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1 Defining Allowed Perturbation Set &

Conventionally face detection and alignment are performed before training the
FR module, ensuring the consistency of landmarks’ positions across all training
instances according to the alignment template. Therefore, the initial positions of
landmarks (u,, v,) match that of the alignment template. Additionally, one can
determine the final positions of landmarks after applying the invertible affine
transformation Tj, as described in Equation 4 of Manuscript. Consequently, the
displacement vector’s upper bound f is calculable by considering the transfor-
mation components’ upper bounds, namely the maximum permissible rotation,
translation, and scaling:
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fp = (up_upavp_vp); (ulvv/) :Tgl(Pu(j)vpv(Z))a (1)

where 6 denotes the upper bound for the transformation parameters, I.e., max-
imum rotation, scaling and translation.

In the same way, the displacement vector is calculated during the training
for defining S:
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fg = (up_upyvp_vp)§ (ul>v/) :Teil(Pu(j%Pv(i))' (2>

Finally, f, = ||f,||2 and we define the allowed transformation using Equation 8
of Manuscript without requiring landmark estimation.

1.1 Experiment on Upper Bound of Individual Transformations
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Fig. 1: Experiments on different perturbation budgets. Tinyface performance is the
Rankl1 identification. IJB-B and IJB-C performance is the TARQFAR=1e — 5.

with increased upper bounds across different components. Furthermore, scaling
has a more significant impact on TinyFace performance, aligning with previous
research on the effects of augmentation in FR performance |1}2,/4]. Moreover, the
results suggest that the performance on datasets containing both HQ and LQ
instances is susceptible to the high values of transformation upper bounds, lead-
ing to a significant reduction in performance. We attribute this to the nature of
the images in these datasets. Since both HQ and LQ samples are present in these
benchmarks, excessive augmentation reduces the discriminative power of the FR
model on HQ images, thereby diminishing performance in these evaluations.

2 Experiments on Perturbation Budgets

We conduct experiments to evaluate the impact of perturbation budgets «, cor-
responding to the components of spatial transformation, Il.e., scale, rotation,
and translation, as shown in Figure [} We use CASIA-WebFace as the training
dataset, and ArcFace serves as the objective. The results demonstrate a positive
correlation between the scaling budget and TinyFace performance; specifically, a
larger scaling budget significantly enhances Rankl TinyFace identification. This
outcome is anticipated, as larger scaling perturbations produce smaller faces,
thereby improving performance on LQ samples.

However, a consistent increase in the scaling budget leads to a significant de-
crease in verification performance on the IJB-B and IJB-C datasets. We expected
these results since IJB-B and IJB-C consist of both HQ and LQ images and se-
vere scaling results in reducing the discriminative power on the HQ images [1H3].
Aiming for a generalizable FR module, we have selected a scaling budget of 0.01.
Furthermore, a rotation budget of 0.01 results in superior performance across
IJB-B and IJB-C evaluation, indicating potential misalignment in HQ samples.
Additionally, the translation budget of 0.01 results in balanced performance
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across TinyFace and other datasets. CNNs are somewhat translation-invariant,
partly due to the nature of pooling operations. Thus, this minor perturbation
aids in enhancing the model’s robustness to misalignment. It is important to
note that extreme translation might zero out essential parts of the face, render-
ing learning infeasible, unlike rotation, which does not remove any part of the
image.

3 Experiments on PGD Steps k

In Table 2] we study the impact of k on the perfor- Table 2: Experiments on
mance across TinyFace, IJB-B, and 1JB-C. We ex- the number of PGD steps.
periment using k € {1,2,3}. As Table 2] shows, the  k|TinyFace|LJB-B|LJB-C
performance gain with the increase in the PGD steps 1| 4596 [58.47|52.88
is marginal. However, the computational overhead in- 9| g598 |58.5452.68
creases drastically with the increase in the number of 3| ¢5.35 [58.50]52.48
PGD steps (detailed in Section 4.6 of Manuscript).
Therefore, we employ k = 1 across our experiments. Also, the marginal reduc-
tion of the performance on IJB-B and IJB-C is in line with observations of |1H3]
that these datasets contain both HQ and LQ instances and too much change
in the input images, I.e., augmentations, results in performance reduction in
them.
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