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A Experimental Results on MVTec 3D-AD

A.1 Settings of MVTec 3D-AD Dataset

The MVTec 3D-AD dataset [1] is different from the Eyecandies dataset [2]. Each
instance in the MVTec 3D-AD dataset contains a single view RGB image and
the corresponding 3D point cloud data. We simply convert the point cloud data
into a normal map using the open3d software and then fine-tune the UNet and
ControlNet in the same configurations. Since there is only a single image view
in this case, we omit the feature loss during training. We update the weight of
the pre-trained UNet, which is the Stable Diffusion Model version 1-5 utilized in
the same architecture. In the inference phase, we set the noise intensity to 40
and the step size to 20, and we use the concatenated features from the decoder
block-1 and block-2 of the UNet. In other methods such as BTF [6], M3DM [7],
Shape-Guided [3], etc., the anomaly score for image level typically implemented a
reweight mechanism between RGB score and 3D score. Therefore, our approach
only performs a weighted sum of RGB and 3D image level scores. An important
difference is that we do not adjust the score map.

A.2 Comparisons with Other Methods

We compare our approach with the state-of-the-art methods and evaluate them
on the MVTec 3D-AD dataset [1] using the Img-AUROC and the Pix-AUROC
metrics. Because current reconstruction-based methods CFM [4] and MMRD [5]
typically require training a model for each category rather than employ a single
model for all classes. In addition, CFM requires different backbones to handle
2D RGB and 3D data. Our approach is competitive to reconstruction-based
methods and shows strong capabilities across various datasets even without
using the key technique of feature loss. In Table 1, our method achieves above-
average Img-AUROC scores in each category, which allows us to attain an overall
competitive average score. In Table 2, the Pix-AUROC score approaches near-
perfect performance. Even though the MVTec 3D-AD provides only a single
image view, our method performs especially well.
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B Qualitative Comparisons

Fig. 1 illustrates the heatmaps for comparing our proposed method with state-
of-the-art. In the first row, M3DM [7] and BTF [(], tend to classify the entire
CandyCane as an abnormal area. On the contrary, our method identifies abnormal
regions accurately without false positives. In the second and third rows, BTF [6]
struggles to detect 3D geometric anomalies on the surfaces of GummyBear and
Confetto. Furthermore, in the fourth row (ChocolateCookie), our method shows
a lower false alarm rate than the other two approaches. In the last row, our
method effectively detects anomalies in multiple regions of PeppermintCandy. By
these samples in Fig. 1, our approach can detect anomalies accurately compared
with other embedding-based methods.
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Fig. 1: Visualization of ours and other methods.

C More Qualitative Results

Fig. 2 displays additional visualizations of our anomaly localization results for all
categories in the Eyecandies [2]. Our prediction in the score map closely matches
the ground truth, indicating our proposed method’s effectiveness and precision.
Additionally, our approach excels in identifying 3D geometric anomalies that
cannot be distinguished solely based on appearance colors. This capability is
attributed to our method successfully integrating information from the normal
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map to pinpoint these abnormal regions. Regarding the MVTec 3D-AD [1], Fig. 3
illustrates that our method also possesses capabilities to detect anomalies within
this dataset, regardless of whether these anomalies are RGB-based or 3D-based.

Table 1: Assessing anomaly detection performance on the MVTec 3D-AD dataset [1]
using the Img-AUROC metric. “SG” means Shape-Guided [3]. The top-performing
outcomes are highlighted in red, while the second-best results are indicated in blue.

Cable

Method |Bagel _Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire [Mean
BTF [6] |0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724| 0.785

M SG[3] |0.911 0.936 0.883 0.662 0.974 0.772 0.785 0.641 0.884 0.706| 0.815
% M3DM ([7]|0.944 0.918 0.896 0.749 0.959 0.767 0.919 0.648 0.938 0.767| 0.850
Ours 0.910 0.871 0.854 0.687 0.908 0.859 0.885 0.556 0.914 0.720| 0.816
BTF [6] |0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582| 0.753

A M3DM [7]]0.941 0.651 0.965 0.969 0.905 0.760 0.880 0.974 0.926 0.765| 0.874
®  SG [3] [0.983 0.682 0.978 0.998 0.960 0.737 0.993 0.979 0.966 0.871| 0.916
Ours 0.965 0.852 0.962 0.988 0.963 0.900 0.990 0.984 0.965 0.823| 0.939
BTF [6] |0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726| 0.873
M3DM [7]|0.994 0.909 0.972 0.976 0.960 0.942 0.973 0.899 0.972 0.850| 0.945
m SG[3] ]0.986 0.894 0.983 0.991 0.976 0.857 0.990 0.965 0.960 0.869| 0.945
%2 MMRD [5]{0.999 0.943 0.964 0.943 0.992 0.912 0.949 0.901 0.994 0.901| 0.950
+ CFM [4] |0.988 0.875 0.984 0.992 0.997 0.924 0.964 0.949 0.979 0.950| 0.960
% Ours 0.967 0.880 0.964 0.984 0.963 0.978 0.990 0.973 0.960 0.829| 0.949

Table 2: Assessing anomaly detection performance on the MVTEC 3D-AD dataset [1]
using the Pix-AUROC metric. “SG” means Shape-Guided [3]. The top-performing
outcomes are highlighted in red, while the second-best results are indicated in blue.

Cable

Method |Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire [Mean
BTF [6] |0.983 0.984 0.980 0.974 0.973 0.851 0.976 0.983 0.987 0.977| 0.967

8 SG[3] ]0.990 0.993 0.990 0.981 0.992 0.927 0.984 0.987 0.995 0.991| 0.983
& M3DM [7]/0.992 0.990 0.994 0.977 0.983 0.955 0.994 0.990 0.995 0.994| 0.987
Ours |0.990 0.985 0.988 0.976 0.990 0.957 0.992 0.984 0.997 0.977| 0.984
M3DM [7]|0.981 0.949 0.997 0.932 0.959 0.925 0.989 0.995 0.994 0.981| 0.970
BTF [6] |0.995 0.965 0.999 0.947 0.966 0.928 0.996 0.999 0.996 0.991| 0.978

®  SG[3] ]0.992 0.961 0.998 0.948 0.960 0.931 0.996 0.999 0.995 0.996| 0.978
Ours |0.996 0.981 0.998 0.976 0.990 0.897 0.998 0.997 0.997 0.980| 0.981
M3DM [7]|0.995 0.993 0.997 0.985 0.985 0.984 0.996 0.994 0.997 0.996| 0.992
m BTF [6] [0.996 0.992 0.997 0.994 0.981 0.973 0.996 0.998 0.994 0.995| 0.992
& MMRD [5]| - - - - - - - - - - 0992
+ CFM [4] |0.997 0.992 0.999 0.972 0.987 0.993 0.998 0.999 0.998 0.998| 0.993
oDo SG [3] 10.996 0.993 0.998 0.992 0.992 0.997 0.997 0.999 0.998 0.997|0.996
Ours 0.996 0.988 0.998 0.988 0.992 0.994 0.998 0.998 0.997 0.996/0.994
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Fig. 2: Our anomaly localization results on Eyecandies dataset [2].

Ground Image
Truth 9

Score Map

Fig. 3: Our anomaly localization results on MVTec 3D-AD dataset [1].

D Multi-view Anomaly Detection

Table 3 shows that our approach, in conjunction with the 3D normal map,
performs more effectively when six views are used simultaneously compared to a
single view. This improvement is due to the multi-view configuration’s ability
to more effectively detect anomalies that might only be visible under certain
lighting conditions.

E Computational Cost of ControlNet

In Table 4, we examine the parameter count (Params), inference speed (FPS),
and the anomaly detection scores(Img-ROC) for UNet and UNet+ControlNet
on the Nvidia RTX 3090Ti. ControlNet utilizes fewer than half the Params of
UNet, without notably reducing FPS. Furthermore, ControlNet facilitates the
generation of more expressive features.
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Table 3: Comparison between all-view and single-view.

View | Al 1 2 3 4 5 6
Img-ROC|0.948 0.936 0.929 0.933 0.923 0.936 0.938

F Applying Feature Loss at Different Layers
Table 5 analyzes feature consistency loss impacts among different decoder blocks.

This analysis indicates that applying the loss to all blocks improves performance
compared to using it on individual blocks or not using it at all.

Table 4: Comparison: UNet(U) vs. Table 5: Feature consistency loss for dif-

UNet+ControlNet (U+C). ferent decoder blocks.
Model|Params FPS Img-ROC Block‘wo Loss 1 4 All
U 860M 0.225 0.934 Img
0.934 0.937 0.932 0.948
U+C|1222M 0.196 0.948 ROC

G Detailed Hyperparameter Settings

Table 6 shows that different top-k values only slightly impact on AD scores.
Following the settings in [19, 28], we experiment with different step sizes and
report the Img-ROC results and their FPS in Table 7.

Table 6: Different Top-k scores with  Table 7: Diffusion step sizes with Image-
Image-ROC. ROC and frames per second (FPS).

Top-klk=1k=3k=5k="7 Step Size| 10 20 40

Img |0 1c 0048 0.044 0,042 Img-ROC|0.946 0.948 0.944
ROC FPS 0.169 0.196 0.205
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