need for
continuous improvement and adaptation to new tampering techniques.

Moreover, our research has focused on the visual domain, and integrating
multimodal data sources could be explored to further enhance tampering de-
tection capabilities. Future work could address these limitations by developing
more efficient models, expanding dataset diversity, and exploring multimodal
approaches.
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Image GT OursConvNextDTDCAT-NetSwin-UperUperNetPSCC-Net

Fig. 4: Additional visualizations of model predictions on DocTamper-T dataset.
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Image GT OursConvNextDTDCAT-NetSwin-UperUperNetPSCC-Net

Fig. 5: Additional visualizations of model predictions on DocTamper-FCD dataset.
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Image GT OursConvNextDTDCAT-NetSwin-UperUperNetPSCC-Net

Fig. 6: Additional visualizations of model predictions on DocTamper-SCD dataset.
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Image GT Prediction Image GT Prediction

Fig. 7: Additional visualizations of model predictions on the T-SROIE dataset.
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