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Abstract. Empowered by Large Language Models (LLMs), recent ad-
vancements in Video-based LLMs (VideoLLMs) have driven progress in
various video understanding tasks. These models encode video repre-
sentations through pooling or query aggregation over a vast number
of visual tokens, making computational and memory costs affordable.
Despite successfully providing an overall comprehension of video con-
tent, existing VideoLLMs still face challenges in achieving detailed un-
derstanding due to overlooking local information in long-term videos.
To tackle this challenge, we introduce LongVLM, a simple yet power-
ful VideoLLM for long video understanding, building upon the obser-
vation that long videos often consist of sequential key events, complex
actions, and camera movements. Our approach proposes to decompose
long videos into multiple short-term segments and encode local fea-
tures for each segment via a hierarchical token merging module. These
features are concatenated in temporal order to maintain the storyline
across sequential short-term segments. Additionally, we propose to in-
tegrate global semantics into each local feature to enhance context un-
derstanding. In this way, we encode video representations that incorpo-
rate both local and global information, enabling the LLM to generate
comprehensive responses for long-term videos. Experimental results on
the VideoChatGPT benchmark and zero-shot video question-answering
datasets demonstrate the superior capabilities of our model over the
previous state-of-the-art methods. Qualitative examples show that our
model produces more precise responses for long video understanding.
Code is available at https://github.com/ziplab/LongVLM.

1 Introduction

Large language models (LLMs) [1,8,39,45,47,48] have revolutionized natural lan-
guage understanding tasks and have demonstrated a remarkable capability to fol-
low human instructions and intentions, emerging as a universal agent for general-
purpose assistants. Drawing from the development of LLMs, Multi-modal Large
† Corresponding author.
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Question 1

Video-LLaMA

Video-ChatGPT
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In the video, a man is standing in a bike shop and fixing a bike.

The man in the video is fixing a bicycle wheel. He is using a wrench to tighten the wheel nuts and then 
using a tire pump to inflate the tire.

The man in the video is fixing a bicycle chain that is broken. He is using a tool to tighten the chain and 
ensuring that it is properly secured to the bike's gears.

What problem is the man fixing in the video?

Yes, the man is wearing a blue shirt and black and brown shoes. He is standing in a workshop or 
garage, as evidenced by the tools and equipment visible around him, such as a motorcycle frame, a 
helmet, and a toolbox. The environment is dimly lit, with a blue sky visible through the garage door.

The man in the video is wearing a red shirt and a black jacket. He is also wearing a helmet and gloves 
while working on the bicycle.

The man in the video is wearing a brown shirt and is standing in a shop or workshop. The 
surroundings include a bicycle, a bench, and a table. The man is working on a bicycle, fixing the chain 
and adjusting the gears. 

Can you describe the surroundings and the clothing of the man in the video?Question 2

Video-LLaMA

Video-ChatGPT

Ours

(b) An example from Video-ChatGPT benchmark [38].

Fig. 1: (a) Comparison of model architectures. (b) Examples generated by different
VideoLLMs. Text highlighted in bold green denotes correct content, while text in red
indicates errors.

Language Models (MLLMs) [9, 16, 33, 67] have driven advancements in vision-
language learning by integrating visual encoders with LLMs and finetuning on
vision-language instruction pairs. However, developing Video-based Large Lan-
guage Models (VideoLLMs) still poses a significant challenge due to the necessity
of processing a large number of tokens for jointly modeling spatial-temporal de-
pendencies across consecutive video frames. For instance, employing OpenAI
CLIP-ViT-L/14 [42] as a visual encoder for a 100-frame video clip necessitates
handling 25.6K visual tokens, leading to impractical computational costs with
existing LLMs. To address this issue, recent approaches propose to extract video
representation via precompression over visual tokens, utilizing pooling opera-
tion [37,38] or query aggregation [27,44,63] over the video token sequence before
feeding them into the LLM, as shown in Fig. 1a. While these models showcase
impressive capabilities in providing a meaningful understanding of video con-
tent, they still face challenges in achieving significant advantages in fine-grained
understanding of long-term videos. For example, as shown in Fig. 1b, while all
models recognize the overall environment (workshop), the object (bike), and the
action (fixing), previous methods may fail to correctly identify details such as
the color of the clothes (brown), or the specific component being fixed (bicycle
chain).

The main reason is that long-term videos typically involve numerous key ac-
tions, complex activities, and camera movements. Consequently, a long video can
be divided into a sequence of short-term segments. For instance, in the example
depicted in Fig. 1b, various short-term actions occur, e.g . speaking, displaying
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spare components, grabbing the bicycle chain, along with the camera moving
from the human to the bicycle wheel, and eventually focusing on the broken
chain. Similarly, prior methods in video recognition task suggest to decompose
complex activities into sequences of sub-activities [15, 22, 49]. These approaches
treat the features of each short-range activity as the local information within
the videos and emphasize the importance of reasoning over local features to de-
velop a temporal-structural understanding [15, 22, 49–51, 62] within long-term
videos for comprehending fine-grained information. From this perspective, exist-
ing VideoLLMs treat all visual tokens equally and aggregate them into compact
representations through pooling operations [37,38] and query aggregation [27,63].
While they successfully capture the global semantic context spanning the entire
long-term videos, they often overlook preserving the local information for the
short-term segments and the temporal structure of different short-term compo-
nents, e.g ., the order of events or sub-actions. However, exclusively modeling
the temporal structure through the sequence of local features may still lead to
inconsistent recognition across different segments and impede the overall under-
standing of the videos. To comprehend the content in long videos, the human
visual system relies on a blend of local and global information [46]. Building on
this insight, earlier approaches in video object detection [54,56] suggest integrat-
ing global semantics into local localization descriptors, motivating us to include
global semantic information into the sequence of local features for enriching the
context understanding for each short-term segment.

In this paper, we present LongVLM, a simple yet effective VideoLLM for ef-
ficient long video understanding, as illustrated in Fig. 2. We propose to extract
video representations as sequences of short-term local features, and integrate
global semantics into each short-term segment feature. Specifically, we begin by
uniformly sampling a sequence of video frames from long-term videos and utilize
a pretrained visual encoder, e.g ., CLIP-ViT-L/14 [42], to extract visual features
for each individual video frame. These frame-level features include the [CLS]
tokens from a range of encoder layers and the patch features from the last sec-
ond layer of the visual encoder. Then, we divide the sequence of patch features
along the temporal dimension, resulting in multiple short-term segments. Each
segment is considered as a local unit in the videos and includes patch features of
the video frames within that segment. To reduce computational costs and obtain
the compact features for each segment, a token merging module is employed to
aggregate these patch features for the specific segment into a condensed set of
tokens. In this way, we obtain the local features for each segment. We next con-
catenate these features sequentially to explicitly preserve the temporal order of
the short-term segments in long-term videos. Moreover, we average the [CLS] to-
kens from each video frame along the temporal dimension to represent the global
semantic information of the entire video. To integrate the global information, we
prepend the averaged [CLS] tokens before the segment-level features, and then
feed them into the LLM after passing through a projection layer. Benefiting from
the causal attention mechanism in the LLM, we simultaneously achieve temporal
structure modeling over the sequence of short-term segments and inject global
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semantics into the local features. Finally, the LLM generates responses based on
the input sequence, which is composed of the obtained video representation and
the designed system command with the specific user queries.

Overall, our main contributions is threefold:

– We propose LongVLM, a simple yet effective VideoLLM for efficient long-
term video understanding at a fine-grained level while maintaining affordable
computational cost.

– We propose decomposing long videos into short segments and extracting local
features for each segment to preserve their temporal order. To compactly
represent each segment, we propose a hierarchical token merging module to
aggregate visual tokens. Additionally, we integrate global semantics into each
segment to enhance context understanding.

– Extensive experiments on VideoChatGPT benchmark [38] and zero-shot
video question-answering datasets [57, 61] demonstrate that our LongVLM
surpasses the previous state-of-the-art methods by a significant margin while
generating more precise and accurate response at fine-grained level for long-
term videos.

2 Related Work

2.1 Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing
in recent years. Pretrained on large text corpora, LLMs like GPT [3], OPT [64],
and LLaMA [47, 48] utilize auto-regressive Transformer models to predict sub-
sequent tokens, showcasing remarkable adaptability and generalization. Models
such as InstructGPT [40], ChatGPT [39], and GPT-4 [1] benefit from instruction-
tuning techeque [53] on instructional datasets, leveraging the knowledge of pre-
trained LLMs and demonstrating improvements in diverse conversational in-
teraction capabilities. This strategy is widely adopted in open-source models
like Alpaca [45] and Vicuna [8], which build upon the advancements made by
LLaMA [47] using specially designed instruction pairs. Drawing from the ad-
vancement of LLMs, recent Multi-modal Large Language Models (MLLMs), e.g .,
BLIP-2 [26], Mini-GPT4 [67], LLaVA [33], LLama Adapter v2 [16], have demon-
strated the feasibility of enabling visual conversation capabilities of LLMs over
input images through instruction tuning on image-text instruction datasets. Our
model aims to utilize existing MLLMs to develop efficient video dialogue model
for long-term video understanding.

2.2 Video-based Large Language Models

Traditional video-language models [7,12,14,19,25,29,31,36,52] have advanced by
using large-scale video-text pretraining followed by fine-tuning on specific down-
stream tasks. With the advent of LLMs, Video-based Large Language Models
(VideoLLMs) explore various video-language understanding scenarios through
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human-video dialogue interactions. Existing VideoLLMs typically follow a com-
mon paradigm, which involves using a pretrained visual encoder to encode vi-
sual features, a projection layer to convert visual representations into the text
latent space of LLMs, and a pretrained LLM for response generation. VideoChat-
GPT [38] and Valley [37] rely on pooling over visual tokens to obtain compact
visual representations. VideoChat [27] utilizes pretrained video foundation mod-
els [28, 52] and Q-Former from BLIP-2 [26] to aggregate video representations.
Video-LLaMA [63] proposes a Video Q-Former and an Audio Q-Former, enabling
multiple modalities for video comprehension, while Video-ChatCaptioner [6] em-
ploys ChatGPT [39] to summarize video descriptions in multiple rounds of inter-
active question-and-answer conversation. Recently, MovieChat [44] proposes an
effective memory management mechanism to enable LLMs to reason over hour-
long videos. Multiple video-centric instruction datasets [20, 27, 37, 38] have also
been proposed to finetune VideoLLMs for better video understanding capacity.
Moreover, BT-Adapter [34] proposes a temporal adapter alongside the visual
encoder for post-pretraining, while Video-Teller [32] highlights the importance
of modality alignment in pretraining. Overall, these VideoLLMs rely on pooling
and query aggregation on the whole long videos to extract visual representation,
overlooking local information for fine-grained understanding in long videos. In
contrast, we propose a simple yet effective framework that is feasible for ag-
gregating both local and global information in long-term videos and preserves
fine-grained content understanding.

2.3 Long-term Video Processing

Long-term video understanding poses several challenges due to the need to ex-
ploit complicated spatial-temporal dependencies while removing temporal re-
dundancy over extended time duration. Previous studies propose efficient ar-
chitectures [10, 23], temporal pooling/aggregation [13, 43, 55, 66], dynamic clip
selection [17,18,24] to aggregate video representation while removing redundant
information in videos. Other methods in video-language understanding tasks sug-
gest to capture event temporality, causality, and dynamics in long-term videos by
designing temporal alignment modules [4,21]. Memory mechanism is also widely
adopted in video dense prediction tasks [35, 54, 56, 60, 65] to capture historical
information and maintain temporal coherence, which results in more accurate
and consistent prediction over time in long-term videos. Differently, we propose
to aggregate both local segment-level information and global semantic informa-
tion, empowering MLLMs enhanced fine-grained understanding for long-term
videos.

3 Method

In Sec. 3.1, we introduce the overall architecture and generation pipeline of the
proposed LongVLM. In Sec. 3.2, we introduce the process of constructing local
representation via short-term feature aggregation. In Sec. 3.3, we discuss the
integration of both local segment-level feature and global semantic feature.
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Fig. 2: Overall architecture of the proposed LongVLM. We start by uniformly sampling
T frames from a video and employing a visual encoder to extract frame-level features.
We divide the input video into S segments, each with K frames. To obtain compact local
features, we apply a hierarchical token merging module within each segment. These
segment-level features are concatenated sequentially to explicitly preserve the temporal
order of multiple short-term segments in long videos. Additionally, we incorporate [CLS]
tokens to aggregate global semantic features. The global features and the sequence of
local features are concatenated to form the video representations. Finally, the projected
visual features are combined with the tokenized system command and user queries and
inputted into the LLM to generate the responses.

3.1 Overall Architecture

The overall architecture consists of three components: a visual encoder, a pro-
jection layer, and a large language model, as illustrated in Fig. 2.

Given an input video V ∈ RT×H×W×3, we employ a visual encoder to extract
frame-level features {Xt,Pt}Tt=1 for each video frame independently. Following
previous methods [33, 38], we utilize the patch feature Pt ∈ RN×d from the
second-to-last encoder layer, where N, d are the number of patch tokens and the
channel dimension of the visual encoder, respectively. Additionally, we gather
the [CLS] tokens Xt ∈ RE×d from E selected encoder layers for each individual
video frame.

To enable fine-grained understanding in long videos, we propose to divide long
videos into a sequence of short-term segments, where each segment corresponds
to the local features in the long videos. Without loss of generality, the input
video V is divided into S segments, where each segment includes K frames,
i.e., K = T

S . We collect patch features within the sth segment, i.e., Vs =
{Pt}t=sK

t=(s−1)K , and apply a token merging module G(·) to aggregate Vs into the
compact segment-level feature Zs = G(Vs). These segment-level features are
sequentially concatenated as the sequence of local representation L, explicitly
preserving temporal order of short-term segments in long videos. Furthermore,
to integrate global semantic information, we propose to collect the [CLS] tokens
for each frame from E encoder layers and average them in the time dimension,
resulting in our global feature G.
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We forward the global features and the sequence of local features into a linear
layer to obtain the projected visual features. The projected visual features are
concatenated with the tokenized system command and user queries, which are
inputted into LLM for response generation.

3.2 Local Feature Aggregation

After obtaining the frame-level patch feature {Pt}Tt=1 from the last second layer
of visual encoder, previous methods either apply factorized spatio-temporal pool-
ing [37,38], or utilize query aggregation [27,63] over all visual tokens, which may
miss local information referring to the short-term events or actions. Neverthe-
less, videos have heavy spatio-temporal redundancy, which results in redundant
computational costs by directly considering all the patch features as the local
representation for each segment. Therefore, we propose to aggregate compact
visual features within each short-term segment. Specifically, we collect the patch
feature for the sth segment Vs = {Pt}sKt=(s−1)K ∈ RKN×d and apply a hierar-
chical token merging module to aggregate the local feature while reducing the
number of visual tokens. Inspired by ToMe [2], we resort to the bipartite soft
matching method and gradually merge the visual tokens for each short-term seg-
ment. At the ith step, we randomly partition the Ri tokens into two non-overlap
token sets Pi with ri tokens and Qi with Ri− ri tokens, where initial R0 = KN .
Then we calculate the similarity scores between the tokens in set Pi and Qi

based on the patch features. To obtain the similarity scores, each visual token
is divided into C heads along channel dimension, each with d

C channels. The
similarity score for each token pair is obtained by averaging the cosine similarity
scores over all heads following Eq. 1:

apiqi =
1

C
[

C∑
c=1

cos(p(pi)
c ,p(qi)

c )], (1)

where pi ∈ {1, ..., ri} and qi ∈ {1, ..., (Ri − ri)} are the indexes of patch feature
p in set Pi and set Qi, respectively. We select the top-ri token pairs with the
highest similarity scores and merge the paired tokens by average pooling. Finally,
the remaining tokens in the two sets are concatenated back together, resulting in
Ri− ri tokens after the ith merging step. We iteratively merge the tokens within
each short-term segment, until the number of visual tokens reaches M , where
M << K × N . The compact local feature for the sth segment is denoted as
Zs = {zm}Mm=1 ∈ RM×d. These segment-level features are concatenated sequen-
tially as the sequence of local features L = {Zs}Ss=1 = [z11, ..., z

1
M , ..., zS1 , ..., z

S
M ] ∈

RMS×d. Thanks to the positional encoding in the LLM, the sequence of local rep-
resentation L explicitly preserves the order of short-term segments in long-term
videos, enabling LLMs to be aware of the temporal structure of multiple event
occurrences in long videos. By utilizing the token merging module, we efficiently
encode compact local features for each segment while eliminating redundancy in
the visual token sequence.
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3.3 Global Semantics Integration

The local features provide fine-grained information about different events or
actions in the generation process of VideoLLMs, enhancing the detailed under-
standing capabilities of the LongVLM. However, the local features for each seg-
ment may be insufficient for the model to reason the relationship between differ-
ent segments and generate reasonable response over the entire videos. Therefore,
we additionally introduce global semantic features to enrich the local features
with contextual information. Specifically, we collect the [CLS] tokens of each
video frame from E encoder layers, i.e., {xt

e}
e=E,t=T
e=1,t=1 , and then average the

[CLS] tokens along temporal dimension, resulting in X̄e = AvgPool({xt
e}Tt=1) ∈

Rd, e ∈ [1, ..., E]. By default, E can be the number of layers in the visual encoder.
However, previous studies demonstrate different properties between intermedi-
ate features from the shallow layers and deeper layers in ViT models [30,41], and
showcase the deeper layers tend to aggregate global semantics. Thus, we con-
catenate the E-scale features along sequentially, resulting in the global semantic
feature for the entire video, i.e., G = {X̄e}Ee=1 ∈ RE×d.

Following the previous studies, a projection layer converts the visual features
into the language space, and then the visual features are concatenated with the
instruction as the input of LLM. By utilizing the attention mechanism in the
LLM, we can easily enable each token in the local feature to attend to the global
semantic feature, thereby achieving straightforward injection of global semantics
into the local feature.
Remark. To address the risk of overlooking detailed understanding in long-term
videos, we propose to divide long videos into multiple short-term segments and
aggregate local spatial-temporal representation for each segment and preserving
the temporal structure over the sequence of local feature vectors. Moreover, we
enrich the local features with context information for better response generation
by integrating global semantic information into short-term features.

4 Experiments

4.1 Experimental Settings

Datasets and evaluation metrics. We conduct quantitative evaluations of
our model using the VideoChatGPT benchmark [38] to assess its performance in
generating text from videos. The benchmark comprises 500 videos sampled from
ActivityNet-v1.3 dataset [11], with 2000, 2000, 2000, 500, and 1000 questions in
terms of five evaluation aspects: Correctness Information(CI), Detail Orienta-
tion(DO), Contextual Understanding(CU), Temporal Understanding(TU) and
Consistency(C). Additionally, we evaluate the model on the zero-shot question-
answering task using the ANET-QA [61] dataset, which contains 8000 QA pairs
for 800 videos sampled from ActivityNet-v1.3 dataset [11]. The videos range
from several seconds to minutes long and cover a wide range of daily human
activities. We also utilize MSRVTT-QA [57,58](72821 QA pairs for 2990 videos)



LongVLM 9

Table 1: Comparison with state-of-the-art methods on video conversation bench-
mark [38] in terms of five evaluation aspects and the average scores across all aspects
(Mean). We also report the dataset scale used for finetuning the model.

Method Data Source CI DO CU TU C Mean

VideoChat [27] 10M 2.25 2.50 2.54 1.98 1.84 2.22
LLaMA Adapter v2 [16] 700K 2.03 2.32 2.30 1.98 2.15 2.16
Video LLaMA [63] 10M 1.96 2.18 2.16 1.82 1.79 1.98
Video-ChatGPT [38] 100K 2.50 2.57 2.69 2.16 2.20 2.42
Valley [37] 234k 2.43 2.13 2.86 2.04 2.45 2.38
BT-Adapter [34] 10M 2.16 2.46 2.89 2.13 2.20 2.37
BT-Adapter [34] 10M+100K 2.68 2.69 3.27 2.34 2.46 2.69
Ours 100K 2.76 2.86 3.34 2.39 3.11 2.89

Table 2: Comparison with state-of-the-art methods on three zero-shot question an-
swering datasets. We report the Accuracy (Acc.) and Score for the generated answer
for each question, and the dataset scale used for finetuning the model.

Method Data source ANET-QA MSRVTT-QA MSVD-QA
Acc. Score Acc. Score Acc. Score

FrozenBiLM [59] 10M 24.7 - 16.8 - 32.2 -
VideoChat [27] 10M 26.5 2.2 45.0 2.5 56.3 2.8
LLaMA Adapter v2 [16] 700K 34.2 2.7 43.8 2.7 54.9 3.1
Video LLaMA [63] 10M 12.4 1.1 29.6 1.8 51.6 2.5
Video-ChatGPT [38] 100K 35.2 2.7 49.3 2.8 64.9 3.3
Valley [37] 234K 45.1 3.2 51.1 2.9 60.5 3.3
BT-Adapter [34] 10M+100K 45.7 3.2 57.0 3.2 67.5 3.7
Ours 100K 47.6 3.3 59.8 3.3 70.0 3.8

and MSVD-QA [5,57](13157 QA pairs for 520 videos) to evaluate the model per-
formance, derived from publicly available video captioning, MSRVTT [58], and
MRVDC [5], respectively. Following the evaluation protocol outlined in Video-
ChatGPT [38], we employ ChatGPT [39] for response evaluation and report the
generation quality scores on VideoChatGPT benchmark and the answer accu-
racy and quality scores of models on zero-shot video QA tasks.
Implementation details. We employ CLIP-ViT-L/14 [42] as the visual en-
coder and Vicuna-7B-v1.1 [8] as the LLM. We initialize them with the pretrained
weights in LLaVA-7B-v1.1 [33]. We finetune the model on the Video-ChatGPT-
100K instruction dataset [38] for 3 epochs, with a learning rate of 2e−5 and a
batch size of 32. We only finetune the linear projection layer to align the visual
features into the input space of the LLM, keeping both the visual encoder and
LLM frozen. It takes three hours to train three epochs on 4 A100 80GB GPUs.
During training and inference, we sample T = 100 video frames for each video,
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and resize the frames to 224 × 224 resolutions. We set C = 16, the same to
the number of heads of CLIP-ViT/L-14. We set S = 10 for each video, and the
number of tokens in each segment-level feature is M = 30. We collect the [CLS]
tokens from the last five encoder layers and average them along the temporal
axis, resulting in E = 5 tokens as the global semantic features. Therefore, the
length of visual tokens for a video sequence is M × S + E = 305.

4.2 Main Results

Results on the video-based generation benchmark. In Tab. 1, we present
a comprehensive evaluation of our LongVLM against state-of-the-art models on
the video-based generation benchmark [38]. Our LongVLM outperforms all other
models across all the evaluation aspects. Particularly noteworthy is its significant
advantage in Detail Orientation (DO) and Consistency (C), showing improve-
ments of +0.17 and +0.65, respectively, over BT-Adapter [34]. These results
underscore superior capability of LongVLM in fine-grained video understanding
and robust generation performance.
Results on zero-shot video question-answering. In Tab. 2, we compare the
performance of LongVLM against various existing methods on three zero-shot
video QA datasets: ANET-QA [11,61], MSRVTT-QA [57,58] and MSVD-QA [5,
57]. Our model achieves the highest accuracy of 47.6%, 59.8%, and 70.0% on the
three QA datasets, surpassing the previous SOTA approach BT-Adapter [34] by
1.9%, 2.8% and 2.5%, respectively. Furthermore, we achieve the highest score in
terms of generation quality over the three datasets.

4.3 Ablation Study

Effects of local feature aggregation. As discussed in Sec. 1, pooling oper-
ations or query aggregation might overlook local information in achieving fine-
grained understanding in long-term videos. To this end, we introduce short-term
segment-level features to retain local information and temporal structure within
long-term videos. The first two rows in Tab. 3 present the effects for the de-
sign of using local features as the visual representations for videos. We compare
the token merging module with a local pooling operation. Specifically, we ap-
ply a 3D average pooling operation within each short-term segment, using a
kernel size and stride of (5, 4, 4) to the temporal, height, and width dimen-
sions, respectively. The proposed hierarchical merging module achieves higher
scores over spatial-temporal pooling operation. This could be attributed to the
dynamic aggregation mechanism via the token similarity in the merging mod-
ule, while averaging pooling statically aggregates visual tokens within each small
3D window. Additionally, we observe that aggregating local features for short-
term segments either improves or maintains comparable performance across all
evaluation metrics compared to the SOTA models which extract global seman-
tics only, highlighting the significance of preserving local features for short-term
segments in long-term video understanding.
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Table 3: Ablation of the local and global aggregation design. Pooling: Using 3D average
pooling operation to obtain local features; Merging: Using the proposed hierarchical
token merging to obtain local features; [L,G]: Concatenating local feature then global
feature; [G,L]: Concatenating global feature then local feature.

Variants Local Global CI DO CU TU C Mean

Pooling ✓ ✗ 2.53 2.64 3.13 2.29 2.61 2.64
Merging ✓ ✗ 2.62 2.74 3.15 2.23 2.86 2.72

[L,G] ✓ ✓ 2.69 2.81 3.31 2.31 2.99 2.82
[G,L] ✓ ✓ 2.76 2.86 3.34 2.39 3.11 2.89

Table 4: Effect of M . We evaluate the model performance by varying M from
{10, 20, 30, 40}, while keeping the token length of global semantic features at E = 5.

M CI DO CU TU C Mean

10 2.61 2.72 3.22 2.26 2.78 2.72
20 2.72 2.86 3.34 2.34 2.96 2.84
30 2.76 2.86 3.34 2.39 3.11 2.89
40 2.74 2.84 3.39 2.34 3.06 2.87

(a) Video-ChatGPT Benchmark.

M Accuracy Score Memory(G)

10 44.6 3.2 14.65
20 45.7 3.4 14.74
30 47.6 3.3 14.86
40 46.0 3.3 14.96

(b) ANET-QA.

Table 5: Effect of the number of selected encoder layers. We evaluate the performance
of model varying E in {1, 5, 10, 15, 20, 24}, keeping M = 30,K = 10.

E CI DO CU TU C Mean

1 2.74 2.85 3.23 2.32 3.04 2.83
5 2.76 2.86 3.34 2.39 3.11 2.89
10 2.78 2.86 3.24 2.30 3.04 2.84
15 2.72 2.82 3.16 2.16 2.97 2.77
20 2.63 2.77 3.11 2.28 2.93 2.74
24 2.65 2.75 3.08 2.22 2.81 2.70

Effects of global semantics integration. Inspired by the human visual sys-
tem that using a combination of local and global information for recognizing
video content [46], we propose to enhance visual representation by injecting
global semantic features into local features. The last two rows in Tab. 3 demon-
strate the effects of integrating global semantics. Compared to the first two
rows, introducing global semantic features significantly enhances performance
compared to models using local features only across all evaluation aspects. The
notable improvements in Contextual Understanding (CU) and Consistency (C)
underscore the significance of integrating global semantic information with local
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BT-Adapter
Ours

Video-ChatGPT
Video LLaMA
LLaMA Adapter
Video ChatCU

DO TU

CI C

MSVD-QA-Score

MSVD-QA-Acc

MSRVTT-QA-AccMSRVTT-QA-Score

ANET-QA-Score

ANET-QA-Acc
5040302010

3.4
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40
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2.4

1.9

1.4

70

63

57

51

46

2.02.5
3.54.0

3.0

2.0

2.2

2.4
2.6

2.8

2.1

2.3

2.5

2.7

2.9

3.4

3.0

2.6

2.2

1.8

2.4

2.2

2.0

1.8

1.6

3.2

2.8
2.4

2.0

1.6

(a) Quantitative results on Video-ChatGPT-
100K [38] benchmark and the task of zero-shot
question answering on ANet-QA [61], MSRVTT-
QA [57, 58] and MSVD-QA [5, 57]. Our model
delivers the best performance on multiple evalu-
ation aspects, compared with the state-of-the-
art video dialogue models: Video Chat [27],
LLaMA Adapter [16], Video LLaMA [63], Video-
ChatGPT [38], and BT-Adapter [34]. Evaluation
metrics and comparison details are given in Sec-
tion 4.2.

Yes, the person swims in the butterfly at the end of the video.

Does the person swim in the butterfly at the end of the video? Q

A

The man is wearing black swimming trunks.

What color of swimming trunks does the man wear? Q

A

The man is wearing glasses while swimming in the pool. This 
is likely to protect his eyes from potential irritation or 
damage caused by water, chlorine, and other pool 
chemicals. … Additionally, wearing glasses can also improve 
the visibility of the swimmer, making it easier for them to 
see the pool's bottom and any obstacles in their path.

Why does the man wear glasses for swimming? Q

A

In the video, the man swimming in the pool is seen 
swimming towards the wall. As he reaches the wall, he 
performs a flip turn, which involves flipping his body around 
and swimming back in the opposite direction. …

What happened when the man swam to the wall? Q

A

The man in the video is swimming in a pool. 

What is the man doing in the video? Q

A

(b) An example of zero-shot question answering.
Video duration is 3 minutes and 46 seconds.

Fig. 3: Quantitative results and qualitative examples of our LongVLM.

Question

Local-only

Local+Global

In the video, a girl is seen running on a track 
and jumping over hurdles. She is also seen 
jumping over a hurdle and landing on the 
ground.

In the video, a woman is performing a long 
jump on a track. She is seen jumping and 
landing on the ground.

What event is the woman attempting to do in 
the video?

In the video, the man is seen standing in front of 
a wooden table and swinging a baseball bat. He 
is also seen walking towards the camera and 
swinging the bat at a log.

The man in the video is swinging a large axe at 
a log, attempting to chop it down. He is using a 
technique to chop the log, and he is wearing a 
blue shirt. The video shows the man's actions 
and the log being chopped down.

Can you describe the actions of the man in the 
video?

Question

Local-only

Local+Global

Fig. 4: Two examples from Video-ChatGPT benchmark [38]. Text highlighted in bold
green denotes correct content, while text in red indicates errors.

short-term features. Moreover, concatenating global features before local features
yields better results than the opposite concatenation order. This arrangement
allows each the local feature to access the global semantic information across the
entire video by leveraging the causal attention mechanism in the LLM. Conse-
quently, this design enriches the contextual information of the local features and
enhances the response consistency of the model.
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Question

LongVLM The scenery along the stream is beau%ful and picturesque. The stream is surrounded by lush green trees, which 
create a serene and natural environment. The water appears to be clear, making it an a8rac9ve spot for 
kayaking and canoeing.

What is the scenery like along the stream?

Question

LongVLM The video shows a man playing the bagpipes in a public square, surrounded by a crowd of people. The man is 
dressed in a kilt and is playing the bagpipes while standing in the middle of the square. There are several people 
in the background, some of whom are taking pictures of the man and the bagpipes. The scene is set in a city, 
with the man playing the bagpipes in a public space, attracting the attention of the people around him. The 
video captures the moment of the man playing the bagpipes, showcasing the unique sound and the 
atmosphere it creates in the public square.

Can you describe the video in detail?

The woman applied a pink nail polish to 
her ring finger.

What color nail polish did the woman 
apply to her ring finger?

Ques-on

LongVLM The man is wearing a brown jacket while 
playing the piano in the piano store.

What is the man wearing while playing the 
piano in the piano store?

Question

LongVLM

Question

LongVLM The video is a performance of a ballet dance rou9ne, featuring a group of dancers in white dresses. They are 
performing on a stage, with the stage lights shining on them. The dancers are moving gracefully and 
elegantly, showcasing their skills and coordina9on. The performance is set to music, which adds to the overall 
atmosphere and impact of the dance rou9ne. The dancers are well-coordinated, and their movements are 
synchronized, crea9ng a visually appealing and cap9va9ng performance.

Can you describe the video in detail?

Fig. 5: More generative examples from the Video-ChatGPT benchmark [38] of the
proposed LongVLM. Text in bold denotes the correct content. The LongVLM is able
to capture the detailed information videos.

Effects of M . We report the model performance on VideoChatGPT benchmark
and ANET-QA task on the selection of M , i.e., M = {10, 20, 30, 40}, keeping
the same number of global semantic tokens in Tab. 4. For ANET-QA, we also
report the averaging GPU memory usage for generating each answer. In general,
the token length involves a trade-off between memory costs and performance. A
shorter token sequence reduces computational costs for generating a single new
token using LLM, thereby lowering memory costs for generating responses to in-
dividual user queries. However, it may also lead to insufficient visual information
for generating accurate responses. The performance of our model is beneficial
from the suitable length of visual tokens. Increasing M from 10 to 40 results in
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a significant improvement in terms of most evaluation aspects, while the setting
of M = 40 leads to neglecting improvement but requires more memory cost
compared to M = 30. Therefore, we choose M = 30 for our model.
Effects of E. We evaluate the model performance on the VideoChatGPT bench-
mark with varying E by selecting the [CLS] tokens from the last 1, 5, 10, 15, 20, 24
visual encoder layers, while maintaining the same M for local features. As de-
picted in Tab. 5, increasing the number of global semantic tokens from 1 to 5 im-
proves the generation quality scores in terms of all evaluation aspects. However,
increasing E from 5 to 24 leads to degraded performance, possibly because the
[CLS] tokens from earlier layers carry less semantic information for the model.
Therefore, we choose E = 5 in our model.

4.4 Qualitative Results

As illustrated in Sec. 1, Fig. 1b demonstrates the advancement of our model in
terms of fine-grained understanding in long-term videos. Despite taking the same
number of video frames as input, our model excels in capturing detailed infor-
mation within the videos, discerning nuances like fixing chain rather than fixing
wheel. In comparison, Video-ChatGPT [38] can describe the overall video content
but may inaccurately recognize detailed information. For instance, it might iden-
tify objects such as helmets and gloves in the scene but erroneously recognize the
location for these objects. This emphasize the importance of decomposing long
videos into multiple short-term segments and aggregate local features to achieve
fine-grained understanding in videos. The examples depicted in Fig. 4 ablate
the effectiveness of integrating global semantic information into local short-term
features. With global semantics integration, the model is able to recognize the
actions (long jump) and objects (axe) compared to the variant that using local
features only. We provide more generated examples in Fig. 3b and Fig. 5 from
ANET-QA and Video-ChatGPT benchmark, respectively, which showcase the
precise description of the video content generated by our LongVLM.

5 Conclusion

In this work, we have introduced LongVLM, an effective and efficient Vide-
oLLM designed for long-term video understanding. By extracting local features
for short-term segments, we efficiently model local dependencies while preserv-
ing the temporal structure of sequential events in long-term video sequences.
Through the integration of local and global information, LongVLM captures de-
tailed information and provides consistent and accurate responses for long-term
videos.
Limitations and Further work. While we introduce a novel video conver-
sation model for fine-grained long-term video comprehension, our framework is
specifically designed for video-to-text generation scenarios. Future work may in-
clude extending our framework into video-centric multimodal generation tasks
and training the model on large-scale, extended-duration videos for long-context
understanding.
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