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Fig. 1: Temporally-consistent dynamic meshes (i.e., vertices are corresponded and con-
nections are identical over time) reconstructed by our DynoSurf from continuous dy-
namic 3D point cloud sequences without using any shape-prior, ground-truth surface,
and ground-truth temporal correspondence. The color and texture map are used to
illustrate correspondence across reconstructed mesh frames.

Abstract. This paper explores the problem of reconstructing tempo-
rally consistent surfaces from a 3D point cloud sequence without corre-
spondence. To address this challenging task, we propose DynoSurf, an un-
supervised learning framework integrating a template surface represen-
tation with a learnable deformation field. Specifically, we design a coarse-
to-fine strategy for learning the template surface based on the deformable
tetrahedron representation. Furthermore, we propose a learnable defor-
mation representation based on the learnable control points and blend-
ing weights, which can deform the template surface non-rigidly while
maintaining the consistency of the local shape. Experimental results
demonstrate the significant superiority of DynoSurf over current state-
of-the-art approaches, showcasing its potential as a powerful tool for
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dynamic mesh reconstruction. The code is publicly available at https:
//github.com/yaoyx689/DynoSurf.

Keywords: Dynamic Surface Reconstruction · Temporally Consistent
Meshes · Low-Dimensional Deformation · Point Cloud Sequences

1 Introduction

The reconstruction of temporally consistent geometric surfaces from a continuous
dynamic 3D point cloud sequence without correspondences presents a valuable
yet formidable challenge. These geometric surfaces play a crucial role in diverse
domains, including film, gaming, animation, virtual reality (VR), augmented
reality (AR), and robotics. They facilitate various applications such as motion
object editing, texture transfer, and shape analysis, thereby contributing to the
creation of realistic visual effects and immersive experiences.

With the development of the static surface reconstruction for a single object
from a point cloud [15, 18, 40, 45], a natural idea to model the temporally con-
sistent dynamic surfaces is to select a keyframe from the point cloud sequences
and reconstruct it as a template surface through static reconstruction technol-
ogy. Then the non-rigid deformation for the template surface is estimated by
aligning it with other frames. High requirements are placed on the selection of
the keyframe point cloud with fewer missing parts or occlusions and a similar
shape to other frames. Some optimization-based dynamic reconstruction frame-
works [10,34,47] continuously update the template shape during frame-by-frame
non-rigid tracking. These approaches are effective and pragmatic, but most of
them use depth as input and cannot handle the sparse point clouds without any
camera information. Some learning-based method [23, 36, 49] no longer define
or pre-establish the template shape, but jointly learn dynamic reconstruction.
This way may achieve better results but increases the difficulty of decoupling
the deformation field and the template space, which makes deformation have
less practical significance. Moreover, these methods use ground truth to super-
vise training, have poor generalization, and can usually only process sequences
of fixed length. To address these problems, we first design an adaptive keyframe
selection strategy and learn the template surface representation, then combine
it with a deformation field to form a dynamic reconstruction framework.

Furthermore, the design of the deformation field is particularly important.
Optimization-based methods [24,25,54] often employ the embedded deformation
graph [48] for non-rigid deformation, but they depend on the spatial position and
mesh quality of the template surface. Some methods [39, 50, 59] directly use a
network to predict the deformation for each point, lacking explicit control of the
local structure. [6] proposes a neural deformation graph to reconstruct dynamic
objects. However, they have some restrictions on the location and connection re-
lationships of nodes, which necessitates the use of multiple loss functions. There-
fore, we propose a deformation field based on explicit learnable control points,
which improves the explicit controllability of the deformation field based on im-
plicit representation. We also learn the blending weights between the points on
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the template surface and the control points. This allows us to adaptively learn
the deformation consistency of surface points based on motion information.

In this paper, we aim to reconstruct a temporally consistent surface from
continuous dynamic 3D point cloud sequences with not-fixed length. We propose
a reconstruction framework combining a template surface representation and a
learnable deformation field based on the learnable control points and blending
weight. Extensive experiments on three benchmark datasets demonstrate that
our proposed temporally-consistent surface reconstruction outperforms the state-
of-the-art methods to a large extent.

To summarize, our contributions are as follows:

– We propose a new learning framework for reconstructing temporally-consistent
dynamic surfaces from continuous dynamic point cloud sequences that can be
trained without requiring any shape prior, ground-truth surface, and ground-
truth temporal correspondence information as supervision.

– We propose a coarse-to-fine learning strategy for unsupervised static surface
reconstruction based on the deformable tetrahedron representation.

– We propose a deformation representation based on learnable control points
and blending weights that can better maintain local structure while being
independent of object category.

2 Related Work

We briefly review the most relevant works, including 3D shape representation,
non-rigid shape deformation, and sequential shape reconstruction.
3D Shape Representation. Generally, 3D shape representation could be
divided into two main categories, explicit and implicit, and these can be trans-
formed into one another. The point cloud and triangle mesh are the two most
commonly utilized explicit representations for 3D shapes in various applica-
tions [13, 14, 28, 42, 57]. Implicit representation utilizes an isosurface of a field
to depict a surface. The Binary Occupancy Field (BOF) [5,19,32,41] and Signed
Distance Field (SDF) [21,29,38] are two prevalent implicit fields for representing
shapes, both dividing the entire space into two regions, inside and outside the
shape. The implicit fields could be approximated by a neural network, such as
DeepSDF [38], and SAL [1].

Given the shapes explicitly represented as point clouds or triangle meshes,
diverse methods exist for their conversion into implicit representations [19, 21,
22, 29, 36]. Conversely, when transforming implicit shapes into explicit forms,
Marching Cubes (MC) [31] and Marching Tetrahedrons (MT) [35] stand out as
the two widely used methods. Considering the detailed parts of shapes, DMTet
[45] and FlexiCubes [46] introduce offset for each tetrahedron or cube vertex,
allowing their methodologies to effectively manage detailed shape components.
Non-rigid Shape Deformation. Deforming non-rigid shapes presents a chal-
lenge due to the high degree of freedom involved in controlling the shape defor-
mation. To mitigate this, [24, 25] employ an embedded deformation graph [48]
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with local rigid properties for modeling deformation. During optimization, var-
ious geometric regularization terms, such as as-conformal-as-possible deforma-
tions [52] and as-rigid-as-possible deformations [53], are incorporated to impart
meaningful deformation. Recently, [54,55] have developed optimization methods
to accelerate the optimization process. With the advancement of deep learning in
3D vision, numerous learning-based deformation methods have been introduced.
CorrNet3D [58] designs a symmetric pipeline to compute deformations between
point clouds. RMA-Net [12] introduces a new deformation representation with
a point-wise combination of several rigid transformations. NDP [26] proposes a
non-rigid motion representation using a pyramid architecture.
Sequential Shape Reconstruction. Several 3D parametric models, such as
SMPL [30] and SMAL [60], have been developed to represent general shapes
within specific categories. These parametric models allow for straightforward
adjustments in pose and shape by modifying their respective parameters. Sub-
sequently, the combination of neural implicit functions and parametric models
enhances the expressive power for reconstruction [7, 16, 17, 37]. However, these
methods are constrained to handling sequences within specific categories, limit-
ing their broad applicability.

Recent studies [6, 34, 36, 49] have expanded the scope of reconstructing dy-
namic shapes by predicting deformation fields between different frames. Ap-
proaches like Dynamic Fusion [34] and NDG [6] establish a deformation graph
to capture the deformation fields. O-Flow [36] extends ONet [32] from 3D to 4D,
representing deformation fields with a Neural-ODE [8], while LPDC [49] em-
ploys MLPs to model correspondences in parallel. Both O-Flow and LPDC re-
construct the reference shape based on the initial frame, with subsequent frames
having their query points mapped to the chosen reference frame. In contrast,
I3DMM [56] learns a canonical reference shape for sequences of heads, while
CASPR [44] and Garment Nets [9] use ground truth canonical coordinates for
network training, which is often impractical. Cadex [23] employs canonical map
factorization to represent deformation without requiring correspondences dur-
ing training, but it may struggle with sequences featuring substantial motions.
Recently, FDN [2] proposes a new computational model that leverages fluid sim-
ulation priors to handle dynamic 3D scenes with topological changes.

3 Proposed Method

3.1 Problem Statement and Method Overview

Let {P1, ...,PK} be a continuous dynamic 3D point cloud sequence capturing the
geometric changes or motion of scenes/objects over time, where the correspon-
dence across frames is unknown and Pk ∈ RNk×3 is the k-th (k ∈ [1, K]) frame
containing Nk points. We aim to reconstruct from them a temporally-consistent
mesh sequence {M1, ...,Mk} where the k-th mesh surface Mk := {Vk,F} with
Vk and F being the vertex set and face set, respectively, the vertices across
meshes are corresponded, and all meshes share the same F.
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To address this challenging task, we propose an unsupervised learning frame-
work, named DynoSurf, which requires no ground-truth surface and correspon-
dence information as supervision. As illustrated in Fig. 2, DynoSurf mainly con-
sists of two stages: template surface construction (Sec. 3.2) and deformation-
based temporal reconstruction (Sec. 3.3). Generally, we first select a keyframe
from the input point clouds, denoted as Pk∗ , and reconstruct its surface based
on the deformable tetrahedron representation through a coarse-to-fine learning
process. Then, we deform the enhanced template surface to simultaneously align
with all point clouds by learning a control points blending-based deformation
field through jointly optimizing the template surface and deformation field. In
what follows, we will detail the framework.

Reconstruct 
Template surface

…

…

…

…

Input point clouds Template surface Reconstructed surface

Deformation

Temporal Reconstruction via Learnable Deformation Field

KeyFrame

Loss

Loss
Learning Template Surface

Forward Backward

Fig. 2: Illustration of the proposed DynoSurf, which can reconstruct from continuous
dynamic point cloud sequences temporally-consistent dynamic surfaces without requir-
ing any ground-truth surface and temporal correspondence information.

3.2 Template Surface Representation via Deformable Tetrahedron

In this stage, we aim to construct a template surface, i.e., a mesh fitting the se-
lected keyframe point cloud. As illustrated in Fig. 3, we initially select a keyframe
Pk∗ , and construct its convex hull as a triangle mesh, referred to as C. Subse-
quently, we process C to generate a tetrahedron mesh, denoted as T , where the
signed distance field (SDF) of the surface underlying Pk∗ is defined and learned
through a coarse-to-fine learning process. The SDF enables us to extract a mesh,
denoted as M := {V,F} with V being the vertex set.
Keyframe selection and tetrahedron mesh construction. Since we will
deform the reconstructed template surface from Pk∗ for temporal reconstruction,
intuitively, Pk∗ should be relatively average to facilitate the deformation pro-
cess. Thus, we determine k∗ = argmink∈[1,K]

∑
l CDℓ2(Pk,Pl), where CDℓ2(·, ·)

computes the ℓ2-norm-based Chamfer distance between two point clouds.
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Keyframe Convex hull Tetrahedron mesh Step 1 Step 2

Tetrahedron Mesh Construction Coarse-to-Fine Learning of Template Surface

Pk∗ C T

Fig. 3: Illustration of the pipeline of learning template surface via deformable tetra-
hedron.

We then adopt QuickHull [3] to construct the convex hull C of Pk∗ , which is
further dilated and re-meshed to obtain a uniform triangle mesh Ĉ surrounding
C. By tetrahedralizing Ĉ, we obtain a tetrahedron mesh T = {Q,T} with Q and
T being the vertex and tetrahedron sets, respectively. Note that the vertices of
Q are distributed both inside and outside of C due to the dilation and remeshing
operations.
Coarse-to-fine learning of deformable tetrahedron-based template sur-
face. We learn the deformable tetrahedron representation [45] to construct a
template surface M that approximates the point cloud Pk∗ .

[s(q), δ(q)] = FΦ(Γ (q)), (1)

where Γ (·) is the Position Encoding operator. Then, based on the deformed
tetrahedral grid points {q+δ(q)}q∈Q and SDF values {s(q)}q∈Q, we can employ
the differentiable marching tetrahedron algorithm [45], denoted as DMT(·, ·), to
extract M, i.e., M = DMT({q+ δ(q)}, {s(q)}).

To train FΦ(·) to encode the SDF of the surface M, we adopt the following
coarse-to-fine strategy to make the learning process easier and faster: (1) We
initialize FΦ(·) by learning the SDF of C, i.e.,

min
Φ

Linit1 =
∑
q∈Q

∥s(q)− SDF(q, C)∥2, (2)

where s(q) is the predicted SDF value of FΦ(·) and SDF(q, C) denotes the ground-
truth SDF value of convex hull surface C at q. (2) We then refine FΦ(·) by
constraining M and Pk∗ to be as close as possible, i.e.,

min
Φ

Linit2 = w̃1LCD + w̃2L
∗
Norm + w̃3LSDF, (3)

where LCD := CDℓ1(M,Pk∗) denotes the ℓ1-norm-based Chamfer distance be-
tween M and Pk∗ ; L∗

Norm := NCℓ1(M,Pk∗) measures the consistency of the
corresponding normals (see the Supplementary Material for details); LSDF is
employed to promote the accuracy of the learned SDF, defined as

LSDF =
1

|Q|
∑
q∈Q

|s(q)− SDFIMLS(q,Pk∗)|, (4)
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where SDFIMLS(q,Pk∗) is the SDF value at q approximated through implicit
moving least-squares [21] (refer to the Supplementary Material).
Remark. It is worth noting that the resulting template surface M will be
adaptively updated/enhanced during the following deformation stage to facilitate
the deformation stage, thus promoting the quality of reconstructed surfaces of
the remaining point cloud frames.

3.3 Temporal Reconstruction via Learnable Deformation Field

In this stage, as illustrated in Fig. 4, we propose a learnable deformation field
based on control points blending. This deformation field enables us to deform
the adaptively-enhanced template surface to achieve temporal reconstruction.
By employing this approach, we ensure the temporal consistency of the recon-
structed surface sequence.

Frame index

Point on surface Control points Concatenation operator

Template surface -th reconstructed surface

Fig. 4: Illustration of the proposed control points blending-based learnable deformation
stage for temporal reconstruction. Note that the adaptively enhanced template surface
will be deformed to all frames.

Control points blending-based learnable deformation field. We first
build a set of control point U := {u1, ...,u|U|}, which are obtained using the
farthest point sampling (FPS) algorithm [11] on the vertex set of the tetrahe-
dron mesh T (i.e., Q) such that the control points ur, r = 1, 2, . . . , |U| are
uniformly distributed in T . Note that the positions of initial control points are
also adaptively optimized during training to make the deformation more flexi-
ble. We associate each ur with a rotation matrix Rk

r ∈ SO(3) and a translation
tkr ∈ R3 for each frame Pk, k = 1, 2, . . . ,K. Then for each vertex of the template
surface v ∈ V, which is the vertex set of the surface M. The deformed vertex
at the k-th frame is represented as

vk =

|U|∑
r=1

ω(v,ur) · (Rk
rv + tkr ), (5)
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with the weight ω(v,ur) learned via

ω(v,ur) =
exp(FΩ([v||(v − ur)]))∑|U|
r=1 exp(FΩ([v||(v − ur)]))

, (6)

where FΩ(·) is an MLP parameterized with Ω, and [·||·] is the concatenation
operator. Before training, we pre-optimize Ω so that ω(v,ur) = ω̃(v,ur), where

ω̃(v,ur) =
exp(−∥v − ur∥2/2η2)∑|U|
r=1 exp(−∥v − ur∥2/2η2)

, (7)

The reconstructed surface of Pk can be obtained as Mk = {Vk,F} with Vk

being the collection of vk.
We also utilize an MLP FΞ(·) parametrized with Ξ to learn the deformation

transformations of all frames, i.e., [ξkr , tkr ] = FΞ(Γ ([ur||k])), where ξkr ∈ so(3)
is the Lie algebra format of Rk

r . Owing to the spectral bias property of neural
networks [43], the learned transformations would vary smoothly in both spatial
and temporal domains to ensure the spatial and temporal smoothness of the
constructed mesh sequence.
Learning of deformable field with enhanced template surface. Instead
of solely focusing on training the deformation stage, i.e., FΩ(·), FΞ(·) and U,
we jointly train the deformation stage and the template surface representation,
i.e., FΦ(·) has been warmed-up in the first stage. Specifically, at each iteration,
we extract the template surface using DMT(·, ·) and then deform it to all frames
for temporally consistent reconstruction. Through joint optimization, we aim to
enhance the adaptability of the template surface to the deformation process,
ultimately leading to improved temporal reconstruction quality. To achieve this
goal, we consider the following loss function:

min
Φ,Ω,Ξ,U

L = w1LR-CD + w2LNorm + w3LR-SDF + w4LSmo + w5LShape. (8)

Specifically, LR-CD stands for the proposed robust Chamfer distance to cope
with point clouds with holes and outliers, defined as LR-CD = 1

K

∑
k L

k
R-CD with

Lk
R-CD =

1

|Ṽk|

∑
vi∈Ṽk

ϕα(vi,pρi) · ∥vi − pρi∥
2 +

1

|Pk|
∑

pj∈Pk

ϕα(pj ,vτj ) · ∥pj − vτj∥
2,

(9)
where Ṽk is the set of points uniformly sampled from Mk, and ϕα(x, y) =
exp(−α · ∥x− y∥2). pρi and vτj are the closest points for vi and pj respectively.
The normal loss term LNorm =

∑
k NCℓ1(Ṽk,Pk)/K constrains the consistency of

normals. The proposed robust SDF loss term LR-SDF regularizes the orientation
of the deformed mesh, defined as

LR-SDF =
1

K · |Qs|
∑
q∈Qs

∑
k

ψ
k

β(q) · |fγ(s(q̂k))− fγ(SDFIMLS(q̂
k,Pk))|, (10)
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where q̂k is the deformed position of q according to Eq. (5); ψ
k

β(q) =
ψk

β(q)∑
k ψ

k
β(q)

with ψkβ(q) = exp(−β · |SDFIMLS(q̂
k,Pk)|2) is to measure the confidence of each

term. That is, when the deformed point q̂k has a smaller value in the SDF
approximated by the target point cloud, it is closer to the surface, and we assume
that it is more accurate; Qs is a subset randomly sampled from Q. fγ(x) =

1
1+exp(−γ·x) is used to scale the amplified SDF value to (0, 1) because we pay
more attention to whether the point q̂k is inside or outside the surface.

The loss term LSmo ensures the smoothness of the deformation, defined as

LSmo =
1

2K|E|
∑
k

∑
l∈I(k)

∑
(vi,vj)∈E

∥(vki − vli)− (vkj − vlj)∥2, (11)

where E is the edge set derived by face set F. I(k) = {k−1, k+1}. When k = 1 or
k = K, we only use one neighbor point cloud frame. Finally, it is crucial to ensure
that the enhanced template surface maintains a reasonable shape throughout the
joint optimization process. Thus, we constrain the deformation field at keyframe
as close to the identity transformation as possible with a loss term LShape:

LShape =
∑
ur∈U

∥[ξk
∗

r , tk
∗

r ]∥2, (12)

where [ξk
∗

r , tk
∗

r ] ∈ R6 denotes the rotation matrix represented by Lie algebra
format and translation vector of the keyframe.

4 Experiments

4.1 Experimental Settings

Implementation details. In our approach, we employed MLPs consisting of
5 linear layers with a feature dimension of 128 to implement FΦ(·), FΞ(·), and
FΩ(·). Training was conducted using the ADAM optimizer [20] with a learn-
ing rate of 1 × 10−4. The Supplementary Material provides more details. We
performed all experiments on a single NVIDIA A6000 GPU.
Datasets. We utilized three well-established benchmark datasets, namely DFA-
UST [4], DT4D [27], and AMA [51], for our evaluation. From motion sequences,
we selected 17 consecutive frames to form a set of input point clouds. Randomly
sampling 5000 points from the ground truth mesh, we ensured diversity in our
point cloud selection. Adopting the train and test data splits provided by [23],
we used 109 sets and 89 sets from the test data of the DFAUST dataset and
DT4D-animal dataset, respectively. The AMA dataset comprises 10 motion se-
quences; for supervised learning comparison methods, we employed 1176 sets
from 7 sequences as the train set and 32 sets of point clouds from the remain-
ing 3 sequences ("crane", "march1" and "samba") as the test set. To maintain
consistency across sequences, we normalized the diagonal length of the bounding
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(a) Input (b) LPDC [49] (c) Cadex [23] (d) Ours

0

0.06

Fig. 5: Comparison of visual results by different methods on the DFAUST dataset.

box in the first frame to 1 and centered it at the origin of the coordinates. Subse-
quent point clouds underwent transformations based on the scale and translation
of the first frame. We utilized the algorithm in pymeshlab [33] to estimate the
normals of the point cloud and adjusted the normal directions to face outward.

Table 1: Quantitative comparisons of different methods on three datasets.

Dataset Method CD (×10−4) ↓ NC ↑ F-0.5% ↑ F-1% ↑ Corr. (×10−2) ↓

DFAUST [4]
LPDC [49] 2.430 0.929 0.299 0.633 1.46
Cadex [23] 1.062 0.941 0.519 0.823 1.28

Ours 0.688 0.953 0.894 0.985 1.02

DT4D [27] Cadex [23] 22.377 0.868 0.269 0.532 4.99
Ours 1.036 0.933 0.582 0.870 3.23

AMA [51]
LPDC [49] 108.822 0.666 0.045 0.101 14.1
Cadex [23] 71.041 0.663 0.052 0.119 13.6

Ours 0.320 0.918 0.683 0.943 4.44

Methods under comparison. We conducted a comparative analysis involv-
ing our proposed method and two cutting-edge techniques specialized in dynamic
surface reconstruction from sequences of point clouds: LPDC [49] and Cadex [23].
Note that both Cadex and LPDC necessitate ground-truth occupancy values and
ground-truth correspondences for supervision during training. For Cadex, we
employed the officially released pre-trained model provided by the authors for
testing on DFAUST and DT4D datasets. As for LPDC, the authors exclusively
performed experiments on the DFAUST dataset and released the pre-trained
model. To ensure a comprehensive comparison, we added the comparison on the
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(a) Input (b) LPDC [49] (c) Cadex [23] (d) Ours
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0.15

Fig. 6: Comparison of visual results by different methods on the AMA dataset.

AMA dataset, a human body dataset characterized by significantly larger defor-
mation and movement ranges compared to DFAUST. Furthermore, we retrained
Cadex and LPDC on the AMA dataset.
Evaluation metrics. Following previous works [23, 32, 40], we scaled the test
data to its original size and quantitatively assessed various methods using ℓ2-
norm-based Chamfer Distance (CD), Normal Consistency (NC), F-score with
thresholds of 0.5% (F-0.5%) and 1% (F-1%), and Correspondences Error (Corr.)
to evaluate different methods quantitatively. For the visual results, we assigned
the same colors to corresponding vertices to indicate the accuracy of learned
correspondences by different methods. In addition, we also show the error map
to visualize the pointwise distance error from the ground-truth surface.

4.2 Comparisons with State-of-the-Art Methods

Results of clean and complete data. Table 1 shows the comparison of
our method against state-of-the-art methods on the three datasets. The re-
sults demonstrate that our method attains the highest accuracy. The visual
comparisons in Figs. 5 and 6 further validate the significant superiority of our
method. Notably, Cadex and LPDC exhibit notably poor performance on the
AMA dataset. This discrepancy could be attributed to the smaller data volume
of the AMA dataset compared to DFAUST and DT4D, shedding light on the
limitations of these supervised learning methods. We also refer readers to the
Supplementary Material and Video Demo for more visual results.
Results of noisy and partially missing data. We also evaluate the per-
formance of our method on noisy data. We add 0.5% Gaussian noise for each
point in a point cloud sequence in DFAUST dataset [4] and show the results
in Fig. 7. Since point cloud data collected by real-depth cameras often contain
missing parts, we tested the situation when there are some holes in the surface.
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For a sequence in "swing" motion sequences of AMA dataset [51], we placed two
virtual cameras in front of and behind the mesh model for simulated acquisi-
tion and merged the point clouds scanned by the two cameras. Fig. 7 shows the
performance of our method and the variants. We can see that our method can
reconstruct partially missing meshes. More results are presented in the Supple-
mentary Material.

Fig. 7: Results by our method on noisy data (top) and partially missing data (bottom).

4.3 Ablation Study

In this section, we conducted thorough ablation studies targeting key compo-
nents of our framework on the AMA dataset, where we took 1 set from each
sequence and 10 sets in total for data diversity. We focused on the following
aspects:
1) Learnable deformation field. To evaluate the effectiveness of the pro-
posed deformation field, we conducted experiments by maintaining the other
components and substituting the deformation field:

– Pointwise deformation based on an MLP : For any point v ∈ R3 in the
template surface and frame index k, we established a deformation function
FΨ(Γ ([v||k])) and obtained the deformed position vk = v + FΨ(Γ ([v||k])).
Here, FΨ(·) is an MLP with 5 linear layers and a feature dimension of 128.

– Fixed blending weight formula: We replaced the learnable blending weights
in Eq. (5) by setting it to ω̃(v,ur) in Eq. (7) throughout the learning process.

– Fixed control point positions: We maintained the positions ur of the control
points at their initial values.

From Tab. 2 and Fig. 8, the three variants produce worse quantitative and visual
results than Ours, verifying the advantage of our proposed deformation field.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8: Comparison of visual results by different variants of the deformation field in our
method. (a) Input; (b) Point-wise deformation based on an MLP; (c) Fixed blending
weight formula; (d) Fixed control point positions; (e) |U| = 10; (f) |U| = 100; (g) Ours.

Fig. 9 also visualizes the learned weights via Eq. (6) and those computed via
Eq. (7) for blending, where we can see that the learned weights can capture the
motion information and well handle the deformations for the parts with close
spatial locations but inconsistent motions.
2) Size of |U|. From Tab. 2 and Fig. 8, where we set different numbers of control
points i.e., 10, 30, and 100, we can observe that too few control points result in
insufficient degrees of freedom and suboptimal alignment, while too many control
points can weaken local consistency. We set |U| = 30 as a balanced trade-off.
3) Loss functions during temporal reconstruction. To assess the effec-
tiveness of various loss terms used in the temporal reconstruction stage, we in-
dividually excluded the robust SDF loss LR-SDF, deformation smooth loss LSmo,
and shape preservation loss LShape, while keeping other aspects unchanged. The
results presented in Tab. 2 demonstrate their necessity and contributions.
4) Keyframe selection, template surface learning and arbitrary length
of input sequences. The performances and discussions can be found in the
Supplementary Material.

5 Conclusion and Discussion

We introduced a new unsupervised temporally-consistent dynamic surface re-
construction framework for time-varying point cloud sequences. Technically, we
integrated template surface representation based on the deformable tetrahedron
and a learnable deformation field. We first proposed a coarse-to-fine learning
strategy for constructing the template surface. Then we designed a learnable
deformation field using the learnable control points and blending weights for
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Table 2: Ablation studies of our method on the AMA dataset [51]. The best and
second best results are highlighted in bold and underlined.

Variants CD(×10−4) ↓ NC ↑ F-0.5% ↑ F-1% ↑ Corr. (×10−2) ↓

MLP-Deform 0.412 0.909 0.618 0.917 5.91
w. ω̃(v,ur) 0.475 0.911 0.564 0.890 3.26
Fixed {ur} 0.372 0.911 0.637 0.927 3.23

w.o. LR-SDF 0.330 0.918 0.649 0.937 3.14
w.o. LNorm 0.656 0.900 0.582 0.884 3.30
w.o. LSmo 0.378 0.914 0.616 0.923 3.30
w.o. LShape 0.335 0.919 0.636 0.936 2.91

|U| = 10 0.437 0.910 0.594 0.910 3.30
|U| = 30 (Ours) 0.324 0.919 0.649 0.939 2.89

|U| = 100 0.315 0.919 0.651 0.943 3.16

...

(a) Input (b) Computed by Eq. (7) (c) Ours

Fig. 9: Visual learnable control points and blending weights. We assigned a color cr
to each control point ur based on its spatial position, and obtained the color for each
v by

∑|U|
r=1 ω(v,ur) · cr. Closer colors indicate more similar deformation fields.

temporally reconstruction. We jointly optimized the enhanced template surface
and the learnable deformation field. Experiments demonstrate that our proposed
method performs even much better than SOTA supervised learning methods.

Input Ours

Although our method has achieved good
performance on many examples, it may en-
counter limitations in cases where the point
cloud in certain areas is sparse or the lo-
cal structure is elongated but exhibits signif-
icant non-rigid deformations (as depicted on
the right). This is due to our utilization of
Chamfer distance as the alignment supervi-
sion, which restricts the establishment of cor-
respondences between adjacent frames solely
based on spatial proximity. Incorporating more robust metrics for shape align-
ment would enhance the effectiveness of our approach.
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