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Abstract. Multimodal Large Language Models (MLLMs) excel in gen-
erating responses based on visual inputs. However, they often suffer
from a bias towards generating responses similar to their pretraining
corpus, overshadowing the importance of visual information. We treat
this bias as a “preference” for pretraining statistics, which hinders the
model’s grounding in visual input. To mitigate this issue, we propose
Bootstrapped Preference Optimization (BPO), which conducts prefer-
ence learning with datasets containing negative responses bootstrapped
from the model itself. Specifically, we propose the following two strate-
gies: 1) using distorted image inputs to the MLLM for eliciting responses
that contain signified pretraining bias; 2) leveraging text-based LLM to
explicitly inject erroneous but common elements into the original re-
sponse. Those undesirable responses are paired with original annotated
responses from the datasets to construct the preference dataset, which
is subsequently utilized to perform preference learning. Our approach
effectively suppresses pretrained LLM bias, enabling enhanced ground-
ing in visual inputs. Extensive experimentation demonstrates significant
performance improvements across multiple benchmarks, advancing the
state-of-the-art in multimodal conversational systems.
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1 Introduction

The emergence of Large Language Models (LLMs) has marked a significant
milestone in the field of AI, revolutionizing natural language processing and un-
derstanding [8, 10, 21, 41, 49, 56, 57]. These models, trained on vast text corpus
datasets, possess rich world knowledge, making them excel in generating help-
ful and contextually relevant text. With the advancement of LLMs, Multimodal
⋆ Equal Contribution.
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Large Language Models (MLLMs) have seen rapid improvements [1,12,31,36,41,
54,69], which typically process the images using a pretrained visual encoder (e.g.,
vision transformer) and feed them to the LLM as token embeddings along with
the text token embeddings. These models extend the capabilities of LLMs to
engage in interesting conversations with image inputs, which enables various po-
tential applications such as autonomous driving [14] and medical assistants [30].

Stage 1: Large Scale of
Text Corpus Pre-training

Stage 2: Small Scale
Multimodal Alignment

Query: The object flying
in the sky is a …

Input Image MLLM
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r
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ne

Ve
hi
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Token Probs

Training Inference

Fig. 1: Illustration of pretraining bias during MLLM’s inference. Due to the difference
in data scales between text-based pretraining and multimodal alignment, the MLLM
is prone to generating contents that are frequently seen during its pretraining stage.

Despite the fascinating capabilities of state-of-the-art Multimodal Large Lan-
guage Models (MLLMs), they exhibit a susceptibility to producing erroneous or
hallucinatory responses that do not correspond to the input image. For instance,
MLLMs often generate non-existent objects, incorrectly identify attributes such
as shape or color, or provide inaccurate object counts. This issue renders MLLMs
unreliable and impractical for real-world applications, particularly those with
high stakes, such as autonomous driving systems [15] or medical assistants [30].

We hypothesize one of the major causes of this phenomenon is the bias inher-
ited from LLM’s pre-training stage. Inspired by recent research in jailbreaking
of LLMs [17], we point out that MLLMs can be treated as mixture models, con-
sisting of both distributions learned from the pretraining text corpus, as well
as multi-modal alignment tuning. Specifically, the LLM undergoes an extensive
pretraining stage with the large scale text corpus. Comparatively, the multi-
modal alignment stage in current SOTA MLLMs utilizes much fewer training
samples and shorter training period. The gap between the training scales of the
two phases inevitably makes the pretraining distribution dominate the gener-
ation of MLLM under certain scenarios, especially when the image is of lower
quality or is not sufficiently trained during multi-modal alignment.

Motivated by the reasons above, we introduce a novel stand point to tackle
the aforementioned problem. Our study draws an analogy between a blind person
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who, even after a cornea transplant, still instinctively prefers walking on tactile
paving. We argue that the distribution bias of MLLM stemming from pretraining
can be viewed as an inherited “preference” derived from past prevalent behavior.
Conversely, generating responses based on image inputs represents a new “prefer-
ence” that the model must adapt to. To effectively address the current challenges
faced by MLLMs, we propose to use the preference learning techniques from re-
inforcement learning (RL) [11, 70], which is the leading technique to adapt the
model generation toward the goals of being preferred. The effectiveness of the
preference learning has been showcased with its tremendous success in Chat-
GPT [41], Claude [2], and Gemini [23], and is known to be far more efficient
than the SFT [47]. The primary goal of this paper is to extend these techniques
to align the different modality of MLLMs. Specifically, the most standard and
popular preference learning [2, 42,57] consists of three steps:

– construct a preference dataset, which consists of a pair of samples and the
preference signal indicating which one is more preferred;

– model a reward function based on the preference dataset;
– optimize the reward function using proximal policy optimization (PPO) [51].

While there are a diverse set of preference datasets in the LLMs, the preference
learning in MLLMs is largely under-explored. To this end, our first contribution
is an innovative strategy to obtain comparison pairs based on existing datasets
with ground truth annotations. Specifically, we regard the existing datasets with
ground truth annotations as positive responses, and generate negative responses
by 1) Image-weakened prompting: we utilize distorted images as "weakened vi-
sual prompts" to elicit responses from the MLLM, revealing the inherent bias
from pretraining. These responses contain a higher degree of erroneous patterns
and align more closely with the pretraining distribution, while still being rele-
vant to the image input. 2) LLM bias injection, we leverage the LLM component
of the MLLM to directly modify the original responses using carefully designed
prompts and few-shot examples, resulting in negative responses that exhibit sim-
ilarities but differ in specific details from the original annotations. This collection
of negative responses reveals a more pronounced bias towards the pretraining dis-
tribution, thereby exposing potential weaknesses and unreliability of the MLLM.

In terms of algorithmic design, it is known that the PPO algorithm is unstable
and sample-inefficient in aligning LLMs [9] and imposes a heavy burden on the
GPU resources as it requires loading multiple (typically four) models at the same
time [16, 66]. In contrast, the recently proposed direct preference optimization
(DPO) combines the reward modeling with the policy optimization into one
step, and directly learns from the preference dataset (hence the name). The
DPO algorithm has emerged as a promising alternative to RLHF due to its
stability and competitive performance. Motivated by this, we propose a variant
of DPO, referred to as the Bootstrapped Preference Optimization (BPO),
to extend the techniques to the MLLMs, which can significantly boosts the model
performance as evaluated by multiple popular visual understanding benchmarks,
while reducing object hallucinations by a large margin. To summarize, we make
the following contributions in this paper:
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– Firstly, make take a novel view and formulate the multimodal alignment into
preference learning task, where the pretraining bias and visual grounding are
treated as the old and new preferences, respectively.

– Secondly, we introduce a novel approach to construct preference datasets
automatically at scale. The collected negative samples effectively expose the
pretraining bias of MLLM.

– Lastly, we demonstrate through empirical evidence that our approach ef-
fectively enhances the grounding of MLLM on image inputs and results in
performance boost in multiple benchmarks.

Fig. 2: We demonstrate a few examples of responses generated before and after BPO.
The responses generated by the MLLM after BPO improves the grounding on visual
inputs, which improves visual faithfulness and results in less erroneous outputs.

2 Related Work

Multi-Modal Large Language Model. In recent years, transformative advance-
ments have been witnessed in the development of large language models (LLMs) [2,
5,10,26,42,49,52,57]. These advancements have greatly elevated the capabilities
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of language understanding and generation, showcasing near-human proficiency
across diverse tasks. Concurrently, the success of LLMs has inspired explorations
into the incorporation of visual modality into LLM, leading to the emergence
of multi-modal large language models (MLLMs) [1, 12, 12, 19, 20, 31, 36, 41, 43,
45, 54, 69]. These models have demonstrated remarkable abilities in engaging in
dialogue based on visual inputs.

Alignment of Large Language Model. Alignment in agent behavior, originally in-
troduced by [27] ensures that actions align with human intentions. Reinforcement
Learning from Human Feedback (RLHF) approaches, such as those presented
in [2, 3, 22, 40, 42, 50, 53, 59, 70], utilize methods like PPO [51] to maximize the
rewards of model outputs. RRHF [66] and RAFT [13, 16, 58] leverage the ca-
pabilities of large language models (LLMs) to bootstrap responses, followed by
fine-tuning the model on the subset of collected samples with high rewards. [46]
propose direct preference optimization (DPO), which directly learns from the
offline dataset with a clever reparameterization technique. The DPO is later ex-
tended to the online setting by Xiong. et. al [60]. Recently, several works have
investigated the vulnerability of MLLM against malicious image inputs [37, 44]
More recently, Silkie [32] suggests curating preference data to fine-tune multi-
modal large language models (MLLMs) using responses generated by a pool of
different MLLMs, which are scored by GPT4-V.

Image Distortion

The image showcases a person
riding a horse. The horse appears
to be calm and is standing in an
open field with trees in the
background. There's a vehicle in
the background, perhaps a truck or
a tractor to the right of the horse.

The image showcases a person,
seemingly to be standing beside
a horse calmly. The horse is
black, standing in an open area
with lake and flowers in the
background.

Modify

The image showcases a bear,
seemingly in a playful or curious
stance, sitting atop a horse. The
horse is brown, standing in an open
area with trees and mountains in
the background.

Ground Truth

Query: Describe the image.

Query: Describe the image.

MLLM

LLM

Fig. 3: The generation pipeline for negative response. Top: Image weakened prompt-
ing, which elicits responses containing pretraining bias by injecting noises into the
image features; Bottom: LLM-bias injection, which explicitly modifies the details of
the ground truth responses by injecting erroneous but common elements.
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Hallucination in Multimodal Large Language Models. Recently, many efforts
have been dedicated to alleviate the hallucination of MLLMs, which may man-
ifest across various aspects, including object existence, object count, attribute,
and relation between objects [24, 33, 35]. Woodpecker [62] leverages external
tools such as object detectors and LLM to correct the hallucination in MLLM’s
responses. Despite the effectiveness, the external tools make this method inflex-
ible and does not improve the MLLM’s true performance. LRV-Instruction [35]
proposes to conduct supervised fine-tuning (SFT) on the MLLM with positive
and negative instructions that focus on the semantics of objects. However, SFT
on these instructions hinder the capability of MLLMs for generating detailed re-
sponses. Visual contrastive decoding [28] proposes to correct the MLLM’s output
bias by subtracting the output from the MLLM using distorted image as input,
which requires inference two models for each token. LLaVA-RLHF [55] introduce
RLHF into MLLM training pipeline by training a reward model, which reduces
hallucinatin via PPO. However, this approach requires manually labelled data
for reward model training.

Generating Training Data from LLM. Owing to the advent of powerful large
language models (LLMs), a new line of research that aim to automatically boot-
strapping training data from LLMs has drawn lots of attention. For instance,
several works propose generating training data from a more powerful LLM to
tune another student language model [38, 39, 61]. Other works propose to syn-
thesize data with better quality using more advanced techniques [18,39], such as
bi-level optimization. Recently, LLMs are used to synthesize data to improve the
model’s reasoning ability [19,63]. In our work, we propose leveraging the model
to bootstrap negative responses for preference learning.

3 Scalable Preference Dataset Generation

A preference dataset D consists of numerous tuples, such as (I, q, r1, r2, p), where
I is the image, q is the query, r1 and r2 are the two responses, and p is the
preference signal where p = 1 indicates that r1 ≻ r2 given (I, q), while p = 0
stands for r1 ≺ r2.

Annotating preference datasets manually can be a laborious and time con-
suming process. For instance, previous work [55,64] hire crowd workers to identify
potential hallucinations in the model’s responses, where the responses associated
with less hallucination are assigned with higher scores. The labelled responses
are subsequently leveraged to construct the preference dataset for training the
reward model. This costly human-labelling process prohibits the scalability of
such approaches.

On the other hand, there are abundant existing datasets targeted for super-
vised fine-tuning, which are annotated with high-quality image-question-answer
triplets. For example, LLaVA [36] and MiniGPT4 [69] utilize the fine-grained an-
notations (e.g., captions, bounding boxes) to generate high-quality captions and
QA pairs that are associated with images. ShareGPTV [6] leverages the powerful
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Describe the image in detail.

This image features an old, abandoned motorcycle parked
on the sidewalk next to a building. The motorcycle is
positioned close to the door of a pink building, creating a
sense of nostalgia and intrigue. The building itself is
covered in graffiti, giving it a unique and artistic
appearance.

This scene features a black and white motorcycle parked
next to a large pink building. The motorcycle is positioned
near a door, possibly the entrance to the building. The door
itself is also painted pink, giving the building a unique
appearance.

Noise Steps=100

Noise Steps=300

The image features a small motorcycle parked outside a
building, with a pink door in the background. The
motorcycle is positioned in front of the door, and it
appears to be leaning against a wall. There are also a
couple of benches visible in the scene, one closer to the
motorcycle and the other further away. A few birds are
present in the scene, with one near the left side of the
image and another on the right side. Additionally, a
person can be seen standing near the left side of the
image, possibly observing the motorcycle or the
surroundings.

Noise Steps=900

Fig. 4: The MLLM-generated responses with continuously growing steps of added
noise. We can see that higher level of noise leads to more decline in visual faithfulness
and the generation of hallucinated objects. These responses expose the over-reliance
on knowledge learning from pretraining corpus, which is leveraged to suppress the un-
wantede pretraining bias via our BPO.

GPT4-V to produce high-quality captions for images. Given that the annotations
in these high-quality datasets are well grounded to the image contents, they can
readily serve as the positive responses in preference pairs.

3.1 Negative Response Collection

To automatically collect negative responses at scale without excessive cost, we
propose the following strategies.

Image-Weakened prompting: To expose the pretraining bias and poten-
tial weaknesses of MLLMs, we apply distortions to the image features before
providing them to the MLLMs for inference. Specifically, inspired by [28], we
apply gaussian mask on the image embeddings from CLIP model, which is anal-
ogous to the forward process of diffusion models [25].

In the context of MLLMs, image input can be treated as a part of the prompt,
which brings the MLLM’s output distribution to the visual domain. After being
applied with distortion, the strength of the image becomes weaker, which makes
the model more likely to be overwhelmed by the pretraining distribution, further
leading to inaccurate responses. As shown in figure 5, the MLLM becomes more
likely to generate tokens commonly seen in pretraining corpus when the image is
weakened by noise. Therefore, those responses can well expose the pre-training
bias of the MLLM. We also visualize the responses generated using distorted
image inputs in figure 4.

Error Injection: We take a more direct approach by leveraging the LLM
component of the MLLM to explicitly modify the ground truth responses. Specif-
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Input Image

Query: What is on the back of the 
horse? Answer with one word.

v

Fig. 5: The effect of image-weakened prompting. We observe the change in logits from
the MLLM’s output by continuously injecting higher level of noise into the image
features. The log likelihood of the bear starts to decrease when the noise gets higher,
and the likelihood of words such as “Person”, “Man”, “People” and “Woman” starts to
increase, and finally take over “bear”. This demonstrates the pretraining bias starts to
overwhelm image information when the image is weakened.

ically, we prompt the LLM to tweak the details in the responses, such that the
modified responses are similar to the original ones, but different from some as-
pects (e.g., object existence, object attributes, object counts). We prompt the
LLM to ensure the modified response is logical and common in reality, which is
likely to be close to the pretraining distribution (prompts shown in the figure 6).

3.2 Data Sources

We collect ground truth annotations from the following datasets as shown in
table 1: 1) ShareGPT-V [6]: a captioning dataset constructed by prompting
responses from the powerful GPT4-V, which contains detailed responses with
rich visual concepts; 2) LLaVAR [68]: a VQA dataset consisting of images with
rich texts; 3) LLaVA-Instruct [36]: the original instruction tuning dataset from
LLaVA, which comprises of image-based conversations.

Table 1: Data sources of our preference dataset. We uniformly sample data from the
popular visual instruction tuning datasets.

Source Content Samples Num
ShareGPT-V [6] High-quality image captioning dataset annotated by GPT4-V 57906
LLaVAR [68] VQA dataset consisting of images with rich texts 55445
LLaVA-Instruct [36] Instruction dataset comprising of image-based conversations 54359
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Fig. 6: Prompting and few-shot examples used during error injection process.

4 Direct Preference Optimization

To facilitate the preference learning, one common assumption is that Bradley-
Terry (BT) model [4,42,46,60], which states that there exists a reward function
ϕ∗(I, q, r) → [0, 1] so that the preference satisfies

P(r1 ≻ r2|x, r1, r2) = exp(ϕ∗(I, q, r1))

exp(ϕ∗(I, q, r1)) + exp(ϕ∗(I, q, r2))

= σ
(
ϕ∗(I, q, r1)− ϕ∗(I, q, r2)

)
,

(1)

where σ(z) = 1/(1+exp(−z)) is the sigmoid function. Essentially, the BT model
implies that the preference probability is a non-decreasing and non-linear trans-
formation (the sigmoid function) of the reward difference. This also partially
explains why we choose to generate negative samples by error injection or imag-
weakened prompting. Otherwise, if the two samples are of similar quality, even
the preference signal from the human can also be noisy, which may hurt the
subsequent preference learning.

Under the BT model, the learning objective of preference learning [2,42,46,60]
is

J(π) = EI,q∼d0

[
Er∼π(·|I,q)[ϕ

∗(I, q, r)]︸ ︷︷ ︸
Optimize the reward

− ηDKL(πθ(·|I, q)∥π0(·|I, q))︸ ︷︷ ︸
Stay close to the initial model

]
, (2)

where η > 0 is the KL penalty coefficient, π0 is the initial model, πθ is the
model to optimize. After obtaining the preference dataset D = {(I, q, r1, r2, p)}
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, in the classic framework [2, 42, 57], two stages of training can be performed:
1) the reward model πθ can be trained under the Bradley-Terry (BT) model; 2)
train the model πθ with online RL algorithm, such as proximal policy optimiza-
tion (PPO) [51]. However, previous research has found that training the reward
model with multi-modal inputs leads to more severe reward hacking [55], since
the continuous nature of image inputs makes the modelling of preference more
challenging. Meanwhile, the instability of DRL-based PPO requires extensive
efforts to tune the model to its best performance.

Recently, a more easy-to-tune approach has been proposed for aligning the
preference, which is termed Direct preference optimization (DPO). This method
prevents the need for training an external reward model by directly fine-tuning
it on an offline preference dataset. The key insight is that the maximization of
Equation (2) admits a computationally intractable solution [67]:

π∗(r|I, q) = 1

Z(I, q)
π0(r|I, q) exp(

1

η
ϕ∗(I, q, r)),

where Z(I, q) =
∑

r′ π0(r
′|I, q) exp( 1ηϕ

∗(I, q, r′)) is the normalization constant
that cannot be computed in practice. Then, we may solve the reward as

ϕ∗(I, q, r) = η log
π∗(r|I, q)
π0(r|I, q)

+ η logZ(I, q). (3)

Plugging Equation (3) back into the Bradley-Terry model in Equation (1), we
can now conduct maximal likelihood estimation (MLE) in the policy space, i.e.,
the space of generative model, directly by minimizing the following loss function
(the negative log-likelihood):

∑
(I,q,rw,rl)∈D

−
[
log σ

(
η log

πθ(rw|I, q)
π0(rw|I, q)

− η log
πθ(rl|I, q)
π0(rl|I, q)

)]
, (4)

where rw, rl is the positive (winning) and negative (losing) response, respectively.
Interpretation As shown in Equation (4), the first term boosts the reference-
normalized log-likelihood of the positive response, while the second term penal-
izes that of the negative response. Optimizing Equation (4) increases the margin
between the positive sample and negative sample, thus improving the preference
for grounding on visual inputs. One notable feature is the presence of the KL
divergence, which is critical for preventing the model from overfitting and dis-
tribution collapse. Without the KL-penalty, the optimal policy of Equation (2)
is greedy and deterministic in terms of the reward function, which deviates from
the principle of generative models and can lead to an inferior performance with-
out additional regularization [16,34].

The DPO formulation is related to contrastive learning [7] to some degree,
which also leverages pairs of positive and negative samples, i.e., a sample’s rep-
resentation should be closer to its positive references, and further from negative
references. The difference mainly lies in the following: contrastive learning is an
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unsupervised learning framework, which utilizes the samples’ representation dis-
tances between their positive and negative references to optimize the decision
boundary. On the other hand, DPO utilizes preference datasets with labelled
preference dataset and directly optimize the model’s output probability.

Table 2: Results on MM-Vet and LLaVA-Wild benchmarks. We observe consistent
performance boosts over baseline models across all tasks on the two benchmarks. No-
tably, our tuned LLaVA1.5-7B-BPO even surpasses the larger LLaVA1.5-13B .

MM-Vet Object-HalBench LLaVA-Wild
Model Rec OCR Know Gen Spat Math Total Resp↓ Obj↓ All

MiniGPT-4-8B [69] 27.4 15.0 12.8 13.9 20.3 7.70 22.1 - - -
BLIP-2-12B [31] 27.5 11.1 11.8 7.00 16.2 5.80 22.4 - - 38.1
LLaVA-7B [36] 28.0 17.1 16.3 18.9 21.2 11.5 23.8 - - -

MiniGPT-4-14B [69] 29.9 16.1 20.4 22.1 22.2 3.80 24.4 - - -
Otter-9B [29] 27.3 17.8 14.2 13.8 24.4 3.80 24.7 - - -

InstructBLIP-14B [12] 30.8 16.0 9.80 9.00 21.1 10.5 25.6 - - 58.2
LLaVA-13B [36] 30.9 20.1 23.5 26.4 24.3 7.70 26.4 63.0 29.5 67.3

LLaVA1.5-7B [36] 37.0 22.9 16.8 20.2 25.7 7.70 31.7 45.9 23.7 63.8
LLaVA1.5-13B [36] 41.1 29.1 23.0 24.2 35.6 7.70 36.8 45.2 21.8 71.2

LLaVA1.5-7B-BPO [36] 41.3 29.5 24.8 27.8 34.8 11.5 36.8 31.9 15.1 71.6
LLaVA1.5-13B-BPO [36] 46.9 31.6 34.6 37.2 36.1 11.5 41.4 27.3 12.9 74.4

5 Experiments

5.1 Implementation Details

We finetune the MLLM from checkpoints of LLaVA1.5 [36]. We adopt parameter
efficient training technique to save computational cost and alleviate catastrophic
forgetting. Specifically, we use LoRA with rank set to 64. We use learning rate
of 2e−6 and train the model for 2 epochs. The model is trained on 8 A40 GPUs
with 48G memory each, the batch size per GPU is set to 4. The training takes
around 17 hours to complete for 7B model, ad 28 hours for 13B model.

5.2 Evaluation Benchmarks and Metrics

Helpfulness Evaluation. We use the following benchmarks for evaluation of
MLLM’s helpfulness: 1) LLaVA-Bench [36] is a real-world benchmark consist-
ing of 60 tasks for testing LLaVA’s visual instruction-following and question-
answering abilities in natural environments; 2) MM-Vet [65] evaluates multi-
modal understanding by measuring six core visual-language capabilities across
128 tasks. It offers a comprehensive assessment that combines math, reasoning,
and visual knowledge;
Visual Truthfulness Evaluation. For evaluation of visual truthfulness, we
leverage Object HalBench [48], which aims to assess the MLLM’s hallucination
in their generated image descriptions, we follow [64] to apply 8 diverse prompts



12 Pi et al.

for providing detailed descriptions of images. We evaluate hallucinations at both
the response level (the percentage of responses that contain hallucinations) and
the object level (the percentage of hallucinated object mentions compared to all
object mentions). For all benchmarks, we leverage the powerful GPT4 as judge.

Qualitative Results We showcase a few examples of MLLM-generated re-
sponses before and after BPO tuning in Table 2. We observe that after BPO
tuning, the MLLM is able to produce responses that are more grounded with
the visual inputs and contain less erroneous elements.

5.3 Results on Visual Helpfulness and Truthfulness

We evaluate the effectiveness of our proposed BPO on the popular MM-Vet and
LLaVA-Wild benchmarks for helpfulness, and Object-Hallucination bench for
visual truthfulness in table 2. Compared with the baseline models, we observe
consistent performance boosts across all tasks on the three benchmarks. Sur-
prisingly, our tuned LLaVA1.5-7B-BPO even surpasses the larger LLaVA1.5-13B
baseline on majority of the tasks. Therefore, after strengthening the preference
of MLLM over visual inputs, both the helpfulness and truthfulness of the MLLM
can be greatly boosted.

Table 3: Comparison with SFT baselines. The SFT datasets are constructed by ex-
tracting the positive responses from the preference dataset.

Model Rec OCR Know Gen Spat Math Total

LLaVA1.5-7B 37.0 22.9 16.8 20.2 25.7 7.70 31.7
LLaVA1.5-13B 41.1 29.1 23.0 24.2 35.6 7.70 36.8

LLaVA1.5-7B-SFT 35.9 28.4 21.0 25.0 33.1 7.70 33.3
LLaVA1.5-13B-SFT 44.3 27.0 28.1 29.9 32.1 7.70 38.3

LLaVA1.5-7B-BPO 41.3 29.5 24.8 27.8 34.8 11.5 36.8
LLaVA1.5-13B-BPO 46.9 31.6 34.6 37.2 36.1 11.5 41.4

5.4 Comparison with SFT

A straightforward baseline approach would involve supervised fine-tuning, aim-
ing to address the questions: “How effective is the preference learning algorithm?”
and “How significant are the negative responses?” To validate this, we extract
solely the positive responses from our preference dataset and proceed with SFT.
As demonstrated by the results in table 3, we notice only a marginal improve-
ment in performance compared to the baseline methods. This demonstrates the
indispensability of negative responses and preference learning.



Bootstrapped Preference Learning 13

5.5 Comparison with Self-generated Response

Another straightforward question is whether signifying the pre-training bias in
MLLMs is necessary. We compare the results achieved on LLaVA-7B by directly
using the responses bootstrapped from MLLMs as negative samples with re-
sponses generated using image-weakened prompting in table 4, which verifies
that purposefully exposing pretraining bias helps achieve better performance.

Table 4: Comparison with self-generated responses without image weakening.

Model Rec OCR Know Gen Spat Math Total

Baseline 37.0 22.9 16.8 20.2 25.7 7.70 31.7

Self-generated 38.6 21.7 21.5 20.8 28.3 1.90 32.4

Image-Weakened 38.9 23.5 24.8 21.2 28.5 7.70 34.3

Fig. 7: The value of log probabilities for responses throughout the training process.
Left: positive responses for BPO; Middle: negative responses for BPO; Right: ground
truth responses for supervised fine-tuning (SFT).

5.6 Comparison of Loss Curve

Figure 7 visualizes the log probabilities of responses throughout the training
process. The left graph displays the log probabilities corresponding to positive
responses during the training of our model. In the middle graph, the log proba-
bilities for negative responses during the same training phase are presented. On
the right side, the log probabilities for ground truth responses during supervised
fine-tuning (SFT) are shown. We plot the mean value of every interval spanning
100 steps, and add visualize the standard deviation with the error bars.

It is noteworthy that the log probability for negative responses consistently
decreases during the process of BPO, while the log probability for positive re-
sponses remains relatively stable. Conversely, the log probability for ground truth
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responses steadily increases for SFT. This observation suggests that preference
learning aims to establish a clear margin between the likelihoods of positive
and negative responses, effectively suppressing the biases originating from pre-
training. On the other hand, the supervised fine-tuning (SFT) approach aims
to memorize the ground truth annotations, which continuously increases the
likelihood of ground truth responses, potentially leading to overfitting and the
occurrence of catastrophic forgetting [34].

Fig. 8: We show the performance gain introduced by BPO and SFT on LLaVA-7B and
LLaVA-13B, respectively. BPO consistently outperforms SFT across all dataset sizes.

5.7 Effect of Dataset Sizes

We examine the improvement brought by BPO with various sizes for preference
dataset and compared to that of supervised fine-tuning in table 8. We find that
larger scale of preference data indeed leads to better performance. In addition,
the effectiveness of BPO consistently dominate that of SFT, which verifies that
preference learning has better sample efficiency than the SFT counterpart.

6 Conclusion

In conclusion, our paper introduces Bootstrapped Preference Optimization (BPO)
as a solution to mitigate bias in Multimodal Large Language Models (LLMs)
when generating responses based on visual inputs. By curating paired prefer-
ence datasets through bootstrapping negative responses from the model itself,
we encourage the model’s grounding in visual information by suppressing the
preference for pretraining bias. Our approach leads to significant performance
improvements across multiple benchmarks and advancing the state-of-the-art in
multimodal conversational systems. We hope that our method will encourage
more future research towards stronger multimodal alignment.
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