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Abstract. Recent advancements in multi-modal pre-training for 3D point
clouds have demonstrated promising results by aligning heterogeneous
features across 3D shapes and their corresponding 2D images and lan-
guage descriptions. However, current straightforward solutions often over-
look intricate structural relations among samples, potentially limiting
the full capabilities of multi-modal learning. To address this issue, we
introduce Multi-modal Relation Distillation (MRD), a tri-modal pre-
training framework, which is designed to effectively distill reputable large
Vision-Language Models (VLM) into 3D backbones. MRD aims to cap-
ture both intra-relations within each modality as well as cross-relations
between different modalities and produce more discriminative 3D shape
representations. Notably, MRD achieves significant improvements in down-
stream zero-shot classification tasks and cross-modality retrieval tasks,
delivering new state-of-the-art performance.

1 Introduction

Recently, 3D shape understanding has garnered increasing attention due to its
wide range of applications, such as space calculation [2, 27, 30, 42], autonomous
driving [23, 53] and robotic perception [3, 46]. Despite notable advances in 3D
visual analysis, the limited availability of 3D data, characterized by constraints
in scale and scarcity of annotations, remains a significant barrier.

To tackle this challenge, many researchers have delved into integrating aux-
iliary modalities within the self-supervised learning framework. Some attempts
utilize priors from the image modality to craft more instructive pretext tasks
[9,58], thereby enhancing the discriminative power of the learned 3D representa-
tions. Meanwhile, others focus on distilling knowledge from pre-trained models
in either image or text modalities to facilitate conceptual understanding within
the 3D modality [57,60].

Among these endeavors, tri-modal-based methodologies [16,26,49,50,59] have
shown exceptional prowess by aligning point cloud representations with the pre-
aligned image-text feature space. They employ a synthesized set of triplet data
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Fig. 1: Illustration of Multi-modal Relation Distillation (MRD). (a) Conventional con-
trastive learning focuses on instance-level alignment but disrupts the intra-modality
and cross-modality relations established in previous image-text alignment. For exam-
ple, the nearby and distant relations between the three samples are disturbed in the
3D modality due to naive alignment. (b) MRD distills structural knowledge from both
intra- and cross-modality mutual relations, aiming to preserve the semantic relations in
the pre-aligned embedding spaces, thereby delivering more discriminative and coherent
distributions. Zoom in for better view.

to draw point cloud representations closer to their respective image-text pairs,
simultaneously distancing them from non-associated examples. The strategic use
of the impressive discriminative capabilities of CLIP [38] markedly boosts the
zero-shot performance and effectively creates a unified representation spanning
different modalities, which highlights the potential of harnessing complex, multi-
modal interactions to improve understanding of 3D shapes.

As illustrated in Fig. 1, these methodologies concentrate exclusively on align-
ing point cloud representations with corresponding features in image and text
modalities at the individual instance level, thereby neglecting the intricate struc-
tural relations within the pre-aligned image-text feature space. Unfortunately,
these mutual relations between data samples are crucial for developing a dis-
criminative representation [32]. For instance, intra-modal relations emphasize
similarities such as shapes or textures in images, or connections among scene
compositions in texts. Meanwhile, cross-modal relations reveal semantic rele-
vance across modalities, underscoring the connections between diverse entities.
The failure to consider these multifaceted relations results in the underutilization
of the extensive priors learned by CLIP, culminating in a fragmented compre-
hension of multi-modal representations.

In this study, we aim to transfer mutual relational knowledge from the pre-
aligned image-text domain into the 3D modality, thus improving the effective-
ness of current multi-modal contrastive 3D pre-training approaches. Achieving
this involves addressing two pivotal challenges. On the one hand, the method,
which accurately models mutual relations across various modalities, has not yet
been sufficiently explored. Unlike the dual-distribution scenarios of prior stud-
ies [12,13,32], adding the 3D modality to the pre-aligned image-text framework
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incurs a complex array of mutual relations that demands substantial analysis and
elaborate modeling. On the other hand, inherent semantic variances within each
modality create a pronounced gap between image and text modalities [24, 45],
potentially leading to conflicts when aligning 3D representations to pre-trained
image or text features. Identifying an effective strategy to mitigate such conflicts
for improved convergence is an area that warrants further efforts.

To address the issues aforementioned, we commence with an in-depth anal-
ysis of existing representations and associated constraints of mutual relations,
examining both within individual modalities (intra-modal) and across different
modalities (cross-modal). Following this, we develop a data-driven mechanism to
dynamically reconcile these conflicting intra-modal and cross-modal discrepan-
cies. Integrating both parts, we propose a Multi-modal Relation Distillation pre-
training framework, namely MRD, for 3D representation learning. Since MRD
adeptly transfers structural relational knowledge from the image-text modality
to the 3D one, it successfully enhances 3D representations by effectively merging
information from diverse modalities, consequently leading to improved perfor-
mance in downstream tasks.

To sum up, our contributions can be summarized as follows:

– We introduce MRD, an innovative self-supervised learning framework, which
effectively distills both intra-modal and cross-modal relations, significantly
improving the discriminative capability of 3D point cloud representations.

– We perform comprehensive analysis and comparison of mutual relation rep-
resentations within multi-modal 3D representation learning, and propose a
data-driven strategy to resolve the discrepancies in the pre-aligned image-
text space of CLIP.

– We present state-of-the-art pre-trained models across diverse applications
and deliver superior performance on ModelNet40 [47], ScanObjectNN [41]
and Objaverse [8].

2 Related Work

2.1 3D Self-supervised Learning

Self-Supervised Learning (SSL) for point cloud understanding initiates with the
3D modality. The researchers diligently craft a range of pretext tasks such as
geometric reconstruction [22, 39, 40, 43], mask auto-modeling [6, 31, 54, 56], nor-
mal estimation [33], and contrastive learning [18, 48, 51] to enhance shape rep-
resentations of deep learning backbones of 3D point clouds [34, 36, 44, 54]. Con-
temporary endeavors seek to augment 3D SSL by importing insights from other
modalities. Attempts leveraging image-guided strategies [58], multi-modal recon-
struction [9, 14, 35], and weight-sharing [5, 37] are integrated into conventional
frameworks such as Masked Autoencoder [15] or contrastive learning, yielding
significant improvements over single-modality methods. Despite the success in
enhancing the performance of downstream applications, these methods are lim-
ited by their inability to forge more comprehensive cross-modal correlations.
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Leveraging the groundbreaking achievements in learning visual concepts di-
rectly from textual descriptions through contrastive learning methods, some ef-
forts are made to capitalize on the impressive zero-shot classification capability
of CLIP [38] to facilitate the comprehension of 3D shapes. PointCLIP [57] con-
verts 3D point clouds into multi-view images for zero-shot classification by using
the pre-trained visual-text encoders of CLIP and PointCLIP-2 [60] advances the
methodology by refining the image projection strategies and employing Large
Language Models (LLMs) to optimize prompt design, reporting improved per-
formance. However, these techniques suffer the challenges related to information
loss during 3D to 2D projection and increased computational demands due to
the use of images as an intermediary, which restrict their pervasion.

Simultaneously, some alternatives directly integrate multi-modal representa-
tion learning into the 3D domain. CG3D [16] generates ternary pairs of image-
text-points from ShapeNet and aligns point cloud features with the text and
image features of CLIP, aiming to distill image and text modalities into 3D rep-
resentations. ULIP [49] enhances this approach by incorporating more intricate
multi-view renderings and varied text descriptions. Subsequent developments
like ULIP-2 [50] and OpenShape [26] expand the ternary dataset for training,
leading to superior outcomes. Uni3D [59] scales up the approach by adapting a
Vision Transformer (ViT) pre-trained on image datasets to 3D models, reach-
ing a milestone of 1 billion parameters. While these advances markedly improve
the zero-shot classification performance, they primarily align features at the in-
stance level across modalities and neglect the potential of exploring inter-sample
relations.

2.2 Relation Modeling in Contrastive Learning

Previous research demonstrates that a thorough understanding of the complex
relations among samples significantly improves the acquisition of structural intri-
cacies within representations [32]. Recently, this detailed relation modeling has
been integrated into the realm of contrastive learning. RINCE [17] enhances con-
trastive learning by establishing a partial order among samples, thus contributing
to more precise representations of 2D images. Similarly, Soft-InfoNCE [21] re-
fines the margins of the sample distribution based on sample similarities, leading
to a notably more distinct feature space.

In the context of bi-modal contrastive learning, CyCLIP [13] introduces the
constraints based on pairwise Euclidean distances, applicable both within sin-
gle modality and across different modalities. Meanwhile, CLIP-PSD [1] adopts
similarity-based connections to mitigate the requirement of rigid one-to-one cor-
respondence during training. Some alternative methodologies prioritize model-
ing complex relations through low-level similarities [11, 12], coherence of local
patches [52], and diversity augmentation [55]. Similar enhancements also appear
in the scenarios like downstream distillation [20] and CAD representation learn-
ing [29]. Both the strategies outperform the standard baseline, indicating their
effectiveness.



Multi-modal Relation Distillation 5

Nevertheless, relational distillation has not yet been well-explored in the field
of multi-modal unified representation learning for 3D point clouds. The integra-
tion of the 3D modality with the pre-aligned image-text modality incurs two
significant challenges. Firstly, the expansion in the number of modalities results
in an increase of inter-sample relations that need to be articulated. The method-
ology for modeling these intra-modality and cross-modality sample relations as
well as establishing the corresponding constraints remains unclear. Secondly, the
inconsistency in feature distribution of the image-text modality [24,45] leads to
conflicting relations among these distributions, making it a dilemma to leverage
them for proficient representation learning in the 3D modality.

3 Method

3.1 Preliminaries

Previous studies align 3D shape representations with the pre-trained CLIP em-
bedding space of images and texts by applying the contrastive learning loss.
Given a set of synthesized image-text-3D triplet X = {(xIi , xTi , xPi )}Ni=1 as train-
ing samples, dedicated encoders EI , ET , EP for each modality process inputs
in their respective domains to produce the corresponding feature embeddings
f Ii , f

T
i , f

P
i . Notably, EI and ET , derived from the extensive pre-training of CLIP

on a large-scale image-text dataset, cover a data volume substantially greater
than the number of available synthesized triplets. To circumvent potential model
collapse, the weights for the image branch EI and the text branch ET are kept
frozen, with only the point cloud branch EP being actively trained to align 3D
representations with corresponding image-text pairs. Upon acquiring the feature
embeddings for all samples in the batch, alignment between 3D-to-Image and
3D-to-Text is executed following the contrastive learning procedure in CLIP:LP2T = 1

2 (
∑

i
exp(fP

i ·fT
i /τ)∑

j exp(fP
i ·fT

j /τ)
+

∑
i

exp(fP
i ·fT

i /τ)∑
j exp(fP

j ·fT
i /τ)

)

LP2I = 1
2 (
∑

i
exp(fP

i ·fI
i /τ)∑

j exp(fP
i ·fI

j /τ)
+

∑
i

exp(fP
i ·fI

i /τ)∑
j exp(fP

j ·fI
i /τ)

)
(1)

where i, j represent the indices of the samples, and τ denotes a learnable tem-
perature parameter. The training minimizes the triplet contrastive loss for the
weights θP in the 3D branch:

LAlign = min
θP

1

2
(LP2T + LP2I) (2)

3.2 Multi-modal Relation Representation (MRD)

To distill structural knowledge from the multi-modal unified representation space,
it is essential to first investigate the form of mutual relation representations be-
tween samples within this multi-modal context.

With the image encoder EI and the text encoder ET fixed during the align-
ment phase, the learning of the 3D representation {fPi }Ni=1 targets identifying
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Fig. 2: Comparison of various relation representation forms as well as corresponding
distillation strategies. (a) Different embedding spaces. (b) Euclidean distance-based;
(c) normalized similarity-based; and (d) partial order-based.

the optimal distribution, based on the image features {f Ii }Ni=1 and text features
{fTi }Ni=1 extracted from the training set X. This process strives to ensure the
maximal preservation of the inherent priori knowledge within the pre-aligned
image-text embedding spaces.

Therefore, delineating two primary types of relations becomes crucial. The
first type is the intra-modality mutual relation, symbolized as ψM(·), concen-
trating on the sample distribution within a specific modality M. This singular
relation underscores the representational significance of various samples within
the same modality. The second type, i.e. the cross-modal mutual relation, is
denoted as ϕ(M1,M2)(·), delving into the binary relation to reveal the semantic
links between samples across modalities M1 and M2.

In this study, we explore three widely acknowledged methods for representing
mutual relations: Euclidean Distance, Normalized Similarity, and Partial Order.

Euclidean Distance serves to quantify the relative difference between two
samples. For intra-modal mutual relations, this difference is captured by the
pairwise distance among all samples within the same modality, denoted as:

ψD
M(X) = { 1

µ
||fMi − fMj ||22}(fM

i ,fM
j )∈M2 (3)
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Similarly, cross-modal relations between samples from different modalities can
be expressed as follows, where µ denotes the normalization constant.

ϕDM1,M2
(X) = { 1

µ
||fM1

i − fM2
j ||22}fM1

i ,f
M2
j ∈M1×M2

(4)

Normalized Similarity assesses correlation of features of samples within a
single batch, emphasizing the overall distribution of correlation between samples
rather than the absolute distance between individual sample pairs, as seen with
Euclidean distance modeling. This approach offers a perspective that prioritizes
relational dynamics within and across modalities. For intra-modal relations, the
normalized similarity can be articulated as follows:

ψS
M(X) = {

exp(fMi · fMj /τ)∑N
k=1 exp(f

M
i · fMk /τ)

}(fM
i ,fM

j )∈M2 (5)

Similarly, the normalized similarity of inter-modal relations can be described as:

ϕSM1,M2
(X) = {

exp(fM1
i · fM2

j /τ)∑N
k=1 exp(f

M1
i · fM2

k /τ)
}
f
M1
i ,f

M2
j ∈M1×M2

(6)

Partial Order captures the relative ordering between samples, differenti-
ating itself from Euclidean distance and normalized similarity by not imposing
strict metric distance constraints. Instead, it is defined through binary relations
among samples. For intra-modal relations, partial order can be represented as:

ψP
M(X) = {r(fMi , fMj )}(fM

i ,fM
j )∈M2 (7)

Likewise, cross-modal relations can be depicted as:

ϕPM1,M2
(X) = {r(fM1

i , fM2
j )}

f
M1
i ,f

M2
j ∈M1×M2

(8)

where r(fM1
i , fM2

j ) indicates the rank of fM2
j after sorting all samples in {fM2

k }Nk=1

by the Euclidean distance.

3.3 Dynamic Relation Distillation

After establishing the structural relational representations, we proceed to distill
intra-modality and cross-modality mutual relations. Specifically, in the context
of intra-modality relations, our objective is to align the mutual relations within
the 3D modality as closely as possible with those observed in the image and
text modalities. Conversely, concerning cross-modal mutual relations, we aim for
the 3D-to-Image and 3D-to-Text relations to emulate the correlations observed
between Image-to-Text or Text-to-Image.

To tackle the issue of inconsistent mutual relations across different modalities,
we introduce learnable weights for both the processes of intra-modal and cross-
modal mutual relation distillation. These parameters are designed to dynamically
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adjust the balance between various distillation objectives in the learning phase,
thus aiding in more effective network convergence. The losses associated with
intra- and cross-modality distillation are articulated as follows:

LP
Intra = αL(ψP(X), ψI(X)) + (1− α)L(ψP(X), ψT (X))

LP2T
Cross = βL(ϕP,T (X), ϕI,T (X)) + (1− β)L(ϕP,T (X), ϕT ,I(X))

LP2I
Cross = γL(ϕP,I(X), ϕI,T (X)) + (1− γ)L(ϕP,I(X), ϕT ,I(X))

(9)

Since directly incorporating parameters such as α and 1 − α can result in
unstable optimization due to their non-smoothness, we draw inspiration from the
architecture parameter settings in neural architecture search algorithms [25]. For
each weight, we introduce three pairs of learnable parameters: [wα

r1 , w
α
r2 ;w

β
r1 , w

β
r2 ;

wγ
r1 , w

γ
r2 ]. During training, the values of α and 1 − α are derived from softmax

of their corresponding learnable weights [wα
r1 , w

α
r2 ]. Similarly, this is applied to

β and γ, with these parameters being optimized iteratively. L(·, ·) denotes a loss
function that penalizes the discrepancies between two mutual relations.

Given the distinct nature of the approaches used to characterize structural
relations in Sec. 3.2, the required form of the loss function varies accordingly.
Specifically, to mod by calculating Euclidean distances, we employ the Mean
Squared Error (MSE) form for distillation. The intra-modal loss can be denoted
as

L(Γ1, Γ2) =
1

N2

∑
i,j∈(1,N)

||γi,j1 − γi,j2 ||22 (10)

where Γ1, Γ2 represent two distinct mutual relations, and γi,jk denotes the Eu-
clidean distance between the i-th and j-th samples in the relation modeling of
Γk.

In the case of the normalized similarity form, we apply the Jeffrey divergence
for imposing constraints.

L(Γ1, Γ2) =
1

N

∑
i∈(1,N)

(KL(γi1|γi2) +KL(γi2|γi1)) (11)

where KL(·|·) represents the Kullback-Leibler Divergence, and γik denotes the
normalized similarity of the i-th sample with others in the relation modeling of
Γj .

Lastly, for the partial order relation form, we utilize a margin-based ranking
loss:

L(Γ1, Γ2) =
1

N2

∑
i,j∈(1,N)

max(0,−ri,j ∗ (fM1
i − fM2

j ) + η) (12)

where ri,j is the sign function indicating whether the rank order between i and
j is consistent in Γ1 and Γ2, and η represents the margin constraint.

We summarize the three relational representations and their respective con-
straints in Fig. 2, and assess their impacts in the subsequent experimental sec-
tion. Finally, we select the normalized similarity-based relational representation
and Jeffrey divergence to distill both intra- and inter-modal relations.
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Fig. 3: Overall framework of MRD. With the triplet input, image-text pairs are pro-
cessed by the pre-trained CLIP model, while the accompanying point clouds are en-
coded by the 3D encoder. MRD captures the intra-modal mutual relations ψ(·) within
each modality and the cross-modal mutual relations ϕ(·) across each modality pair.
It then dynamically distills and transfers structural information from the pre-aligned
image-text space of CLIP into the 3D representations.

3.4 Framework

The entire framework of MRD is depicted in Fig. 3. Its pre-training process
involves two main components. Initially, it encodes triplet Image-Text-3D data
using the pre-trained CLIP model in conjunction with a trainable 3D foundation
model. Following this, both intra- and cross-modal relations between samples
within each batch across the three modalities are calculated as described in
Sec. 3.2. These structural mutual relations from the image and text modalities
are dynamically distilled into the 3D modality as explained in Sec. 3.3, thereby
facilitating representation learning.

During training, our objective is to minimize both the instance-level con-
trastive loss and the relational distillation loss across modalities. Thus, the over-
all loss function can be articulated as:

L = min
θP

LAlign + λ(LP
Intra + LP2T

Cross + LP2I
Cross) (13)

where λ is a tunable hyper-parameter used to balance the loss terms.

4 Experiments

4.1 Setup

Training Settings. In alignment with prior research [26, 50, 59], we compile
triplets comprising 3D point clouds, 2D images, and textual descriptions from
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two extensive datasets of 3D objects. The first integrates the comprehensive 3D
collection featured in both OpenShape and Uni3D, encompassing the datasets
from Objaverse [8], ShapeNet [4], 3D-FUTURE [10], and ABO [7], culminating
in a total of 876K training samples. The second, ShapeNet, contains 52.5K 3D
objects across 55 annotated categories. Image data for these datasets are gener-
ated through 12 preset camera angles, meticulously arranged to uniformly cover
the entire spatial domain, while textual data originate from diverse sources, in-
cluding curated descriptions, captions crafted by LLMs, and retrieval data. Con-
sistent with preceding methodologies [26], we employ OpenCLIP ViT-BigG-14
as the foundational pre-trained model in this work.

Implementation Details. PointBERT is taken as our fundamental model
to pre-train MRD, given its status as a transformer-based backbone that has
demonstrated robust performance in previous studies. To assess the impact of
scaling up, we incrementally increase its size from 5M (T) to 22M (S), 32M(M),
88M (B) and 307M (L) parameters and evaluate its performance under the same
settings, following the way adopted in the counterparts.

We utilize a learning rate of 0.001 for all versions of PointBERT. The batch
size is configured to 192 when the model is trained on ShapeNet and increased
to 512 on other datasets. Specifically, for ShapeNet, the training duration is set
to 70 epochs, while for Objaverse, we extend training to 300 epochs to ensure
adequate convergence. We use a cosine annealing schedule with a 15-epoch warm-
up period. The weight decay is set at 0.05, λ is set to 3, and the random seed is
fixed at 0. The experiments are conducted on eight A800 GPUs, and the whole
training process takes about 16 GPU-days.

4.2 Zero-Shot Shape Classification

For the zero-shot classification task, our evaluation considers three standard
datasets: ModelNet40 [47], ScanObjectNN [41], and Objaverse [8]. ModelNet40
and ScanObjectNN feature 2,468 and 2,890 test samples across 40 and 15 target
classes, respectively, while Objaverse includes 46,205 test samples spanning 1,156
target classes. We calculate and compare the top-1, top-3, and top-5 accuracies
with those achieved by other 3D zero-shot classification approaches. For eval-
uation on ModelNet and Objaverse, the input consists of sampled coordinates
and color information from 10,000 points on the mesh surface of each sample.
For the ScanObjectNN dataset, the input is composed of 2,048 point-cloud data
points derived from the OBJ_ONLY version.

We compare the performance of the proposed MRD framework with the rep-
resentative state-of-the-art methods such as ULIP-2, OpenShape, and Uni3D.
The results are presented in Tab. 1. From Tab. 1 we observe that MRD achieves
highly competitive results in all the settings. Notably, despite that OpenShape,
Uni3D, and MRD utilize exactly the same training data, MRD significantly
surpasses both OpenShape and Uni3D when operating with backbones of com-
parable parameter scales. It is worth noting when scaled to 88M, MRD delivers
the top-1 accuracies of 53.2% on Objaverse and 88.8% on ModelNet40, out-
performing Uni3D-L, which employs a considerably larger backbone of 307M,
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Table 1: Performance (%) of zero-shot classification on Objaverse-LVIS [8], Model-
Net40 [47], and ScanObjectNN [41]. The best and second-best performing methods are
highlighted in bold and underlined, respectively.

Method
Params Training Shape Objaverse-LVIS [8] ModelNet40 [47] ScanObjectNN [41]

(M) Source Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

PointCLIP [57] – 2D Images
at Inference

1.9 4.1 5.8 19.3 28.6 34.8 10.5 20.8 30.6
PointCLIP v2 [60] – 4.7 9.5 12.9 63.6 77.9 85.0 42.2 63.3 74.5

ReCon [35] 43.6

ShapeNet

1.1 2.7 3.7 61.2 73.9 78.1 42.3 62.5 75.6
CG3D [16] 22.5 5.0 9.5 11.6 48.7 60.7 66.5 42.5 57.3 60.8

CLIP2Point [19] – 2.7 5.8 7.9 49.5 71.3 81.2 25.5 44.6 59.4
ULIP+PointBERT [49] 22.6 6.2 13.6 17.9 60.4 79.0 84.4 51.5 71.1 80.2

OpenShape+SparseConv [26] 33.7 11.6 21.8 27.1 72.9 87.2 93.0 52.7 72.7 83.6
OpenShape+PointBERT 32.3 10.8 20.2 25.0 70.3 86.9 91.3 51.3 69.4 78.4

MRD-T 5.1 11.8 21.2 25.8 74.2 88.3 90.9 55.7 75.5 83.0
MRD-S 22.6 13.3 23.8 29.2 74.2 88.2 92.5 52.1 73.8 81.2

ULIP+PointBERT 22.6
Ensembled

21.4 38.1 46.0 71.4 84.4 89.2 46.0 66.1 76.4
OpenShape+SparseConv 33.7

(no LVIS)
37.0 58.4 66.9 82.6 95.0 97.5 54.9 76.8 87.0

OpenShape+PointBERT 32.3 39.1 60.8 68.9 85.3 96.2 97.4 47.2 72.4 84.7
Uni3D-B [59] 88.4 45.9 67.4 74.8 86.1 97.4 98.7 61.7 82.0 89.5

Uni3D-L 306.7 46.2 67.6 74.7 86.6 96.3 97.8 58.4 81.4 90.1
MRD-S 22.6 45.2 67.2 74.7 88.5 98.2 99.1 63.0 84.2 91.9
MRD-M 32.3 45.9 67.8 75.1 87.8 96.5 98.0 62.3 82.4 89.9

ULIP+PointBERT 22.6
Ensembled

26.8 44.8 52.6 75.1 88.1 93.2 51.6 72.5 82.3
OpenShape+SparseConv 33.7 43.4 64.8 72.4 83.4 95.6 97.8 56.7 78.9 88.6
OpenShape+PointBERT 32.3 46.8 69.1 77.0 84.4 96.5 98.0 52.2 79.7 88.7

Uni3D-B [59] 88.4 51.7 74.0 80.8 86.3 96.5 97.9 63.8 82.7 90.2
Uni3D-L 306.7 53.1 75.0 81.5 86.3 96.8 98.3 58.2 81.8 89.4
MRD-B 88.4 53.2 75.4 82.1 88.8 97.6 98.5 63.7 84.0 91.5
MRD-L 306.7 53.6 75.7 82.4 87.3 97.4 98.8 64.1 85.7 91.9

by 0.1% and 2.5% respectively. Upon further scaling MRD-B to MRD-L, its
performance improves to 53.6%, surpassing all the competitors. Moreover, even
when trained solely on ShapeNet, a much smaller dataset, MRD still consistently
delivers superior results, outperforming its counterparts by a substantial margin
of 1.7% on the most challenging Objaverse dataset.

4.3 Cross-Modality Retrieval

Considering that previous research assess cross-modal retrieval capabilities pri-
marily relying on qualitative sample visualizations, lacking quantitative compar-
isons, we propose a new quantitative evaluation protocol to fill this gap for val-
idating the effectiveness in text-to-3D retrieval. Utilizing the recently proposed
Cap3D [28] method, which is capable of generating detailed textual descriptions
for 3D data, we produce precise descriptions for the samples in the Objaverse
test set. These descriptions then serve as the foundation for retrieving the most
relevant samples within the Objaverse test set. Subsequently, we compute both
the retrieval accuracy for individual instances and that for corresponding cate-
gories, providing a robust metric to assess the external-text retrieval capabilities
of multi-modal 3D representation learning frameworks. We compare our MRD
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Table 2: Accuracy (%) of external text retrieval from Cap3D to Objaverse.

Method
Instance-wise Accuracy Category-wise Accuracy

Top1 Top3 Top5 Top1 Top3 Top5

OpenShape 15.4 28.9 36.8 49.6 71.1 78.8
Uni3D 18.9 33.8 42.2 55.9 76.4 83.4
MRD 20.5 36.0 44.5 57.9 78.2 84.8

Table 3: Ablation results (%) on various candidate relation representation forms.

Method
Relation Objaverse-LVIS [8] ModelNet40 [47] ScanObjectNN [41]

Source Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

Base None 11.0 20.0 24.6 72.2 85.5 88.8 53.4 73.5 81.9

Euclidean Distance
Intra-Modal

11.3 20.3 24.9 73.0 87.2 90.8 52.1 72.8 84.3
Partial Order 10.0 17.7 21.7 70.6 86.8 90.9 53.1 70.8 79.0

Normalized Similarity 11.3 20.0 24.9 73.1 87.9 91.0 54.6 76.3 83.8

Euclidean Distance
Cross-Modal

11.0 20.2 25.1 72.9 86.8 90.1 53.8 73.1 81.6
Partial Order 10.6 18.6 23.0 71.6 87.0 90.5 55.2 74.0 84.4

Normalized Similarity 11.4 20.3 24.9 72.2 86.7 91.7 52.4 75.9 86.2

with recent state-of-the-art methods, including OpenShape and Uni3D, with the
results presented in Tab. 2.

From Tab. 2, we can find that MRD consistently outperforms its counter-
parts across both metrics, delivering the best performance. Benefiting from its
structural distillation capability, MRD effectively learns the relations within the
textual feature space. This, in turn, enhances its ability to accurately retrieve cor-
responding instances when processing external text descriptions, thereby demon-
strating its effectiveness.

4.4 Ablation Study

Candidate Relation Representation. We evaluate the effects of different
candidate relation representations and their associated distillation losses, as out-
lined in Sec. 3.2, on various test sets, with the outcomes presented in Tab. 3.
From Tab. 3, we can find that incorporating the relational distillation mechanism
leads to improvements in accuracy for most settings. Notably, the most signif-
icant enhancement is achieved when modeling intra- and inter-modal relations
using normalized similarities. This superiority may stem from the ability of nor-
malized similarity-based relation representations, which strikes a more effective
balance between the flexibility of the sample distribution and the consistency
of relational constraints, in contrast to the stricter Euclidean distance and the
more lenient partial order relation, thereby enhancing the performance.

Relation Distillation Strategies. Leveraging the normalized similarity
and its corresponding distillation loss, we conduct ablation experiments on dy-
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Table 4: Ablation results (%) on various relation distillation strategies within MRD
(IR: Intra-modal Relation, CR: Cross-modal Relation, DD: Dynamic Distillation).

Setting Objaverse-LVIS [8] ModelNet40 [47] ScanObjectNN [41]

IR CR DD Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

11.0 20.0 24.6 72.2 85.5 88.8 53.4 73.5 81.9
✓ 11.3 20.0 24.9 73.1 87.9 91.0 54.6 76.3 83.8

✓ 11.4 20.3 24.9 72.2 86.7 91.7 52.4 75.9 86.2

✓ ✓ 11.4 20.7 25.4 73.0 87.1 90.3 53.5 73.3 81.2
✓ ✓ ✓ 11.8 21.2 25.8 74.2 88.3 90.9 55.7 75.5 83.0

Table 5: MAE between the similarity
matrices on ShapeNet.

IR CR DD P2P/I2I P2P/T2T P2T/I2T P2I/T2I

0.36 0.20 0.21 0.17
✓ 0.08 0.24 0.21 0.18

✓ 0.37 0.20 0.19 0.16

✓ ✓ 0.20 0.13 0.20 0.16
✓ ✓ ✓ 0.15 0.14 0.20 0.16

Table 6: Performance (%) when scaling up
the model size in MRD.

Model Depth Width Heads Params MNet40 O-LVIS

MRD-T 6 256 4 5.1M 86.7 47.6
MRD-S 12 394 6 22.6M 88.6 51.4
MRD-M 12 512 8 32.3M 88.0 52.5
MRD-B 12 768 12 88.4M 88.8 53.2
MRD-L 24 1024 16 306.7M 87.3 53.6

namic distillation, with the results presented in Tab. 4. As observed from Tab.
4, simultaneously introducing both intra-modal and cross-modal relation distil-
lation leads to the performance that is less favorable compared to independently
implementing either of the intra-modal or cross-modal constraints, due to the
inconsistency arising from the complex spectrum of mutual relations. Notably,
upon introducing the Dynamic Distillation (DD) mechanism, there is a signifi-
cant gain in performance, demonstrating the efficacy of this strategy.

To quantify the improvements provided by relational distillation more pre-
cisely, we compute the Mean Absolute Error (MAE) between the similarity ma-
trices across both intra- and cross-modal samples on ShapeNet to examine the
effects of incorporating various relations. In Tab. 5, it is evident that IR leads
to a decrease in MAE between intra-modal similarities, while CR slightly re-
duces the divergence of cross-modal similarities. When DD is introduced, MRD
achieves a better balance between multiple intra- and cross-modality relations.

Visualization of Dynamic Weights. We visualize the value changes of the
dynamic weights of MRD-M when trained on ShapeNet and Objaverse in Fig.
4. As shown in Fig. 4, the intra-modal relations tend to mimic the image-image
relations, as they share common information such as textures and geometries be-
tween the 3D and image modalities. In contrast, the cross-modal relations lean
towards synthesizing the text-image relations, likely due to the inherent differ-
ences between textual descriptions and visual appearnaces. Meanwhile, because
of the difference of data distributions of ShapeNet and Objaverse, the dynamic
weights converge to distinct values.
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Scaling up Model Size. We investigate the impact of scaling up the model
size of PointBERT, similar to the way taken in Uni3D and OpenShape. The
hyper-parameters of the model architecture and their corresponding accuracies
are outlined in Tab. 6. Unlike the overfitting issue observed in OpenShape when
scaling PointBERT parameters up to 72M, PointBERT trained with MRD suc-
cessfully scales from 5M to 307M parameters. Additionally, as shown in Fig. 5,
despite that Uni3D utilizes a large-scale image dataset for pre-training, MRD
still outperforms Uni3D with comparable model sizes, demonstrating its superi-
ority.

5 Conclusion and Discussion

We introduce MRD, an innovative approach to acquiring a unified multi-modal
representation of 3D shapes. By distilling both intra-modal and cross-modal
relations from the pre-aligned image and text modalities into the 3D modality,
MRD facilitates the achievement of more discriminative representations. Our
findings demonstrate notable improvements in the zero-shot shape classification
and cross-modal retrieval tasks over previous research, underscoring the superior
capability of MRD in 3D shape understanding.

Looking ahead, several avenues merit further investigation: a) developing ad-
vanced methods for relationship representation and distillation for improved 3D
and multi-modal features; b) enhancing the granularity of relationship charac-
terization to extract richer semantic insights for more robust 3D representations;
and c) improving conflict removal mechanisms to integrate diverse relational rep-
resentations for deeper insight into representational relations across modalities.
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