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Abstract. Document image tampering poses a grave risk to the veracity
of information, with potential consequences ranging from misinformation
dissemination to financial and identity fraud. Current detection methods
use frequency information to uncover tampering that is invisible to the
naked eye. However, these methods often fail to integrate this informa-
tion effectively, thereby compromising RGB detection capabilities and
missing the high-frequency details necessary to detect subtle tampering.
To address these gaps, we introduce a Feature Fusion and Decomposition
Network (FFDN) that combines a Visual Enhancement Module (VEM)
with a Wavelet-like Frequency Enhancement (WFE). Specifically, the
VEM makes tampering traces visible while preserving the integrity of
original RGB features using zero-initialized convolutions. Meanwhile, the
WFE decomposes the features to explicitly retain high-frequency details
that are often overlooked during downsampling, focusing on small but
critical tampering clues. Rigorous testing on the DocTamper dataset con-
firms FFDN’s preeminence, significantly outperforming existing state-of-
the-art methods in detecting tampering.

Keywords: Document Image Tampering Detection · Image Manipula-
tion Detection · Semantic Segmentation

1 Introduction

With text being a primary information medium, document image tampering can
lead to serious consequences, ranging from spreading fake news to severe issues
like identity theft and financial fraud [31]. Therefore, Document Image Tam-
pering Detection (DITD) has become crucial in various fields, including digital
forensics [25], e-commerce [1], and social media platforms [20]. The rapid ad-
vancement of image editing tools, while beneficial for legitimate purposes, has
also facilitated image manipulation by malicious actors, compromising digital
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(a) Natural Image Manipulation (b) Document Image Tampering

Fig. 1: Comparison of Natural Image Manipulation and Document Image Tampering.
From left to right includes the Original Image, a Zoomed-in Detail of the Image, and
the Ground Truth. Notably, the areas of document tampering are typically very small,
with the tampering traces being quite subtle.

content integrity and posing significant security risks. Consequently, the devel-
opment of a robust method for detecting tampered text is essential to preserve
the trustworthiness of digital content.

Unlike traditional Natural Image Manipulation Detection [46], DITD presents
two main challenges: 1) Imperceptible modifications: documents typically have
a consistent and relatively simple background, making it easier for malicious
actors to create visually imperceptible manipulations that are difficult to de-
tect. 2) Small tampering regions: unlike the large-scale and semantically-based
manipulations in natural images, document tampering often occurs in localized
characters, resulting in small manipulation regions. Figure 1 illustrates the chal-
lenges of the DITD task compared to Natural Image Manipulation Detection.

To address these two challenges, two lines of methods have been proposed.
On one hand, some methods [7,21,22,28,36,41] employ frequency domain infor-
mation as auxiliary clues to mine invisible tampering traces. For example, Wang
et al. [35] adopt Laplacian of Gaussian (LoG) to capture high-frequency informa-
tion, then the RGB and frequency domain features extracted are fused through
element-wise add operation. Further, DTD [22] concatenates the DCT feature
with the RGB feature and enhances it using the scSE attention [24]. However,
previous research [9, 14, 44] has demonstrated that frequency domain informa-
tion can sometimes be counterproductive, particularly in images without prior
JPEG compression (e.g., PNG images) or those post-processed multiple times
after tampering, which may compromise RGB domain detection. Therefore, ef-
fectively balancing and integrating spatial and frequency domain information is a
crucial challenge in DITD. On the other hand, the identification of tampering in
documents is challenging due to the the subtle nature of tampering traces and the
typically small tampered areas. Previous methods [32, 42] have shown that the
forged areas are often hidden in detail regions. To address this, some approaches
have proposed specially designed network components, such as Multi-view It-
erative Decoders [22] and high-resolution structures [26, 44] to prevent the loss
of subtle features. However, due to operations like downsampling, some subtle
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tampering cues can still be easily overlooked by the network. Therefore, how to
explicitly enhance small tampering features remains a crucial challenge.

In response to the challenges in DITD, we introduce our Feature Fusion
and Decomposition Network (FFDN). This approach consists of two main com-
ponents: a Visual Enhancement Module (VEM) and a Wavelet-like Frequency
Enhancement (WFE). The VEM enhances visual features by incorporating fre-
quency domain information through an attention mechanism, thus improving
the detection of tampering traces that are imperceptible to the naked eye. Addi-
tionally, it employs a zero-initialized conv to effectively reduce frequency domain
noise by emphasizing visual information. Complementing the VEM, the WFE
explicitly decomposes features into high and low-frequency components, ampli-
fying tampering discrepancies across various scales and improving the detection
of small or subtle tampered clues. Consequently, our network achieves a more
nuanced and effective detection of subtle tampering traces: the VEM makes
tampering traces visible, while the WFE resolves the subtleties of these traces,
setting our approach apart in the realm of tampering detection technology.

Our research, conducted on the recently released DocTamper [22] dataset,
addresses the inherent issues in existing methods, particularly the lack of con-
trolled integration and insufficient utilization of high-frequency information. The
experimental results demonstrate that our proposed method significantly out-
performs current state-of-the-art competitors. In summary, the key contributions
of this paper are as follows:

1. We propose an innovative Visual Enhancement Module. It enhances the
model’s ability to detect imperceptible tampering through frequency infor-
mation while maintaining the integrity of RGB.

2. We introduce a Wavelet-like Frequency Enhancement, which explicitly sep-
arates multi-level features into high and low-frequency components. This
approach ensures the preservation of fine details and the effective exploita-
tion of small tampering cues.

3. Through comprehensive experiments, we demonstrate that our proposed
methods surpass existing techniques, especially for small targets, thereby
advancing the state-of-the-art in DITD.

2 Related Works

2.1 Natural Image Manipulation Detection

In natural image manipulation, tampering methods mainly fall into three cat-
egories: splicing, copy-move, and generation. Splicing involves copying regions
from one image to another, copy-move entails shifting objects within the same
image, and generation replaces image regions with visually plausible but differ-
ent content. To address these various forms of image manipulation, researchers
have developed numerous detection techniques. Recently, Zhou et al. [46] and
Bappy et al. [2] have integrated SRM kernels into convolutional neural networks
for more precise forgery localization. Liu et al. [17] utilized an attention-based
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progressive network, PSCC-Net, for multi-scale tampering localization. Zhuang
et al. [48] focused on detecting subtle tampering by pre-training a network with
a dataset that simulates common image editing operations. In a dual-domain
approach, Kwon et al. [15] utilized a DCT branch to detect JPEG compres-
sion artifacts, integrating it with spatial features for comprehensive tampering
localization. More recently, Transformer models [30] have been applied to this
domain, with TransForensics [10] and ObjectFormer [32] being notable examples.
These models are designed to detect larger object-level manipulations in natural
images. However, the specific challenge of detecting tampered text in images re-
mains significant. The visual similarity between authentic and manipulated text,
along with the small tampered areas, indicates a gap in current methodologies
that requires specialized attention.

2.2 Document Image Tampering Detection

DITD, a task distinct from text segmentation, is designed to identify and pin-
point tampered sections within document images. Inspired by Natural Image
Manipulation Detection methodologies, a multitude of techniques have been de-
vised. Previous methods [13, 29] that relied solely on visual clues have proven
ineffective in detecting tampered areas. For instance, Joren et al. [13] redefined
the conventional image splice detection problem as a node classification problem,
where Optical Character Recognition (OCR) bounding boxes form nodes and
edges are added based on a text-specific distance heuristic. More recent studies
have made substantial advancements by incorporating frequency-based methods.
Xu et al. [41], for instance, leveraged the residual filter in the second stream to
learn manipulation traces in pixel correlation. Yanikoglu et al. [43] utilize Fast
Fourier Transform features for signature verification, and others [22, 36, 41] em-
ploy the Discrete Cosine Transform to extract spectral features, aiding in the
detection of discontinuities in Block Artifact Grids (BAG) between tampered
and genuine areas. Additionally, DTD [36] proposed the Curriculum Learning
strategy to fit the difficulty of compressed image during training.

However, despite the benefits of incorporating frequency domain information
to discern forgery traces, we observed that the direct fusion of both modalities
can result in a decline in detection capability within the RGB domain. We posit
that DCT information needs to be introduced into the detection model in a more
controlled and adaptive manner.

3 Methodology

3.1 Overall Framework

In this section, we introduce the Feature Fusion and Decomposition Network
(FFDN), a novel architecture for DITD, as illustrated in Figure 2. The pro-
cess is initiated by the Visual and Frequency Perception Head, which extracts
visual and frequency information from the image and DCT coefficients, respec-
tively. This information is then integrated by the Visual Enhancement Module
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Fig. 2: The overall framework of our method. It starts with the Visual and Frequency
Perception Head extracting features, followed by the Visual Enhancement Module for
balanced data integration. The Wavelet-like Frequency Enhancement then sharpens
the feature separation, and finally, a segmentation head like the FPN provides detailed
tampering detection.

(VEM), which brings the frequency information into the visual feature space,
and ensures the RGB information is the main guide. Subsequently, the Wavelet-
like Frequency Enhancement (WFE) takes over, meticulously separating the fea-
tures into high and low-frequency details to retain the small tampering artifacts.
Lastly, an FPN [16] Head enables pixel-wise tampering detection. Collectively,
these components constitute a robust and efficient framework for detecting even
subtle signs of document image tampering. We first introduce the two heads in
Section 3.2, then explore the structure of VEM in Section 3.3, and finally, discuss
the design details of the WFE in Section 3.4.

3.2 Visual and Frequency Perception Head

Following Qu et al . [22], our method utilizes a dual-branch structure to analyze
both visual and frequency information. Given an RGB image I ∈ R3×H×W ,
which is converted to the YCbCr color space, where H and W represent the
height and width of the image, respectively. From the Y channel, we compute
the DCT coefficients D ∈ RH×W and the quantization table T ∈ R8×8. The
Visual branch consists of a two-layer encoder (E1 and E2) that focuses on de-
tecting clear tampering indicators such as color and font inconsistencies. The
Frequency branch, inherited from DTD [22], targets more subtle anomalies like
BAG. It takes D and T as input, multiplies them to obtain decoded frequency
characteristics, and uses dilated convolutions to capture grid features from D,
yields a frequency representation Fd. This process can be represented as:

Fv1 = E1(I), Fv2 = E2(Fv1), Fd = FPH(D,T ), (1)

where Fv1 ∈ RC1×H
4 ×W

4 , Fv2 ∈ RC2×H
8 ×W

8 and Fd ∈ RCd×H
8 ×W

8 , represent the
two-tiered visual and frequency representations, respectively.
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RGB Detection Result

(a) Evidence of tampering not visible in RGB (b) Evidence of tampering visible in RGB 
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Fig. 3: Visualization of the tampering detection results. The left image shows a case
where tampering is difficult to discern, while the right image displays evident tamper-
ing, noticeable through inconsistencies in position and font. The colors green, red, and
yellow represent True Positives (TP), False Negatives (FN), and False Positives (FP),
respectively. The introduction of DCT information has enhanced the model’s ability
to detect tampering traces that are invisible to the naked eye. However, paradoxically,
this has led to a decrease in detection performance for some samples where tampering
could be identified using RGB information alone.

3.3 Visual Enhancement Module

Our Visual Enhancement Module (VEM) is specifically designed to selectively
incorporate frequency information as needed, enhancing the model’s capability
to detect imperceptible tampering while preserving the integrity of RGB-based
detection. We recognize from research [9, 44] that an excessive dependence on
DCT information can hinder the model’s ability to detect tampering, especially
for PNG images or those post-processed multiple times, sometimes even impair-
ing overall performance. Moreover, our observations suggest that while frequency
features can improve the detection of nuanced tampering, they may also interfere
with the model’s ability to detect tampering that is readily apparent in RGB
data, as demonstrated in our easy and hard case analysis, as illustrated in Fig-
ure 3. To address these challenges, we propose an adaptive fusion mechanism.
We first extract frequency features Fd and RGB features Fv2, and then apply
spatial and channel attention mechanisms, to produce an enhanced frequency
feature F enh

d guided by the RGB features. The fusion is executed as follows:

F enh
d = ConvBlock(CA([Fv2, Fd]) + SA([Fv2, Fd])), (2)

where [·] denotes the concatenation operation, CA and SA represent channel and
spatial attention mechanisms, and ConvBlock is a combination of 1 × 1 convo-
lution, batch normalization and ReLU operations. To prioritize RGB features
in the fusion and allow frequency information to be adaptively introduced, we
pass the frequency features through a zero-initialized convolution [45] prior to
merging them with the RGB features:

F2 = Conv(F enh
d ) + Fv2. (3)

The zero-initialized convolution ensures that the model starts by relying primar-
ily on RGB features and gradually learns to incorporate frequency information
only when it proves beneficial. Following the VEM, the enhanced feature F2
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Fig. 4: The structure of the Wavelet-like Frequency Enhancement (WFE) module. It
receives multi-level features {Fi}4i=1, outputting improved features F ′

1 and F ′
4. The

process initiates with the Learnable Wavelet-like Decomposition (LWD), which parti-
tions the input features into their frequency constituents. Following this, the Frequency
Fusion Module (FFM) integrates these separated frequency elements. The process con-
cludes by merging the enhanced features with the original F1 and F4 to produce the
final enhanced multi-level features. ‘WLM’ denotes the Window-based Linear Model,
and GFA is Guidance-based Feature Aggregation modules.

is fed into two encoder layers, resulting in multi-level features {F1, F2, F3, F4},
where F1 corresponds to Fv1 from Visual Perception Head.

3.4 Wavelet-like Frequency Enhancement

The distinguishing features of tampered images, such as blending artifacts, are
primarily found in the high-frequency domain. And, low-frequency components
like color and illumination also contribute. Given the typically diminutive and
subtle nature of tampered regions in manipulated documents, an approach that
effectively addresses both types of information is imperative. Conventional doc-
ument image tampering detection methods often utilize high-resolution features
to capture small details but lack a targeted approach for their explicit enhance-
ment. Our method, as illustrated in Figure 4, utilizes Wavelet-like Frequency
Enhancement (WFE) to enhance document tampering detection by focusing on
both high and low-frequency details.

To implement this, we use Learnable Wavelet-like Decomposition (LWD) to
decompose multi-level features into their high and low-frequency components.
These components are then fused using the Frequency Fusion Module (FFM) to
create a unified representation for frequency enhancement. We further merge this
enhanced representation with F1 and F4, which contain the most high-frequency
details and larger scale information respectively. This strategy ensures a more
precise and effective detection of subtle tampering traces.
Learnable Wavelet-like Decomposition. Our method employs the deep
wavelet decomposition [23], a technique known for decomposing images or fea-
tures into various frequency components. Specifically, we utilize the Haar wavelet
transform, which is the simplest form of wavelet transform. Given the multi-scale
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features {Fi}4i=1, the Haar wavelet transform breaks each down into four compo-
nents: FLL

i , FLH
i , FHL

i , and FHH
i . However, our method only utilizes FLL

i and
FHH
i , as they represent the two-dimensional low-frequency and high-frequency

components, respectively. The low-frequency component, FLL
i , encapsulates the

image’s overall structure, while the high-frequency component, FHH
i , accentu-

ates detailed textures, edges, and subtle clues. This is formally represented as:

FLL
i =

([
1 1
1 1

]
∗ Fi

)
↓ 2, FHH

i =

([
1 −1
−1 1

]
∗ Fi

)
↓ 2, (4)

where ∗ denotes the convolution operation, and ↓ 2 denotes the down-sampling
operation with a reduction factor of 2. Following decomposition, each component
undergoes enhancement via an adaptive attention module, resulting in the en-
hanced low-frequency and high-frequency features FLF

i and FHF
i . This module

integrates both channel and spatial attention mechanisms, focusing on the most
informative regions of the feature map:

FLF
i = SA(CA(ConvBlock(FLL

i ))), FHF
i = SA(CA(ConvBlock(FHH

i ))), (5)

where SA and CA denote the spatial attention and channel attention respec-
tively, and ConvBlock refers to a 3× 3 convolution layer with batch normaliza-
tion and ReLU activation. The final output, comprising eight components, offers
a comprehensive image representation, crucial for detecting subtle tampering
clues.
Frequency Fusion Module. We employ two Frequency Fusion Modules (FFM)
to combine multi-scale frequency features ({FLF

i }4i=1 and {FHF
i }4i=1) to en-

hance document tampering detection. The FFM incorporates three Guidance-
based Feature Aggregation (GFA) modules [11], which refine features by promot-
ing inter-level feature interaction. The GFA uses a window-based linear model
(WLM) [18] to align a lower-level feature Fi−1 with its higher-level counterpart
Fi, optimizing scaling and shifting parameters σ and µ, which describe the differ-
ence between these two features. These parameters are then seamlessly blended
with Fi−1, then recursively applied to the next level, obtaining the frequency-
enhanced representation F̂LF and F̂HF respectively. Finally, we leverage the
high-resolution details preserved in F1 by fusing it with the high-frequency en-
hanced feature map F̂HF to further accentuate subtle tampering traces. Con-
versely, F4 encapsulates broader scale information and is thus merged with the
low-frequency enhanced feature map F̂LF to capture low-frequency characteris-
tics. Formally, the enhanced feature maps are computed as:

F ′
1 = Conv([F̂LF , F1]), F ′

4 = Conv([F̂HF , F4]), (6)

where Conv refers to a 1× 1 convolution layer. The resulting multi-scale feature
set {F ′

1, F2, F3, F
′
4}, enhanced via WFE, is then processed through an FPN Head,

to predict the segmentation map:

p = SegHead({F ′
1, F2, F3, F

′
4}), (7)

where p ∈ RH×W denotes the predicted segmentation map.
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3.5 Loss Function

Our segmentation model employs a composite loss function, defined as:

L = LCE(p, y) + LLS(p, y), (8)

where LCE , the Cross-Entropy loss, measures the pixel-wise classification ac-
curacy, and LLS , the Lovasz-Softmax loss, directly targets the segmentation
performance by focusing on the quality of the predicted boundaries. Here, p
denotes the predicted segmentation maps, and y represents the corresponding
ground truth.

4 Experiment

4.1 Experimental Setup

Datasets. The primary dataset employed for our study is DocTamper [22], com-
prising 170,000 tampered document images (contracts, invoices, and receipts in
Chinese and English) using techniques like copy-move, splicing, and generation.
The DocTamper dataset is partitioned into a training subset of 120,000 images
and a same-domain test subset, DocTamper-T, with 30,000 images. Additionally,
it includes cross-domain FCD and SCD datasets, containing 2,000 and 18,000
images respectively, which are derived from the Noisy Office Dataset [3] and
Huawei Cloud [5]. To assess the model’s generalization capabilities, we also eval-
uated on the T-SROIE [36] dataset, comprising 986 tampered images derived
from the SROIE [12] dataset. This dataset primarily focuses on receipt scenar-
ios and is tampered with using generative methods. This additional experiment
allows us to gauge the model’s performance in recognizing tampered text across
a wider range of document contexts.
Evaluation Metrics. Consistent with established benchmarks [8, 14, 22], we
assess our model using four key metrics: Precision, Recall, F1-score, and the
Intersection over Union (IoU) for tampered regions. These metrics provide a
comprehensive evaluation of our model’s performance.
Implementation Details. Our model implementation was based on the MM-
Segmentation Toolbox [6] and trained utilizing 4 NVIDIA Tesla V100 GPUs. We
use the pretrained ConvNextV2-base model as the backbone, supplemented with
an FPN head for segmentation, and configured the input image size to 512x512.
For optimization, we employed the AdamW optimizer with a learning rate of
0.0001, with β1 = 0.9, β2 = 0.999, and weight decay of 0.05. We trained our
model for 100K iterations with a batch size of 16, and using the poly learning
rate policy with a power of 0.9. For testing, we followed the DTD [22] pipeline,
where a JPEG compression is first applied to the image before it is fed into
the network. The JPEG compression quality settings range from 75 to 100 to
maintain consistency with DTD.
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Table 1: Model comparison on three datasets. Adhering to the pipeline outlined by
Qu et al . [22], each image in the test set has been compressed with a quality factor
specified by their public repository. ‘P’ represents precision, ‘R’ stands for recall, and
‘F’ signifies the F1-score. The ‘∗’ marks instances where we have reimplemented the
training code and retrained the models under identical settings. The best results are
highlighted in bold, and the second-best results are marked with an underline.

DocTamper-T DocTamper-FCD DocTamper-SCD

Iou P R F Iou P R F Iou P R F

PSCC-Net [17] 0.17 0.25 0.83 0.39 0.13 0.19 0.82 0.30 0.11 0.15 0.83 0.25
UperNet [39] 0.70 0.66 0.60 0.62 0.30 0.57 0.35 0.43 0.48 0.57 0.58 0.57
CAT-Net [14] 0.78 0.75 0.69 0.72 0.66 0.85 0.70 0.76 0.58 0.65 0.65 0.65
Swin-UPer [18] 0.79 0.75 0.72 0.73 0.64 0.80 0.70 0.75 0.57 0.66 0.68 0.67
SegFormer [40] 0.81 0.77 0.74 0.75 0.69 0.82 0.74 0.78 0.61 0.68 0.70 0.69
Mask2Former [4] 0.84 0.82 0.83 0.82 0.66 0.81 0.75 0.78 0.59 0.70 0.79 0.74
ConvNext [19] 0.84 0.81 0.78 0.79 0.62 0.76 0.71 0.74 0.63 0.71 0.74 0.73
ConvNextV2 [37] 0.86 0.82 0.79 0.81 0.65 0.79 0.75 0.77 0.67 0.74 0.76 0.75
InternImage [33] 0.84 0.81 0.77 0.79 0.72 0.83 0.79 0.81 0.64 0.73 0.74 0.73

DTD∗ [22] 0.84 0.81 0.77 0.79 0.79 0.88 0.82 0.85 0.68 0.75 0.76 0.75
Ours 0.90 0.87 0.84 0.86 0.88 0.93 0.91 0.92 0.75 0.81 0.82 0.81

4.2 Quantitative and Qualitative Results

Our model’s performance was rigorously evaluated against seven leading seman-
tic segmentation frameworks and specialized tampering detection models, as
detailed in Table 1. Among the competitors were UperNet [39], SegFormer [40],
Swin-UPer [18], Mask2Former [4], ConvNext [19], ConvNextV2 [37] and InterIm-
age [33], alongside tampering detection-specific models including PCSS-Net [17],
CAT-Net [14], and DTD [22]. Notably, CAT-Net and DTD incorporate DCT in-
formation in addition to RGB data for tampering detection, while the other
models rely solely on RGB. The competitive performance achieved by RGB-
based models underscores the rationale behind our RGB-centric approach. Over-
all, our model outperformed others on the three DocTamper datasets, achiev-
ing a comprehensive improvement of 8.58% and 12.87% over DTD and Con-
vNextV2, respectively. Our method demonstrates balanced performance im-
provements across different test sets and performs particularly well on the FCD
dataset, where most models show poor results. These results highlight the effec-
tiveness of our VEM and WFE modules, validating their contribution.

Figure 5 visually compares the detection results of our model with other
state-of-the-art methods across three datasets: DocTamper-T, FCD, and SCD.
The visualizations clearly demonstrate our model’s enhanced capability to detect
subtle tampering features, thanks to the WFE module’s heightened sensitivity
to high-frequency details and the informative feature produced by the VEM.
This qualitative evidence further validates the quantitative results, solidifying
our model’s position as a new benchmark in the field.
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Fig. 5: Visualization of the detection results of our model and other state-of-the-art
models on three datasets.

4.3 Ablation Study

In this subsection, we present an ablation study to evaluate the impact of
each component in our framework. The study’s findings, detailed in Table 2,
confirm the effectiveness of our individual modules. The Frequency Perception
Head [22], by incorporating DCT information, extends the model’s capability
from RGB-based tampering clues to detecting anomalies in the frequency do-
main, significantly improving tampering trace detection. Building upon the foun-
dation provided by the FPH, our two innovative contributions—the VEM and
WFE—further advance the model’s performance. Each module independently
contributes to incremental gains in detection accuracy and precision. When these
modules are integrated, they operate synergistically, resulting in even more sub-
stantial performance improvements. This collaborative effect is manifested in the
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Table 2: Ablation study of the proposed components. Adhering to DTD [22], each
image in the test set has been compressed with a quality factor specified by the their
public repository. FPH, VEM, and WFE denote the Frequency Perception Head, Visual
Enhancement Module, and Wavelet-like Feature Enhancement, respectively.

DocTamper-T DocTamper-FCD DocTamper-SCD

FPH VEM WFE IoU P R F IoU P R F IoU P R F

0.83 0.81 0.76 0.78 0.80 0.89 0.83 0.86 0.66 0.73 0.76 0.74
✓ 0.86 0.84 0.81 0.83 0.83 0.91 0.89 0.90 0.73 0.77 0.79 0.78
✓ ✓ 0.88 0.86 0.83 0.84 0.87 0.92 0.90 0.91 0.74 0.80 0.80 0.80
✓ ✓ 0.88 0.85 0.82 0.84 0.84 0.90 0.89 0.90 0.73 0.80 0.80 0.80

✓ ✓ ✓ 0.90 0.87 0.84 0.86 0.88 0.93 0.91 0.92 0.75 0.81 0.82 0.81

Table 3: Ablation of the Visual En-
hancement Module on the DocTamper-
T dataset.

IoU F1

(a) Atten → CBAM 0.877 0.838
(b) Atten → Effi-Atten 0.887 0.847
(c) Random Init Conv 0.882 0.844
(d) Max Fusion 0.881 0.844

Ours 0.895 0.857

Table 4: Ablation of the Wavelet-
like Frequency Enhancement on the
DocTamper-T dataset.

IoU F1

(a) LWT -> Fix DWT 0.867 0.827
(b) w/o GFA 0.883 0.843
(c) FFM w/o LF 0.892 0.854
(d) FFM w/o HF 0.874 0.833

Ours 0.895 0.857

improved metrics, demonstrating the combined efficacy of the VEM and WFE in
elevating the model’s tampering detection capabilities. The subsequent sections
delve deeper into the contributions and interactions of each module.
Ablation of Visual Enhancement Module. In our ablation study, we scru-
tinize the design of our Visual Enhancement Module, which is crafted to in-
troduce frequency information into spatial features. This module is crucial for
improving the model’s ability to detect subtle tampering without compromising
the strengths of RGB-based detection. Table 3 presents the results of various ad-
justments to the fusion process and their effects on the model’s performance. We
considered the following modifications: (a) and (b) involve substituting the mech-
anism that enhances frequency information F enh

d , with conventional methods
such as CBAM [38] and Efficient Attention [27], respectively. These alterations
lead to a decline in performance. (c) Moreover, we experimented with initializing
the convolutional layers that process F enh

d with random weights instead of zero
weights. This change results in the RGB information losing its dominance in
the model, which in turn adversely affects the benefits derived from pre-trained
models, culminating in a decrease in performance. (d) Using the max function
for fusion, instead of addition, was less effective. This method potentially dis-
cards valuable combined information, limiting the model’s detection capabilities.
These outcomes emphasize the importance of a carefully calibrated fusion pro-
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Table 5: Model performance comparison of different backbones on three datasets.

DocTamper-T DocTamper-FCD DocTamper-SCD
Name Backbone P R F P R F P R F Param.

ConvNextV2-Uper ConvNextv2-B 0.82 0.79 0.81 0.79 0.75 0.77 0.74 0.76 0.75 121M
+DCT ConvNextv2-B 0.84 0.81 0.83 0.91 0.89 0.90 0.77 0.79 0.78 126M
+Ours ConvNextv2-B 0.87 0.84 0.86 0.93 0.91 0.92 0.81 0.82 0.81 140M

Swin-Uper Swin-S 0.75 0.72 0.73 0.80 0.70 0.75 0.66 0.68 0.67 81M
+DCT Swin-S 0.81 0.77 0.79 0.87 0.81 0.84 0.73 0.76 0.74 85M
+Ours Swin-S 0.84 0.81 0.82 0.90 0.86 0.88 0.77 0.77 0.77 100M

cess. They validate our original approach to VEM, which successfully leverages
the complete range of information to enhance tamper detection.
Ablation of Wavelet-like Frequency Enhancement. Our study delves into
WFE module’s role in accentuating high and low-frequency details for tampering
detection. Table 4 outlines the performance impact of various WFE configura-
tions: (a) Initially, we utilized the direct outputs of the deep wavelet decom-
position, FLL

i and FHH
i , as features without any further enhancement through

spatial or channel attention. (b) We employed upsampling and 1x1 convolution
to fuse the multi-scale frequency features instead of using FFM. (c) and (d)
We selectively enhanced either the high or low-frequency features within FFM.
The results showed that removing the enhancement of high and low-frequency
features or replacing the FFM led to a performance drop. Enhancing only the
high-frequency information yielded good results, highlighting the importance of
high-frequency information in document tampering detection. Further inclusion
of low-frequency information led to additional performance improvement. These
insights confirm the value of our WFE approach in improving tampering detec-
tion through meticulous frequency detail enhancement.
Dependency on Backbone. Our experimental analysis evaluates the adapt-
ability of our method across different backbone architectures, as detailed in Ta-
ble 5. We tested the FFDN not only with the ConvNextV2-B [37] but also with
the Swin Transformer-S [18], which has fewer parameters and is used by the
DTD [22].Our experiments reveal that the integration of an FPH to introduce
frequency components results in significant performance gains without a sub-
stantial increase in parameter count. Further improvements are achieved with
our proposed methods, leading to a moderate parameter growth while main-
taining efficiency. These consistent performance gains, even with the addition
of DCT components, highlight the FFDN’s flexibility and effectiveness across
various backbone architectures.

4.4 Robustness and Generalization Analysis

Our robustness analysis involved evaluating our model’s performance under var-
ious JPEG compression levels. As shown in Table 6, our model demonstrated
robustness across a wide range of JPEG compression quality settings, while DTD
dropped significantly in performance due to high reliance on DCT information.
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Table 6: The performance of various models under different JPEG compression quality
on DocTamper-T dataset. The ‘∗’ marks instances where we have reimplemented the
training code and retrained the models under identical settings.

Q100 Q90 Q75 Avg. Drop

IoU P R F IoU P R F IoU P R F Q90 Q75

Swin-Uper 0.89 0.89 0.90 0.90 0.82 0.80 0.77 0.78 0.72 0.68 0.62 0.65 11.4% 25.4%
ConvNextV2 0.92 0.91 0.91 0.91 0.89 0.87 0.84 0.85 0.79 0.77 0.70 0.74 5.5% 17.8%

DTD∗ 0.93 0.94 0.96 0.95 0.90 0.89 0.86 0.87 0.75 0.69 0.61 0.65 6.8% 28.5%
Ours 0.95 0.96 0.97 0.96 0.93 0.92 0.90 0.91 0.82 0.78 0.71 0.75 4.6% 20.2%

Table 7: Robustness evaluation on
DocTamper-T Dataset(F1). All distor-
tions compressed at 90% quality except
random JPEG.

Model Gaussian
Noise

Gaussian
Blur

Resize
1.5X

Resize
0.75X

Color
Jitter

DTD 0.71 0.69 0.78 0.69 0.71
Ours 0.84 0.79 0.85 0.78 0.81

Table 8: Comparison public on T-
SROIE dataset. ‘P’, ‘R’, and ‘F’ de-
note precision, recall, and F1-score,
respectively.

Method P R F

EAST [47] 0.919 0.896 0.908
ATRR [34] 0.947 0.925 0.936
Wang et al. [36] 0.961 0.976 0.968
Ours 0.993 0.993 0.993

Additionally, as shown in Table 7, we tested various perturbation methods, such
as Gaussian Noise and Gaussian Blur, and our model also exhibited better per-
formance.

Further, to verify our model’s generalization ability, we retrained and tested
it on the T-SROIE dataset. The results, detailed in Table 8, demonstrate its
effectiveness. To accommodate the higher resolution images in T-SROIE, we
utilized a sliding window approach during testing, which allowed for segment
processing and subsequent fusion into a cohesive output. These findings confirm
our model’s strong generalization, proving its efficacy in detecting tampered text
across various document types and conditions.

5 Conclusion

In this paper, we introduce a novel approach for Document Image Tampering De-
tection (DITD), the Feature Fusion and Decomposition Network (FFDN). Our
method integrates frequency and RGB features and enhances high-frequency de-
tails, addressing key DITD challenges. The Visual Enhancement Module leads
the detection process, introducing the frequency features to the spatial domain
through attention while maintaining the integrity of the original RGB detec-
tion capabilities. The Wavelet-like Frequency Enhancement module explicitly
decomposes features into high- and low-frequency components to fully exploit
high-frequency features with subtle tampering traces. Extensive experiments on
the DocTamper dataset validate our approach, significantly outperforming cur-
rent methods and advancing DITD.
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