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Abstract. Label dependencies have been widely studied in multi-label
image recognition for improving performances. Previous methods mainly
considered label co-occurrences as label correlations. In this paper, we
show that label co-occurrences may be insufficient to represent label cor-
relations, and modeling label correlations relies on latent context infor-
mation. To this end, we propose a latent context embedding information
network for multi-label image recognition. Our proposal is straightfor-
ward and contains three key modules to correspondingly tackle three
questions, i.e., where to locate the latent context information, how to
utilize the latent context information, and how to model label correla-
tions with context-aware features. First, the multi-level context feature
fusion module fuses the multi-level feature pyramids to obtain sufficient
latent context information. Second, the latent context information em-
bedding module aggregates the latent context information into categor-
ical features, and thus the label correlation can be directly established.
Moreover, we use the label correlation capturing module to model label
correlations with full and partial manners, respectively. Comprehensive
experiments validate the correctness of our arguments and the effec-
tiveness of our method. In both generic multi-label classification and
partial-label multi-label classification, our proposed method consistently
achieves promising results.

Keywords: Multi-label · Label correlation · Latent context information

1 Introduction

Multi-label image recognition is a fundamental and practical problem in com-
puter vision, as real-world images generally contain rich and diverse semantic
objects. In the literature, conventional multi-label image classification methods
mainly take the label co-occurrence as the label correlation, and then utilize the
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Fig. 1: Illustration of our motivation. A solid arrow indicates a direct correlation be-
tween the two labels, while the dashed arrow indicates an indirect correlation. The
conventional methods usually consider the label co-occurrence as label correlation.
However, we argue that the label correlations depend on latent context information.

graph structures [8, 9, 37] or attention mechanism [27, 48] to capture the label
correlation. Recently, some researchers [25, 26] found that the contextual bias
may impact the performance, since the modeling of label correlations depends
on the co-occurrence context. And then utilizing the causal theory to alleviate
the influence of contextual bias.

Although those previous methods achieve the considerable improvements,
however, we argue that the label co-occurrence may be insufficient to represent
label correlations. And the label correlations can be constructed through reason-
able use of the latent context information, even the latent context information
may have contextual bias. For instance, we count the co-occurrence frequencies
of labels in the MS-COCO [24] dataset, and then select images with the high-
est label co-occurrence frequencies, as shown in Fig. 1. The labels of “Person”
and “Surfboard ” frequently appear together. “Person” and “Sports Ball ” also
frequently appear together. Conventional methods consider such labels have a
direct correlation, and directly model the correlation between labels. However,
multi-label images could be human-centered, and the label “Person” could fre-
quently co-occur with other labels. Inferring other labels with “Person” cannot
lead to accurate results due to the high co-occurrence frequency. Therefore, we
conjecture that direct correlations may not always exist between the labels with-
out context, and directly learning label co-occurrence is an inferior solution in
such cases. Based on the above analysis, we propose that the correlation be-
tween labels depends on the latent context information. Here, the latent context
information exists in various formats, e.g ., the background, scene, pose and so
on. For example, as shown in Fig. 1, “Person” and “Surfboard ” are related be-
cause they are both on the “Sea” (background). “Person”, “Tennis Racket”, and
“Sports Ball ” are correlated since they appear near the “Tennis Court” (scene).

In this paper, differing from the traditional label correlation assumption, we
propose a novel latent context information embedding framework for multi-label
image recognition. Our framework contains three modules, i.e., the multi-level
context feature fusion module, the latent context information embedding mod-
ule, and the label correlation capturing module. Firstly, it is difficult to define
the specific context information, since we assume that latent context informa-
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Fig. 2: Illustration of embedding the latent context information to obtain direct label
correlations. A solid arrow indicates a direct correlation between the two labels, while
the dashed arrow indicates an indirect correlation.

tion appears in various forms (e.g ., scene, background, pose, texture, and color).
These high-level and low-level latent context information are contained in differ-
ent levels of features [46], and all kinds of context information may influence the
label correlation modeling. Therefore, to obtain sufficient latent context infor-
mation, we design a multi-level context feature fusion module, which fuses the
features from different network levels to extract the context information from
low-level to high-level.

Then, we design a latent context information embedding module based on
the multi-head cross-attention mechanism [39]. It can embed the latent context
information into label features to bring the potential for directly modeling label
correlations from an input image. For instance, as shown in Fig. 2, assume that
there was no direct correlation between “Person” and “Surfboard ”, but after
embedding the context information “Sea”, a direct correlation rises between the
two labels. Finally, the label correlation capturing module is designed to capture
the label directly correlation in full label and partial label manners. Qualitative
and quantitative results prove our arguments and evaluate the effectiveness of
our method.

2 Related Work

2.1 Multi-Label Image Recognition

A straightforward way for multi-label image recognition is to utilize the indepen-
dent binary classifiers for each label. Thanks to the great success of CNNs [19,33,
36] in recent years, the performance of the binarization solutions has been signifi-
cantly advanced [17,23,42]. Although these methods have achieved improvement,
they still suffer from optimization difficulties because of the tremendous opti-
mization space. As the number of categories increases, the combinations of labels
show exponential growth.

To overcome the above shortcomings, researchers focused on exploiting the
label correlation to facilitate the learning process [3,4,8,9,18,20,31,32,37,38,41,
44, 48]. For instance, Chen et al . [8, 9] employed Graph Convolutional Network
(GCN) to propagate the information from each category to capture label de-
pendencies. Chen et al . [37] proposed a Semantic-Specific Graph Representation
Learning (SSGRL) framework utilized the RNN to correlate semantic-specific
representations by building the graph model. Zhao et al . [47] built a structural
relation graph and a semantic relation graph. Both graphs try to obtain context
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information from other co-occurrence labels. The above methods rely on graph
structures, while some other works directly use class-aware features to model
correlations. For example, Chen et al . [6] utilized metric learning for pulling
correlated label vectors together and pushing uncorrelated label vectors away.
Jack et al . [21] employed a Transformer encoder to embed the correlations into
label embeddings. CCD [26] and IDA [25] focused on utilizing the causal theory
to alleviate the influence of contextual bias. For example, CCD [26] only con-
sidered object representations to predictions. Thus, the context was defined as
the prior context knowledge, and the authors used the causal theory to avoid
the influence of this context, and made the image-specific context and object
representations to directly affect the predictions. So they built context from the
entire dataset, and then removed the prior context knowledge information by
backdoor adjustment.

The previous methods assume a direct correlation between labels. However,
we argue that there is no guarantee of such direct correlation between labels
without latent context information. In this paper, we embed the latent con-
text information into label embeddings containing direct correlations, and then
use Transformer to build label correlations. Extensive experiments show that
our method achieves competitive results with previous state-of-the-art methods.
While previous methods may indirectly leverage the latent context information,
we explicitly present this viewpoint and designs corresponding network struc-
tures to address it. And we further study the effects of context by proposing a
novel multi-label image classification method.

2.2 Transformer in Computer Vision

In recent years, the Transformer [39] model has contributed to great success in
Natural Language Processing (NLP) field due to the ability to capture long-
range dependencies [1, 12, 28]. Inspired by the great success of the Transformer
in the natural language processing field, several works attempted to migrate
the Transformer to Computer Vision field. And recent works have verified the
effectiveness of the Transformer in various computer vision tasks, e.g ., the image
recognition [13, 29], object detection [2], and video processing [22, 45]. In this
paper, we explore how to utilize the Transformer’s outstanding ability to capture
long-distance correlations to embed latent context information and build label
correlations.

3 Approach

3.1 Motivation

In the literature [6–8, 37, 48], it has been verified that the critical challenge of
the multi-label image recognition task is to capture label correlations. Previous
methods were all based on the same assumption that the label co-occurrence
can be assumed as the label correlation, and directly utilized various neural net-
works (e.g ., CNN and GCN) to capture the label correlations, which is intuitive
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Fig. 3: Overview of the proposed method. Left: Our motivation. Right: Detailed
framework of our method. Specifically, the latent context information embedding mod-
ule will embed the latent context information into label features to bring the potential
for directly modeling label correlations from an input image. And then, label correla-
tion capturing module will model the correlations.

but suboptimal. We argue that there may be an indirect correlation between
labels, and that establishing label correlation depends on latent context infor-
mation. For instance, there is no direct correlation between the labels of “Person”
and “Surfboards” without considering the context information “Sea” or “Beach”.
The labels “Person” and “Surfboards” often jointly appear. It is attributed to
that both labels are correlated to the context information about scenes (i.e.,
“Sea”). Motivated by this, we attempt to embed the latent context information
into deep features to obtain the context-aware categorical features. Categori-
cal features (embedded with context information) may bring the potential for
directly modeling label correlations, as shown in the Fig. 2.

3.2 Where to Locate the Latent Context Information?

It is difficult to explicitly define the specific context information, since we as-
sume that latent context information appears in various forms (e.g ., scene, back-
ground, pose, texture, and color). Features of different layers contain different
levels of context information [46], i.e., the high-resolution features have low-level
appearance information (e.g ., texture, and color), and the low-resolution maps
have the opposite (e.g ., scene, background and pose), which can provide com-
plementary information and help improve the performance. Thus, we fuse these
multi-level features to obtain sufficient contextual information.

As shown in Fig. 3, for ResNet [19] we denote the output of three last residual
blocks as {X3,X4,X5} for “conv3”, “conv4” and “conv5” outputs, and note that
they have strides of {8, 16, 32} pixels with respect to the input image. We do
not include “conv1” and “conv2” due to the computing resource limitation. Then,
we utilize bilinear interpolation to down-sample X3 and X4 to the same size as
X5 to reduce computation. After aligning the resolutions of these features, we
utilize the concatenation operation to fuse these pyramid features to obtain the
multi-level features Xml:

Xml = [fds(X3) : fds(X4) : X5] , (1)
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where fds(·) is the down-sample operation.

3.3 How to Embed the Context Information?

To embed the latent context information into categorical features, we develop
our model based on the design principle of Transformer decoder blocks. The
standard Transformer decoder contains three modules, i.e., a self-attention mod-
ule, a cross-attention module, and a feed-forward network (FFN). However, our
proposed Latent Context Information Embedding module does not involve a
self-attention module, since this module would capture label correlations from
labels without direct correlations. Therefore, we use learnable label embeddings
as queries and perform cross-attention module and FFN to obtain the context-
aware categorical features. Thanks to the cross-attention mechanism of Trans-
former decoder, it can adaptively embed the latent context information into the
context-aware categorical features from the global multi-level features, among
which direct label correlations exist.

Formally, let Leb ∈ RC×D denote the learnable label embeddings, where C is
the number of categories, D means the dimensionality of the label embeddings,
which is equal to the channels of the multi-level feature Xml. Then, the context-
aware categorical features can be obtained as follows:

Lca = flcie(X
ml,Leb) ∈ RC×D , (2)

where flcie(·) is the latent context information embedding module containing a
cross-attention module and FFN. Since Lca is derived from label embedding Leb

through query multi-level feature Xml, so this feature contains both category
information and latent contextual information. Therefore, Lca can represent the
context-aware categorical features. Lastly, we can obtain the prediction confi-
dence of the context-aware categorical features ŷca:

ŷca = ffc(L
ca) ∈ RC , (3)

where ffc(·) denotes a fully-connected layer.
Although the context-aware categorical features directly contain the label

correlations due to the latent context information, it has no spatial information.
Therefore, we disentangle the class-aware features Lsp from the multi-level fea-
tures Xml to enrich the spatial information (see Fig. 3). Inspired by WildCat [15],
we first simply apply a 1 × 1 convolution layer on the multi-level features Xml

to obtain the class-aware features:

Lsp = fconv(Xml) ∈ RC×H×W , (4)

where H and W represent the spatial dimensions (height and width), fconv(·)
denotes the 1× 1 convolution layer. Similarly, we can also obtain the prediction
confidence of the class-aware features ŷsp:

ŷsp = fgmp(L
sp) ∈ RC , (5)
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where fgmp(·) indicates global max pooling.
Lastly, we leverage the concatenation operation to fuse the context-aware

categorical features Lca and the class-aware features Lsp to obtain the fusion
features L:

L = [Lca : fflatten(L
sp)] ∈ RC×(D+HW ) , (6)

where fflatten(·) is the flatten operation, which can flatten the class-aware features
Lsp into a single vector fflatten(L

sp) ∈ RC×HW .

3.4 How to Model Correlations with Context-Aware Features?

Modelling Label Correlations with Full Labels: In the literature, captur-
ing label correlations has effectively improved the performance of multi-label im-
age recognition [8, 20, 37]. Nonetheless, the previous methods directly exploited
the class-aware features to model the label correlations, among which direct
correlations may not exist. To solve the above problem, we utilize the fusion
features, which directly contain label correlations by embedding latent context
information, instead of the class-aware features, to build the label correlations.

Without bells and whistles, we employ a standard Transformer encoder to
capture the label correlations. Specifically, as illustrated in Fig. 3, the Trans-
former encoder is first applied to fusion features to establish the label correla-
tions, the operation can be written as

Lco = fencoder(L) ∈ RC×(D+HW ) , (7)

where Lco denotes the label correlation features. After capturing the label corre-
lation, we employ a fully-connected layer to project the label correlation features
Lco to the prediction confidence ŷco:

ŷco = ffc(L
co) ∈ RC . (8)

Modelling Label Correlations with Partial Labels: To further capture
the label correlations, we utilize partial labels to infer the full label correlations.
As shown in Fig. 3, similar to capturing label correlations with full labels, we
employ a Transformer encoder to establish the label correlations with partial
labels in a popular “Masked Modeling” manner [12]. It is worth noting that we
share the parameters of the Transformer encoder with Sec. 3.4.

There are two advantages of sharing the Transformer encoder. Firstly, sharing
the Transformer encoder can reduce the parameters of our method. Secondly, we
find the shared Transformer encoder benefits from both full and partial labels.
In other words, modeling both types of correlations complements each other and
further improves performance (demonstrated later by experiments, cf. Table 3).

Specifically, let m denotes mask ratio and Linfer ∈ R1×(D+HW ) denotes the
inference token. First, we randomly mask the fusion features L based on mask
ratio m and ignore these masked features during the training process to obtain
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the masked fusion features Lmask ∈ RN×(D+HW ), where N represents the num-
ber of remaining unmasked features. Then, we concatenate the inference token
Linfer and masked fusion feature Lmask, and employ the Transformer encoder to
model the masked label correlation. The process can be formulated as:

Linf = fselect(fencoder([L
infer : Lmask])) , (9)

where Linf denote the inference token processed by the Transformer encoder.
fselect(·) means that selecting Linf from all inputs.

Lastly, we apply the full-connected layer to project Linf to the predicted
inference confidence ŷinfer:

ŷinfer = ffc(L
inf) ∈ RC . (10)

Note that the parameters of this fully-connected layer do not share with the
co-occurrence correlations method, since Linf and Lco are in different feature
spaces.

3.5 Loss Function

We aggregate the ŷca, ŷsp and ŷco to obtain the final label confidence:

ŷ = ŷca + ŷsp + ŷco , (11)

where ŷ denotes the final label confidence. One advantage of linearly aggregating
predictions is that, the multi-label image recognition loss (binary cross entropy
loss) could be directly applied to the context-aware categorical features and the
class-aware feature maps. It has great benefits for embedding latent context
information and disentangling categorical features.

The training process of the entire network is end-to-end, we assume the
ground truth label of an image is y, and the multi-label image recognition loss
can be written as:

Lcls = −
C∑

c=1

yc log(σ(ŷc)) + (1− yc) log(1− σ(ŷc)) , (12)

where σ(·) is the sigmoid function.
We only use ŷ as the final prediction and apply the multi-label loss to ŷinfer

as an auxiliary learning target. One reason is that using ŷinfer is equivalent
to using partial labels for training, which will introduce noise to the predictions
and drop the performance. Finally, capturing label correlation with partial labels
can advance the fusion features and the Transformer encoder during training,
complementing to full labels and further boosting the performance. The overall
loss is computed as follows:

L = α× Lcls + β × Linfer , (13)

where Linfer is the loss calculated by ŷinfer. α and β are the hyperparameters set
to 1.0 and 0.1, respectively.
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4 Experiments

4.1 Generic Multi-Label Image Recognition

Evaluation Metrics. We strictly follow evaluation metrics in previous works [34,
40, 48] to compare with other existing methods. We compute the mean average
precision (mAP) overall categories for accuracy evaluation. For more compre-
hensive comparisons, we compute the average per-class precision (CP), recall
(CR), F1 (CF1) and the average overall precision (OP), recall (OR), F1 (OF1).
Besides, we also report the results of top-3 labels with the highest scores for
further comparing with existing state-of-the-art methods.

Table 1: Comparisons with state-of-the-art methods on the MS-COCO dataset. * de-
notes that we re-implement the results using the input image with 448×448 resolutions
for fair comparisons.

Methods Resolution All Top-3
mAP CF1 OF1 CF1 OF1

ResNet-101* [19] 448×448 79.1 74.1 77.9 70.9 74.7
SSGRL* [37] 448×448 81.9 76.6 78.6 73.5 75.2

DER [6] 448×448 82.8 77.6 80.0 74.1 76.4
ADD-GCN* [20] 448×448 82.8 77.7 80.0 74.3 76.4

ML-GCN [8] 448×448 83.0 78.0 80.3 74.6 76.7
C-Tran* [21] 448×448 83.1 77.7 79.6 74.5 76.1
P-GCN [9] 448×448 83.2 78.3 80.5 74.8 76.7
MCAR [16] 448×448 83.8 78.0 80.3 75.1 76.7

MS-CMA [32] 448×448 83.8 78.4 81.0 74.9 77.1
CCD [26] 448×448 84.0 77.3 81.1 72.9 77.2
SST [7] 448×448 84.2 78.5 80.8 74.8 76.9

TDRG [47] 448×448 84.6 79.0 81.2 75.0 77.2
IDA [25] 448×448 84.8 78.7 80.9 73.6 77.4
Q2L [27] 448×448 84.9 79.3 81.5 73.3 75.4

Ours 448×448 86.8 80.2 82.3 76.1 78.0
SSGRL [37] 576 × 576 83.8 76.8 79.7 72.7 76.2
C-Tran [21] 576 × 576 85.1 79.9 81.7 76.0 77.6
CCD [26] 576 × 576 85.3 80.2 82.1 76.0 77.9

TDRG [47] 576 × 576 86.0 80.4 82.4 76.2 78.1
SST [7] 576 × 576 85.8 80.2 82.2 76.0 77.9
IDA [25] 576 × 576 86.3 80.4 82.5 76.4 78.2
Q2L [27] 576 × 576 86.5 81.0 82.8 76.5 78.3

Ours 576 × 576 87.9 81.3 83.0 76.9 78.6

Implementation Details. We use random horizontal flips for data augmen-
tation. Following [8, 37, 48], ResNet-101 [19] is selected as the backbone of our
proposed model, which is pre-trained on ImageNet [11] for model parameter
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Table 2: Comparisons with state-of-the-art methods on the NUS-WIDE dataset. *
means that we re-implement the results in our experiment environment.

Methods All Top-3
mAP CF1 OF1 CF1 OF1

CNN-RNN [40] – – – 34.7 55.2
ResNet-101* [19] 59.7 57.5 72.7 53.9 68.4

CMA [32] 60.8 60.4 73.7 55.5 70.0
MS-CMA [32] 61.4 60.5 73.8 55.7 69.5

SRN [48] 62.0 58.5 73.4 48.9 62.2
P-GCN [9] 62.8 60.4 73.4 57.0 69.1
Q2L [27] 65.0 63.1 75.0 – –
CCD [26] 65.1 61.3 75.0 – –

Ours 67.1 63.4 75.6 58.6 71.2

Table 3: Impacts of different modules on the MS-COCO dataset. “MLFF” and “LCIE”
mean the Multi-Level Feature Fusion module and the latent Context Information Em-
bedding module, respectively. “Spatial” denotes that we utilize the spatial feature. “Full”
and “Partial” denote capturing the full label and partial label correlations, respectively.
“◦” means that “Full” and “Partial” do not share parameters.

MLFF LCIE Spatial Full Partial All Top-3
mAP CF1 OF1 CF1 OF1
79.1 74.1 77.9 70.9 74.7

✓ 80.9 75.3 78.8 71.8 75.5
✓ ✓ 83.2 77.6 80.4 74.0 76.9
✓ ✓ ✓ 84.0 78.6 81.0 74.7 77.2
✓ ✓ ✓ 82.7 76.5 80.4 73.0 76.9
✓ ✓ ✓ ✓ 84.7 79.2 81.4 75.3 77.6
✓ ✓ ✓ ✓ ◦ 85.2 79.9 81.4 75.8 77.5
✓ ✓ ✓ ✓ ✓ 86.8 80.2 82.3 76.1 78.0

initialization. Traditional stochastic gradient descent (SGD) with a momentum
of 0.9 is selected as the model optimizer, and the weight decay is set to 10−4.
The initial learning rate is 0.01 decaying by 0.1 every 30 epochs, and we train
our model for 100 epochs in total. The batch size of each GPU is 16. We use 4
attention heads and 3 layers Transformer decoder and encoder to learn context-
aware categorical features and capture the label correlations, respectively. All
probabilities of dropout [35] are set to 0.1. The mask ratio is set to 10%, and we
utilize the bilinear interpolation to resize the features.

Datasets. We evaluate our proposed method in two popular benchmark multi-
label datasets: MS-COCO 2014 [24] and NUS-WIDE [10].

MS-COCO 2014 Dataset: The MS-COCO 2014 Dataset [24] was originally
constructed for object detection and segmentation, but it is also widely used in
multi-label image recognition tasks because of the high-quality annotation. This
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dataset contains 122,218 images divided into 82,081 images as the training set
and 40,504 images as the validation set. It covers 80 common categories with
about 2.9 object labels per image.

NUS-WIDE Dataset: The NUS-WIDE Dataset [10], which is a Real-World
Web Image Dataset collected from the web Flickr, is another popular benchmark
dataset for multi-label image recognition. It has 269,648 images and 81 concepts,
with an average of 2.4 concept labels per image. This dataset is divided into two
parts: a training set of 161,789 images and a test set of 107,859 images. Since
image labels are collected based on the associated tags of images, these labels
contain a lot of noise information, causing NUS-WIDE more challenging.

Quantitative Results. In thid part, we report the quantitative results in MS-
COCO 2014 dataset and NUS-WIDE dataset.

Performance on the MS-COCO 2014 Dataset: Quantitative results
with different input resolutions on MS-COCO are reported in Table 1. Note
that SSGRL, ADD-GCN and C-Tran utilize the input image with resolutions
of 576 × 576, for a fair comparison, we re-implement these methods using an
input image with 448 × 448 resolutions, and denote them as SSGRL*, ADD-
GCN* and C-Tran*. It is obvious to see that our method outperforms previous
methods on most metrics. Specifically, our proposed method obtains a +2.2%
mAP improvement over the TDRG based on 448 × 448 resolutions. It is worth
mentioning that Q2L also utilizes the Transformer to capture the label corre-
lation, however, our method outperforms it by 1.9% and 1.4% mAP using the
same input size respectively. This result further supports our motivation, i.e.,
we should firstly embed context information into features and secondly model
correlations based on context-aware deep features.

Performance on the NUS-WIDE Dataset: The results for NUS-WIDE
are presented in Table 2. Similar to the MS-COCO dataset, our proposed method
performs better than previous ones on most metrics. Specifically, we obtain 67.1%
mAP, 63.4% CF1 and 75.6% OF1, which outperforms another state-of-the-art
CCD [26] by 2.0%, 2.1% and 0.6%, respectively. As mentioned in Section 4.1,
the annotations of the NUS-WIDE dataset are collected from the tags of images,
since these labels contain a lot of noise information. These results show that our
method is robust under noisy labels.

Ablation Studies. Unless otherwise specified, the following experiments use
ResNet-101 as the backbone and evaluations are based on the MS-COCO dataset.

The Effect of Different Modules: We investigate the impacts of key
modules in our framework. Specifically, there are two essential modules: (1) The
multi-level feature fusion module (denoted as “MLFF”) utilizes the feature pyra-
mids to enrich the latent context information, in Section 3.2. (2) The latent con-
text information embedding module (denoted as “LCIE”) is employed to obtain
the context-aware categorical features, which directly contain label correlations
in Section 3.3. Besides, we also integrate (3) the spatial features and the context-
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Table 4: Impacts of different backbones. Noting that the backbones noted with 21K
are pretrained on the ImageNet-21K dataset.

Backbone Ours All Top-3
mAP CF1 OF1 CF1 OF1

ResNet-101(21K) 84.8 78.8 81.2 74.7 77.4
✓ 87.8 81.5 83.1 77.3 78.8

Swin-L (21K) 89.0 81.6 82.0 78.9 80.1
✓ 90.9 83.7 84.5 79.8 80.8

CvT-w24 (21K) 89.6 81.9 82.4 79.0 80.2
✓ 91.4 84.2 85.0 80.2 80.9

aware categorical features to model (4) full label correlations (denoted as “Full”)
and (5) partial label correlations (denoted as “Partial”).

Table 3 shows the performance by progressively integrating the above five
modules. Solely applying MLFF on the backbone gives a 1.8% mAP improve-
ment. This result verifies that the low-level information is complementary to the
high-level information since it can enrich the latent context information. Then,
the context-aware categorical features, which can be directly utilized to predict
the final result, bring another 2.3% mAP. This result suggests that the latent
context information can make labels have a direct correlation and effectively
improve accuracy. Subsequently, leveraging the Transformer encoder to capture
the correlations with full labels improves by 0.8%. Due to a lack of spatial in-
formation, we attempt to fuse the spatial features into categorical features and
obtain 84.7% mAP. It is worth noting that we also directly utilize the spatial
features to model the co-occurrence (fifth row of Table 3), and it only achieves
82.7% mAP. This result verifies our motivation, i.e., there may not be had a
direct correlation between these labels. Finally, capturing the label correlation
with the partial label can achieve 86.8% mAP. Besides, we also find that shar-
ing the parameters of “Full” and “Partial” can further improve the performance,
suggesting that both types of correlations are complementary.

The Effect of Large-Scale Backbones and Pretrained Model: To
explore the impact of large-scale backbones and pretrained model, we conduct
experiments using ResNet-101 (21K), Swin-L (21K) [29] and CvT-w24 (21K) [43]
as backbone, respectively. Noting that the backbones noted with 21K are pre-
trained on the ImageNet-21K dataset. The results are shown in Table 4, which
reveal that even with stronger backbone and pretrain models, our proposed
method can still improve performance. For example, our method with Swin-L
(21K) can achieve 90.9 mAP, which outperforms the baseline by 1.9% mAP.
This result shows that our method can be generalized to stronger backbone and
pre-trained models.

Visualization and Analyses. In this section, we visualize the learned context-
aware categorical features to show if these features contain direct correlations.
In Fig. 4, we randomly sample 500 images from the MS-COCO val dataset, and
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(b) t-SNE on the class-aware features by
the vanilla ResNet.

Fig. 4: Visualization of the context-aware categorical features by our model and the
class-aware features of the vanilla ResNet on MS-COCO val.

Table 5: The mAP results for the partial-label problem on MS-COCO. n% denotes
the percentage of discarded labels.

Method 10% 20% 30% 40% 50% 60% 70% 80% 90%
BCE [14] 78.5 78.4 78.2 77.7 77.2 76.3 74.1 70.5 61.6
SST [5] 79.9 79.6 79.2 78.9 78.1 77.3 75.9 73.5 68.1

P-GCN [9] 81.6 80.7 79.7 78.6 77.9 76.3 74.4 72.3 68.3
Baseline 76.8 75.5 74.0 72.7 69.3 68.1 64.8 63.5 56.6

Ours 83.5
(+6.7)

82.8
(+7.3)

81.9
(+7.9)

81.2
(+8.5)

80.4
(+11.1)

78.7
(+10.6)

77.3
(+12.5)

75.7
(+12.2)

72.0
(+15.4)

apply our method to obtain context-aware categorical features. Then, we adopt
the t-SNE [30] to visualize the context-aware categorical features associated with
the ground-truth label. Besides, we also visualize the class-aware features of
vanilla ResNet for comparison. After embedding the latent context information
with our method, the context-aware categorical features maintain meaningful
semantic topology, i.e., the context-aware categorical features that contain a
direct correlation exhibit cluster patterns. As shown in Fig. 4 (a), (1) in the
red circle, “Person”, “Skis” and “Snowboard ” tend to be close because they are
both related to the “Snow ” (context). (2) In the green circle, “Person”, “Tennis
Racket” and “Sports Ball ” tend to be close since they appear near the “Tennis
Court” (context). On the contrary, no meaningful topology could be observed
from class-aware features learned by vanilla ResNet. The visualizations further
verify that labels do not contain a direct correlation, and establishing label
correlation depends on latent context information. However, we also observe
some negative cases. For instance, “Person”, “Toilet”, “Sink ” in the blue circle
clustered together, and we conjecture that these labels appear in “Shower Room”.
However, “TVs” are rarely observed in shower rooms, and a possible reason is
that the contextual bias might be contained in the multi-level features [26].
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4.2 Partial-label Multi-label Classification

Experimental Settings. The purpose of partial labeling is to train a model
on partially labeled data and then test it on all labeled data. However, current
popular multi-label image recognition datasets are fully labeled. Therefore, by
following [5, 9, 14], based on the MS-COCO dataset, we construct a partially
labeled dataset by randomly discarding some labels on the whole training set.
The proportion of discarded labels is between 10% and 90%. If all the labels of an
image are completely discarded, we ignore this image. As with the generic multi-
label image recognition on the MS-COCO dataset, we evaluate the performance
on the validation set with full annotations. We leverage vanilla ResNet-101 [19]
as our baseline, and utilize mAP as the evaluation metric. The other settings
are the same as those for generic multi-label image recognition in Sec. 4.1.

Quantitative Results. Quantitative results of partial-label multi-label clas-
sification are reported in Table 5. As reflected, the mAPs of state-of-the-arts
and our method decrease as the proportion of the discarded labels increases.
However, under each proportion, our method obviously outperforms the previ-
ous methods, which demonstrates the effectiveness of our method in the partial
label scenario. Besides, compared with the baseline method, we observe that as
the proportion becomes larger, the improvement of our method is more signifi-
cant. Concretely, our method outperforms the baseline method by +6.7% when
the proportion is equal to 10%, while when the proportion is equal to 90%,
our approach still can achieve 72.0% mAP, which outperforms the baseline by
+15.4%. This observation can further verify the practicality and stability of the
proposed method for multi-label image recognition in real-world applications.

5 Conclusions

In this work, we demonstrate that label co-occurrence may be insufficient to
represent label correlations, and propose a novel latent context information em-
bedding framework for multi-label image recognition. Our framework mainly
contains three modules, i.e., the multi-level context feature fusion module, latent
context information embedding module and label correlation capturing module.
Firstly, the multi-level context feature fusion module is for obtaining sufficient la-
tent context information. Then, the latent context information embedding mod-
ule embeds context information into features to obtain the context-aware cate-
gorical features. Finally, the label correlation capturing module utilizes context-
aware categorical features to establish label correlations. Both quantitative and
qualitative results validate the effectiveness of our method. However, we also ob-
serve that our method may suffer from contextual bias. Therefore, we will focus
on alleviating contextual bias in the future.
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