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Abstract. Pre-trained vision-language models, e.g. CLIP, have been in-
creasingly used to address the challenging Open-Vocabulary Segmenta-
tion (OVS) task, benefiting from their well-aligned vision-text embedding
space. Typical solutions involve either freezing CLIP during training to
unilaterally maintain its zero-shot capability, or fine-tuning CLIP vision
encoder to achieve perceptual sensitivity to local regions. However, few of
them incorporate vision-text collaborative optimization. Based on this,
we propose the Content-Dependent Transfer to adaptively enhance each
text embedding by interacting with the input image, which presents a
parameter-efficient way to optimize the text representation. Besides, we
additionally introduce a Representation Compensation strategy, review-
ing the original CLIP-V representation as compensation to maintain the
zero-shot capability of CLIP. In this way, the vision and text represen-
tation of CLIP are optimized collaboratively, enhancing the alignment
of the vision-text feature space. To the best of our knowledge, we are
the first to establish the collaborative vision-text optimizing mechanism
within the OVS field. Extensive experiments demonstrate our method
achieves superior performance on popular OVS benchmarks. In open-
vocabulary semantic segmentation, our method outperforms the previous
state-of-the-art approaches by +0.5, +2.3, +3.4, +0.4 and +1.1 mIoU,
respectively on A-847, A-150, PC-459, PC-59 and PAS-20. Furthermore,
in a panoptic setting on ADE20K, we achieve the performance of 27.1
PQ, 73.5 SQ, and 32.9 RQ. Code will be available at MAFT-Plus.

Keywords: Open-Vocabulary Segmentation · Fine-tuning

1 Introduction

Segmentation stands as the most popular basic topics in computer vision, tra-
ditional segmentation models [4, 10, 14, 15, 43] are only capable of segmenting
a few predefined categories within a closed vocabulary [3, 9], notably smaller
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Fig. 1: Different learning frameworks for open-vocabulary segmentation, from the per-
spective of whether to freeze CLIP. (a) The "frozen CLIP" paradigm. [22, 25, 36, 37]
(b) Fine-tuning CLIP-V [18]. (c) Our MAFT+ framework enables to optimize both
CLIP-V and CLIP-T.

than the human-used categories for describing the real world. Therefore, open-
vocabulary segmentation (OVS) [2, 12, 13, 31] is introduced to segment objects
using arbitrary categories described by texts.

Recently, large-scale visual-language pre-training models (e.g. CLIP [26] and
ALIGN [17]) learn representation with cross-modal alignment and show strong
zero-shot capability, leading to the increased adoption for tackling the challeng-
ing OVS task [8, 22, 25, 36]. A mainstream solution follows the "decoupling"
paradigm, which executes the open-vocabulary segmentation with two steps:
1) employing a Proposal Generator to produce class-agnostic mask proposals
and 2) leveraging a pre-trained CLIP to classify each mask proposal via simi-
larity matching in the aligned image-text feature space. The above-mentioned
paradigm can be categorized into two groups hinges on whether CLIP is frozen
during the training process, as depicted in Fig. 1a, b.

In order to retain the strong zero-shot capability of CLIP when classify-
ing mask proposals, most previous works [22, 25, 36, 37] choose to freeze the
pre-trained CLIP model (Fig. 1a). They execute with either masked-crops or
masked-attention, when processing images and masks within CLIP-V. Consid-
ering the domain gap between image-level pre-training of CLIP and pixel-level
application of segmentation, these approaches compromise the representational
ability of CLIP, and fail to fit the distribution of segmentation tasks well. Recent
work MAFT [18] highlights the frozen CLIP is insensitive to different mask pro-
posals and often yields similar predictions. It designs a mask-aware fine-tuning
strategy to enhance the sensitivity of CLIP-V to local regions (Fig. 1b). While
MAFT partially addresses the insensitivity issue, it comes with some new prob-
lems: 1) only updating CLIP-V constrains the overall optimization space, thereby
limiting the alignment of vision and text representation. 2) fine-tuning CLIP-V
on downstream datasets leads to the degradation of generalization ability.

To address the aforementioned problems, we introduce a collaborative Vision-
Text representation fine-tuning framework as the enhanced version of MAFT,
named MAFT+. As shown in Fig. 1c. Specific to enhance the alignment of vision-



MAFT+ 3

text representation, we incorporate CLIP-T into the fine-tuning process to con-
currently optimize the text representation. This vision-text joint optimization
alleviates the training complexity and enhances the vision and text alignment.
Considering the challenging GPU memory requirements for fine-tuning CLIP-T,
we introduce a Content-Dependent Transfer (CDT) following CLIP-T to opti-
mize text representation in a parameter-efficient way. CDT utilizes Transformer
Layers to condition text embeddings on each input image rather than fixed
once generated by CLIP-T, mitigating the computational burden while preserv-
ing the effectiveness of the fine-tuning process. Moreover, to maintain the zero-
shot capality during CLIP-V fine-tuning, we draw inspiration from preventing
Catastrophic Forgetting [23] in continual learning, and devise a Representation
Compensation (RC) strategy. This strategy aims to preserve CLIP’s zero-shot
capability by reviewing the pre-trained representation of an original CLIP-V as
a form of compensation.

Overall, our contributions are summarized as follows:
– Our MAFT+ represents the first collaborative framework to jointly opti-

mize vision-text representation in OVS. This collaborative design mitigates
training complexity and enhances alignment in the vision-text feature space.

– The Content-Dependent Transfer is proposed to unleash the optimization
potential of CLIP-T through parameter-efficient fine-tuning. The Represen-
tation Compensation achieves effective CLIP-V fine-tuning while maintain-
ing the original zero-shot capability.
We evaluate our MAFT+ on the commonly used open-vocabulary semantic

and panoptic segmentation benchmarks: Pacal-Context [24], Pascal-VOC [9],
and ADE20K [45]. Compared with the prior open-vocabulary semantic results,
MAFT+ enhances the performance of A-847 [45], A-150 [45], PC-459 [24], PC-
59 [24] and PAS-20 [9] datasets by +0.5, +2.3, +3.4, +0.4 and +1.1 mIoU
respectively. Furthermore, we conduct experiments in a panoptic setting, where
MAFT+ achieves the performance of 27.1 PQ, 73.5 SQ, and 32.9 RQ on the
ADE20K dataset. Notably, our approach outperforms the existing OVS methods
and establishes new state-of-the-art results across all evaluated datasets.

2 Related Work

Open-Vocabulary Segmentation [28] is established to break category re-
strictions and perform segmentation across arbitrary categories. Earlier works
[2, 12, 21, 31, 33] use large pre-trained vision-language models to perform open-
vocabulary segmentation, they leverage rich alignment features from image-text
pairs. Recent approaches [5,8,11,18,22,25,34–37] decouple the open-vocabulary
segmentation into mask proposals generation and mask proposals classification,
they first generate a series of mask proposals and then utilize CLIP [26] or
ALIGN [17] for classification. Specifically, Zegformer [8] first uses mask&crop
to get sub-images based on mask proposals, feeding them into CLIP for mask
classification. The following approaches ZSSeg [36] and OVSeg [22], train CLIP
adapters to boost performance. In order to improve the classification ability
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of the vision-language models, OpenSeg [11] takes extra image-caption pairs to
scale up training data. FreeSeg [25] unifies semantic, instance, and panoptic tasks
and performs fusion training. ODISE [34] utilizes a strong text-to-image diffu-
sion model [27] to obtain a well-aligned image-text feature space. SAN [35] and
FC-CLIP [37] design the end-to-end frameworks by exploiting a single frozen
CLIP as the backbone. Recently, MAFT [18] introduces a CLIP-V fine-tuning
strategy, allowing CLIP-V to be sensitive to different mask proposals.
Pre-trained model fine-tuning is widely used for fitting the distribution
to downstream tasks. Specific to segmentation, traditional close-set methods
[4, 14, 15, 43] typically use a lower learning rate (e.g. 1

10 ) to fine-tune the image
encoder, transferring pre-trained knowledge to segmentation tasks. However, this
strategy may be suboptimal for data-limited scenarios such as few-shot segmen-
tation, zero-shot segmentation and incremental segmentation due to the daunt-
ing overfitting problem. To tackle this, SVF [29] fine-tunes only a subset of
parameters in the pre-trained image encoder, adapting pre-trained knowledge
to few-shot segmentation. [22] applies prompt-tuning to learn image prompts
using annotated data, adapting CLIP-V to masked images. Some continual seg-
mentation approaches utilize techniques like contrastive learning [40–42], distil-
lation [38] and EMA [32] to avoid catastrophic forgetting.

In a recent development, MAFT [18] conducts a mask-aware CLIP fine-tuning
strategy by aligning CLIP’s classification score with the IoU score. Although this
approach partially adapts CLIP-V to segmentation tasks, it exclusively optimizes
CLIP-V representation, potentially amplifying the training difficulty and risking
overfitting on fixed text embeddings. This observation motivates our exploration
of collaborative optimization strategies for both vision and text representation.

3 Preliminary

Problem Setting. Open-vocabulary segmentation addresses the task of train-
ing a segmentation model capable of segmenting arbitrary objects using text
descriptions. Given two category sets Ctrain and Ctest, where Ctrain and Ctest

are unequal in terms of object categories (Ctrain ̸= Ctest). The model is trained
on Ctrain and directly tested on Ctest. Typically, Ctrain and Ctest are described
by noun words (e.g. sky, sea, mount...).
mask-aware Loss Function. [18] proposes a mask-aware loss (Lma) to fine-
tune CLIP-V for sensitivity to local regions. The primary objective of Lma is
to assign high classification scores to high-quality proposals and low scores to
low-quality proposals. This is achieved by utilizing the Intersection over Union
(IoU) score SIoU derived from ground-truth as supervision and aligning it with
the CLIP classification score Scls to induce mask awareness. The mask-aware
loss is calculated using the SmoothL1 function:

Lma = SmoothL1(Scls, SIoU ) (1)

In this paper, we use Lma to fit the distribution of CLIP with OVS. Furthermore,
we delve into CLIP fine-tuning techniques, and propose a novel CLIP fine-tuning
strategy by collaboratively optimizing the distribution of CLIP-V and CLIP-T.
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Fig. 2: Overview of the MAFT+. We use CLIP-V as the backbone to extract image
features. A Proposal Generator is trained to generate mask proposals. The Representa-
tion Compensation strategy reviews the vision representation to preserve the zero-shot
capability of CLIP (red part); the Content-Dependent Transfer enables the text em-
beddings conditioned on input image, and achieves text representation optimizing in a
parameter-efficient fine-tuning way. (blue part).

4 Methodology

We introduce MAFT+, a method for collaboratively optimizing CLIP’s vision
and text representation. The complete framework of the MAFT+ is shown in
Fig. 2, we use the Convnext-Large CLIP model for illustration. Within MAFT+,
CLIP-V serves as the vision backbone, and a Proposal Generator is trained to
generate class-agnostic mask proposals (Sec. 4.1). Simultaneously, the repre-
sentation of CLIP-V and CLIP-T is collaboratively optimized. We introduce
the Representation Compensation (RC) strategy for CLIP-V fine-tuning (Sec.
4.2), and propose the Content-Dependent Transfer (CDT) for parameter-efficient
CLIP-T fine-tuning (Sec. 4.3). Finally, we outline the loss functions in Sec. 4.4.

4.1 Feature Extraction & Proposal Generator

Feature Extraction. We utilize a pre-trained convolutional CLIP-V for ex-
tracting features from an input image I. Denoting each stage of CLIP-V’s output
as F = {F i}, i ∈ [0, 1, 2, 3]. F 0, F 1, F 2, F 3 have strides of {4, 8, 16, 32} with
respect to the input image.
Proposal Generator. We follow the common design [8, 18, 22, 25, 36, 37, 39] to
use MaskFormer [6, 7] as the Proposal Generator. Since the Hungarian match-
ing [20] is used in the training process, only a subset of the mask propos-
als is optimized. This matching strategy enhances generalizability of the Pro-
posal Generator, ensuring it segment masks of novel categories. Given the im-
age features F , the Proposal Generator generates a set of N mask proposals
M = {mi}Ni=1 ∈ RN×H×W .

During the training process, we stop the gradient flow from CLIP-V to the
Proposal Generator. This measure is taken to avoid the potential overfitting of
CLIP-V on the training categories.
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Fig. 3: Details of Representation Compensation and Content-Dependent Transfer.

4.2 Representation Compensation

The representation Compensation (RC) strategy aims to review the original
representation of CLIP as compensation during the training phase. Details of
Representation Compensation are shown in Fig. 3. Within RC, we use a frozen
CLIP-V (denoted as CLIP-V*) to generate the original CLIP-V features during
training. Extracting the last stage output from the CLIP-V* (F̂ 3) and the fine-
tuned CLIP-V (F 3), F̂ 3 and F 3 are expected to be similar to avoid Catastrophic
Forgetting. However, direct per-pixel alignment is not feasible, as it would re-
sult in the loss of region-level differences. Therefore, we devise multiple grids of
average pooling (AvgPooling) to generate multi-scale features, and ensure the
consistency of the features after pooling.

Given an arbitrary feature f ∈ Rd×h×w, an AvgPooling operation with grid
size of k × k can be formulated as:

fpool = AvgPooling(f, k), fpool ∈ Rd×k×k. (2)

In our default design, we use AvgPooling with K = {1, 2, 4} to perform pooling
F̂ 3 and F 3 into {1×1, 2×2, 4×4} grids, denoting as F̂ p and F p. Specifically, F̂ p =
AvgPooling(F̂ 3,K) and F p = AvgPooling(F 3,K). Then, we use SmoothL1 Loss
to minimize the difference as follows:

Lrc = SmoothL1(F p, F̂ p), (3)

SmoothL1(F p, F̂ p) =

{
0.5 · (F p − F̂ p)2, if |F p − F̂ p| < 1

|F p − F̂ p| − 0.5, otherwise
(4)

With RC to compensate F 3 original CLIP’s representation, the CLIP-V main-
tains the zero-shot capability during fine-tuning. We apply Mask Pooling [37] on
the F 3 to generate vision embeddings (V ∈ RN×d) for each mask proposal.

4.3 Content-Dependent Transfer

Given a set of class names C = {C1, C2...Cn}, we use the predefined templates
[18, 34–37] to generate sentences corresponding to these class names, e.g., "a
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photo of a {Ci}; There is a {Ci} in the scene...", these sentences are then fed
into CLIP-T to generate embeddings of each sentence. The embeddings of the
same classes are averaged to obtain text embedding (T ∈ Rd×|C|). d is the
dimension of the embedding, and |C| is the number of class names.

To optimize CLIP-T representation T , we propose the Content-Dependent
Transfer (CDT), which involves a sequence of Transformer Layers performing
cross-attention with vision feature F 3. Details of the CDT are illustrated in
Fig. 3. We take the last stage feature of CLIP-V (F 3) and the text embeddings
T as the inputs for CDT. F 3 is first Flatten at spatial dimension, denoted as
F 3
flat ∈ Rd×hw. Then, we use n sequential Transformer Layers to process T and

F 3
flat, while incorporating a shortcut connection. This process can be formulated

as:
Ti+1 = TransLayeri(Ti, F

3
flat) + Ti, i = 1, 2...l. (5)

In our default setting, l is set to 2. The resulting output of the CDT is denoted
as the conditioned text embeddings (T̂ ). Specifically,

TransLayer(a, b) = Softmax(
Que(a) ·Key(b)√

d
) ·Val(b), (6)

where Que(·), Key(·), and Val(·) represent linear projections, d is the dimen-
sion of the input vectors, we assume all vectors have the same dimension d by
default. In Eq. 6, we simplify the expression of Multihead Attention and Layer-
Norm in Transformer. Note that the CLIP-T remains frozen during training, and
only the Transformer Layers are trained to optimize the CLIP-T representation.
Therefore, the parameter-efficient CLIP-T fine-tuning is established, with T̂ is
conditioned on the input images.

We investigate various designs to optimize the CLIP-T representation (T ),
including fine-tuning CLIP-T, training an additional MLP, incorporating de-
scription guidance, etc. Further details are presented in Sec. 5.3.

4.4 Objective

After getting the conditional text embeddings T̂ , we perform matrix multiplica-
tion on T̂ and V to derive the classification score Scls for the mask proposals.
Subsequently, we multiply Scls with M to obtain the final output.

We use the mask-aware loss [18] (Lma, Eq. 1) on Scls to optimize the represen-
tation of both CLIP-V and CLIP-T. Considering the Lma may induce overfitting
on the training categories and reduce the transferability of CLIP, we introduce
Lrc (Sec. 4.2) to compensate CLIP’s representation during training. Meanwhile,
we follow Mask2Former [6] to adopt the same loss functions (LP ) to train the
Proposal Generator without any special design. Therefore, the final loss function
(L) can be formulated as: L = LP +λ1Lma+λ2Lrc, where λ1 = 1 and λ2 = 0.1.

Note that we stop the gradient from CLIP-V to Proposal Generator. The
CLIP-V is not optimized by LP .
Modifications in the panoptic setting. The Lma is tailored for semantic seg-
mentation and lacks the ability to capture instance-level information. We explore
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adapting the Lma to panoptic segmentation with the following modification.
Specifically, when a mask contains multiple instances, we use binary ground-
truth (GT) to mask out redundant instances, retaining only the instance with
the highest IoU score with GT. This change allows CLIP-V to learn instance-
level knowledge, making Lma applicable to panoptic segmentation.

5 Experiments

5.1 Setting

Dataset. We conduct experiments on popular open-vocabulary segmentation
benchmarks, including COCO-Stuff, COCO-Panoptic, Pascal-VOC, Pascal-Context
and ADE20K. We train MAFT+ on COCO-Stuff and testing on ADE20K (A-
847, A-150), Pascal-Context (PC-459, PC-59), and Pascal-VOC (PAS-20) to
evaluate the performance of open-vocabulary semantic segmentation. Then, we
evaluate MAFT+ in open-vocabulary panoptic settings [5, 34, 37], i.e., training
on COCO-Panoptic and testing on ADE20K.
More details of the dataset settings are provided in the Appendix.
Evaluation Metrics. To quantitatively evaluate the performance, we follow
standard practice [8, 22, 34–37]. Semantic segmentation results are evaluated
with mean Intersection over Union (mIoU) [9]. Panoptic segmentation results
are evaluated with the panoptic quality (PQ), segmentation quality (SQ) and
recognition quality (RQ) [19].
Implementation details. We employ ConvNeXt-Large CLIP from OpenCLIP
[16]. The Proposal Generator is built following the default settings of Mask2Former
[6]. We set the number of class-agnostic mask proposals to 100 (N = 100). Dur-
ing training, the model is optimized with AdamW optimizer with a weight-decay
of 0.05. The learning rate is set to 1 × 10−5 for CLIP-V and 1 × 10−4 for other
modules. We use a crop size of 1024 × 1024. The model is trained for 60,000
iterations on COCO with 4 NVIDIA A100 GPUs.

5.2 Comparisons with State-of-the-art Methods

In this section, we compare our proposed MAFT+ with the state-of-the-art
open-vocabulary semantic segmentation methods and open-vocabulary panoptic
segmentation methods.
Comparisons in the semantic setting. In Tab. 1, we present the perfor-
mance of MAFT+ on various benchmarks. MAFT+ demonstrates a significant
improvement over existing open-vocabulary segmentation models, achieving a
performance boost of +0.5, +2.3, +3.4, +0.4, +1.1 mIoU across A-847, PC-459,
A-150, PC-59, and PAS-20, respectively. Moreover, compared to MAFT [18], our
MAFT+ eliminates the need for an additional fine-tuned CLIP-V. MAFT+ ap-
plies an end-to-end pipeline, facilitating both the training and testing processes.
Comparisons in the panoptic setting. In Tab. 2, we evaluate our MAFT+
on ADE20K, the main evaluation dataset of open-vocabulary panoptic segmen-
tation. With the aforementioned modifications, our approach achieves new state-
of-the-art performance. Compared to FC-CLIP without the ensemble strategy
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Table 1: Open-vocabulary semantic segmentation performance. mIoU is used to eval-
uate the performance. * denotes additional ensemble operation [37] used during testing.

VLM A-847 A-150 PC-459 PC-59 PAS-20
OpenSeg [ECCV22] [11] ALIGN 8.8 28.6 12.2 48.2 72.2
OVSeg [CVPR23] [22] ViT-L 9.0 29.6 12.4 55.7 94.5
SAN [CVPR23] [35] ViT-L 12.4 32.1 15.7 57.7 94.6
ODISE [CVPR23] [34] ViT-L 11.1 29.9 14.5 57.3 -
FC-CLIP [NeurIPS23] [37] ConvNeXt-L 11.2 26.6 12.7 42.4 89.5
FC-CLIP* [NeurIPS23] [37] ConvNeXt-L 14.8 34.0 18.2 58.4 95.4
MAFT [NeurIPS23] [18] ViT-L 12.7 33.0 16.2 59.0 92.1
MAFT [NeurIPS23] [18] ConvNeXt-L 13.1 34.4 17.0 57.5 93.0
MAFT+ (ours) ConvNeXt-L 15.1 36.1 21.6 59.4 96.5

Table 2: Open-vocabulary panoptic segmentation performance on ADE20K. PQ, SQ,
and RQ are used for evaluation. The best results are highlighted with red.

PQ SQ RQ
FreeSeg [CVPR22] [25] 16.3 - -
ODISE [CVPR22] [34] 22.6 - -
MaskCLIP [ICML23] [44] 15.1 70.4 19.2
OPSNet [ICCV23] [5] 19.0 52.4 23.0
FC-CLIP [NeurIPS23] [37] 21.9 71.5 26.4
FC-CLIP* [NeurIPS23] [37] 26.8 71.5 32.2
MAFT+ (ours) 27.1 73.5 32.9

(3rd last results), our MAFT+ outperforms it by +5.2 PQ, +2.0 SQ and +6.5
RQ. Although the ensemble strategy greatly improves FC-CLIP’s performance,
our model still outperforms FC-CLIP* across all evaluation metrics.
Analysis of the ensemble strategy in FC-CLIP. FC-CLIP ensembles the
classification score of Mask2Former and CLIP, along with two hyper-parameters
to balance these scores. As shown in Tab. 1 and Tab. 2, the ensemble oper-
ation significantly improves FC-CLIP’s performance. i.e., 42.4→58.4 mIoU on
PC-59, 21.9→26.8 PQ on ADE20K. However, this improvement stems from
the overlap of categories between training and testing datasets. More-
over, determining the two critical hyper-parameters requires numerous repeated
experiments. Based on this, in our default settings, we remove this ensemble
operation, and solely use the CLIP for classification.

5.3 Ablation Study

We conduct ablation studies on various choices of designs of our MAFT+, and
showcase their contribution to the final results in Tab. 3, 4, 5. We freeze the
CLIP-V and remove the Content-Dependent Transfer as the baseline model (i.e.
representation of a frozen CLIP).
Component-wise ablations. To understand the effect of each component in
the MAFT+, including the Representation Compensation (RC) strategy and
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Table 3: Ablation on components of MAFT+. Here RC and CDT denote Repre-
sentation Compensation and Content-Dependent Transfer. Note that “tune CLIP-T”
represents optimizing the distribution of text-embeds, not directly fine-tuning CLIP-T.

A-847 A-150 PC-459 PC-59 PAS-20
frozen CLIP (baseline) 11.2 26.6 12.7 42.4 89.5
+ CDT (tune CLIP-T) 13.3 +2.1 32.4 +5.8 17.2 +4.5 55.2 +12.8 94.7 +5.2

+ RC (tune CLIP-V) 14.6 +3.4 34.8 +8.2 18.2 +5.5 57.1 +14.7 95.3 +5.8

+ CDT & RC 15.1 +3.9 36.1 +9.5 21.6 +8.9 59.4 +17.0 96.5 +7.0

the Content-Dependent Transfer (CDT). We start with a frozen CLIP as the
baseline model, and gradually add each design. (Tab. 3). The frozen CLIP yields
inferior performance due to CLIP’s region-unaware property (1st row). Then,
Content-Dependent Transfer optimizes CLIP Text representation and promotes
the alignment of vision and text embeddings, resulting in an improvement of
+5.8 mIoU on A-150 and +12.8 mIoU on PC-59 (2nd row). Using only Repre-
sentation Compensation for fine-tuning CLIP-V produces decent performance
(the 3rd result), 26.6→34.8 on A-150, 42.4→57.1 on PC-59 in terms of mIoU.
Finally, introducing CDT and RC collaboratively learns effective vision and text
alignment representation, fitting the distribution of CLIP from image-level to
segmentation tasks, further enhancing the performance to establish state-of-the-
art benchmarks. (last row).
Effect of Content-Dependent Transfer. Optimizing CLIP text representa-
tion is an essential design of MAFT+. We investigate various designs to optimize
the CLIP-T representation in Fig. 4, including direct fine-tuning of CLIP-T pa-
rameters, training with additional MLP, training with class-description sentences
by GPT, and training with class-description embeddings by Llama-2. Tab. 4
presents the results of different designs for optimizing CLIP text representation.
Here, we remove Representation Compensation strategy, and keep the CLIP-V
frozen for analysis.

(b) MLP

K
 se

nt
en

ce
s

CLIP-T
A photo of a {CLS}
a {CLS} in the scene

...

Templates

{CLS} MLP
mean

(a) tuning CLIP-T

K
 se

nt
en

ce
s

CLIP-T{CLS}

Templates
meanA photo of a {CLS}

a {CLS} in the scene
...

(c) GPT-Description (d) Llama-Description

D
es

cr
ip

t 
se

nt
en

ce
s

MLP
Descriptions

describe the appearance of {CLS}
the outward features of {CLS}

...

GPT

Te
m

pl
at

e 
se

nt
en

ce
s mean{CLS}

Templates
A photo of a {CLS}
a {CLS} in the scene

...

CLIP-T

CLIP-T CLIP-TA photo of a {CLS}
a {CLS} in the scene

...

Templates

Descriptions
describe the appearance of {CLS}

the outward features of {CLS}
...

Llama-2

D
es

cr
ip

t 
em

be
ds

Te
m

pl
at

e 
em

be
ds

MLP

mean{CLS}

Fig. 4: Comparisons between CLIP-T tuning strategies.
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Table 4: Ablation of diverse designs of CLIP-Text optimization. We remove the Repre-
sentation Compensation strategy and freeze CLIP-V for analysis. Note that fine-tuning
CLIP-T requires excessive GPU memory, and thus it is infeasible (denoted as N/A) for
the setting in the 2nd row.

A-847 A-150 PC-459 PC-59 PAS-20
frozen CLIP (baseline) 11.2 26.6 12.7 42.4 89.5
+ fine-tune CLIP-T N/A N/A N/A N/A N/A

+ MLP 4.1 20.2 11.2 51.4 89.4
+ GPT-Description 11.9 28.2 13.3 42.6 90.6
+ Llama-Description 9.6 26.1 11.5 40.8 90.9
+ Content-Dependent Transfer 13.3 32.4 17.2 55.2 94.7

– a. fine-tuning CLIP-T We explore fine-tuning CLIP-T parameters to op-
timize the CLIP text representation. The category name ({CLS}) is first
augmented to sentences by some templates [18, 34–37] and fed into CLIP-T
However, fine-tuning CLIP-T (2nd results in Tab. 4) requires excessive GPU
memory (more than 8 NVIDIA A100 GPUs), which is unaffordable in our
experiments.

– b. MLP An MLP layer is added after CLIP-T, with the MLP learning to
project text embedding to fit segmentation distributions. Within this design,
CLIP-T is frozen, greatly reducing GPU memory consumption compared
with fine-tuning CLIP-T. According to the 3rd results in Tab. 4, the perfor-
mance suffers a significant drop on ADE20K (11.2→4.1, 26.6→20.2), while
increasing on PC-59 (42.4→51.4). This could be attributed to the MLP layer
losing CLIP’s zero-shot capability and its inability to perceive novel cate-
gories effectively.

– c. GPT-Description We assume that the detailed description of {CLS}
contains additional valuable information, helping to optimize CLIP-T dis-
tribution. To explore this, we leverage GPT-3.5 [1] to generate descrip-
tion sentences of one {CLS}. e.g., if the instruction provided to GPT is:
[Instruct] =“Please describe the appearance of cat.” GPT responds the de-
scription sentences of cat: [Response] = “[-a rounded head; -a short snout;
-triangular ears ...]” Then we use a frozen CLIP-T to generate the corre-
sponding text embeddings, followed by an MLP layer to project the em-
beddings. Within this design, the performance is slightly improved: +0.7 on
A-847, +2.0 on A-150 (4th results in Tab. 4).

– d. Llama-Description In view of Large Language Models (LLMs) powerful
text representation capability, we explore to use of the open-source LLM,
Llama-2 [30], to generate descriptive text embeddings. After obtaining Llama
and CLIP-T embeddings, we average them and train an MLP layer to project
the Llama embeddings into the CLIP-T embeddings space. Our experimental
results demonstrate that this design does not benefit the performance (5th
results in Tab. 4). The mIoU drops from 11.2 to 9.6 on A-847, 12.7→11.5 on
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PC459. This decrease may be due to the fact that the LLMs’ feature space
is not aligned with the CLIP-V’s visual feature space.

– Content-Dependent Transfer We propose the Content-Dependent Trans-
fer to enhance CLIP Text embeddings conditioned on the input images. De-
tails can be found in Sec. 4.3. As shown in the last results in Tab. 4, the
Content-Dependent Transfer improves the performance on all five datasets:
11.2→13.3, 26.6→32.4, 12.7→17.2, 42.4→55.2, and 89.5→94.7, respectively.
Analysis of why LLMs do not work? OVS focuses on data-limited set-

tings, examines the model’s ability to segment arbitrary text after seeing a few
classes. Therefore, effective image-text alignment of prior models (e.g., CLIP) is
crucial. Despite LLMs’ strong text processing capabilities, their potential is not
fully realized with limited data, resulting in incomplete image-text alignment.
Thus, simply adapting LLMs to OVS is unsuitable and may require further
research. Note: The descriptions of all categories in the training set can be
obtained through one single pre-processing step. Therefore, in c. & d., the ad-
ditional computational cost during training can be ignored. More details of the
templates and the designs for GPT and Llama-2 are provided in the Appendix.

Table 5: Ablations of the Representation Compensation strategy. The
Content-Dependent Transfer is removed. The best results are highlighted with red,
and the default settings are highlighted with gray background.

A-847 A-150 PC-59
None 14.6 34.8 57.1

Freeze {S0, 1} 14.6 34.7 57.0
Freeze {S0, 1, 2} 14.0 34.6 55.3
Freeze {S0, 1, 2, 3} 13.6 33.6 54.7
(a) Ablation of the frozen stages in
CLIP-V.

A-847 A-150 PC-59
Grid {1} 13.8 33.9 56.5
Grid {1, 2} 14.0 34.6 56.6
Grid {1, 2, 4} 14.6 34.8 57.1
Grid {1, 3, 6} 14.5 34.6 55.7
(b) Ablation of the AvgPooling grid in
Lrc.

Effect of Representation Compensation. We conduct ablation studies on
Representation Compensation strategy in Fig. 5, here we remove the Content-
Dependent Transfer for analysis.
– Frozen stages in CLIP-V: We explore the impact of fine-tuning units

within CLIP-V. CLIP-V consists of 4 ConvNeXt stages {S0, S1, S2, S3},
which downsample the image features from 1

4 to 1
32 . We start with fine-tuning

the entire CLIP-V, and then freezing each stage sequentially, as detailed in
Tab. 5a. Compared to fine-tuning the entire CLIP-V, freezing any stage
causes performance degradation. Freezing S0-1, S0-2, S0-3 brings -0.1, -1.8,
and -2.4 mIoU performance degradation respectively on PC-59, indicating
that freezing S2 and S3 (depth convnext stages) has the most significant
impact on the performance.

– Effect of AvgPooling grids: In Tab. 5b, we investigate how different multi-
scale AvgPooling grids ({1}, {1, 2}, {1, 2, 4}, {1, 3, 6}) in Lrc impact per-
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Fig. 5: Qualitative results. Normalized cosine similarity between the text embeddings
and image embeddings of 59 classes in PC59. Text & image embeddings are generated
by frozen CLIP (left) or our MAFT+ fine-tuned CLIP (right). The high similarity
scores are highlighted in yellow, low similarity scores are shown in blue.

formance. Results show {1, 2, 4} grids boost performance on A-150 to 34.8
mIoU, and achieve the best performance. Using {1, 3, 6} grads results in -1.6
drops on PC-59, manifesting overly large AvgPooling grids compromises the
model to learn region-level differences.

Table 6: Extending MAFT+ with ConvNeXt-Base CLIP. The best results are high-
lighted with red.

A-847 A-150 PC-459 PC-59 PAS-20
FC-CLIP* [37] 12.7 31.1 12.5 54.3 93.8
MAFT + 13.2 33.6 14.2 55.9 93.9

Extending MAFT+ with ConvNeXt-Base CLIP. To showcase the effi-
cacy and robustness of MAFT+, we conduct experiments using ConvNeXt-Base
CLIP (Tab. 6). We include the results of FC-CLIP for comparison. MAFT+
outperforms FC-CLIP counterpart by a significant margin on all five datasets.
This demonstrates that MAFT+ can easily transfer to other CLIP models.

5.4 Qualitative Study

Visualizations of similarity map. Fig. 5 presents the normalized similarity
map between text and image embeddings. Including similarity map generated
by frozen CLIP embeddings (left) and similarity map generated by fine-tuned
CLIP embeddings (right). An observation can be obtained: The high similarity
values of fine-tuned CLIP are mainly located on the diagonal of the similarity
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Fig. 6: Qualitative results. The results with the frozen CLIP and our MAFT+ fine-
tuned CLIP are shown for comparasion.

map, indicating the collaborative optimization of CLIP-V and CLIP-T achieves
better alignment of vision-text representation.
Qualitative analysis. We show some visual examples in Fig. 6. In some simple
cases, the frozen CLIP results may contain background noise, and tend to classify
multiple objects into one single class (e.g. the 1st row, “bicycle”). The frozen
CLIP is prone to misclassification when there are many categories in one image
(the 3rd row, “streetlight”, “sidewalk”, “hill”). Our fine-tuned CLIP collaboratively
learns vision-text representation for segmentation tasks, which can significantly
improve the segmentation results. In addition, the 2rd row shows that our fine-
tuned CLIP successfully segments “balcony”, which is a reasonable outcome even
though “balcony” does not appear in the ground-truth annotations. More visual
samples are shown in the Appendix.

6 Conclusion

We rethink the issues in frozen CLIP paradigm and CLIP-V fine-tuning paradigm
and propose a collaborative vision-text optimizing structure, MAFT+, for OVS.
We introduce the Representation Compensation to review the original CLIP’s
representation to maintain the zero-shot capability of CLIP-V. And propose the
Content-Dependent Transfer to optimize the text representation in a parameter-
efficient way. Extensive experiments demonstrate our MAFT+ achieves superior
performance on multiple open-vocabulary segmentation datasets.
Limitations. While MAFT+ optimizes the vision-test representation space of
CLIP to fit the distribution of OVS, the optimization upper-bound is constrained
by the capabilities of the pre-trained CLIP model. Addressing this limitation
constitute our future research focus.
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