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This supplementary material delves into “Neural Metamorphosis”, starting
with the its pipeline and pseudo-code in Section 1. Section 2 presents a proof
of the orthogonal property of total variation. Section 3 establishes the INR as
a generalized form of current continuous function representation. In Section 4,
we extend our experiments to network depth morphing. Section 5 compares our
weight permutation strategy with existing methods. Ablation studies in Section 6
examine the impact of model architecture, block-based INR, and EMA. Section 7
contrasts NeuMeta with similar works, supported by visual analyses in Section 8.
Later we present further experimental details and the source code.

1 Pipeline for Neural Metamorphosis

In this section, we describe the pipeline for the Neural Metamorphosis, which is
composed of three main stages: (1) Weight Permutation (2) INR Training (3)
Weight Sampling. The pseudo-code is outlined in Algorithm 1, 2 and 3.

– Weight Permutation. This step involves modifying and smoothing a trained
neural network’s weights W by applying an optimal permutation matrix P ∗

on each clique graph. The aim is to generate a new, smoother set of weights,
W(smooth), which are more readily learnable by the INR.

– INR Training. Leveraging the smoothed weights and the dataset, this step
develops an Implicit Neural Network F (·; θ). The primary objective here is
to iteratively update the network’s weights to optimize the INR. This opti-
mization aims to minimize the overall loss on the dataset, thereby refining
the performance of the network.

– Weight Sampling. The final stage is centered on extracting weights for the
target network architecture i from INR. This process includes collecting K
samples and averaging their weights to create a customized weight matrix W.
This matrix is specifically designed to suit the chosen architecture, ensuring
that the target network is optimally configured for its intended tasks.

2 Axis Alignment of Total Variation: A Proof

Definitions and Notations:
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Algorithm 1 Neural Metamorphosis – Weight Permutation

Input: Trained neural network f(·;W) with dependency graph G = (V,E). The
weight of i-th layer is denoted as Wi.

Output: The permuted and smoothed weight W(smooth)

1: for C = (VC , EC) such that (C ⊂ G and C is a clique) do
2: Solve for optimal permutation matrix P ∗

P ∗ = argmin
P

∑
eij∈EC

(
TVout(PWi) + TVin(WjP

−1)
)

3: for eij such that eij ∈ EC do
4: Permute the weights according to the P∗

W
(smooth)
i ← PWi;W

(smooth)
j ←WiP

−1

5: end for
6: end for
7: return W(smooth).

– Let W be an m× n matrix.
– TVin(W) denotes the sum of the absolute differences between consecutive

elements within each row of W.

TVin(W) =

m∑
i=1

n−1∑
j=1

|wi,j+1 − wi,j | (1)

– TVout(W) denotes the sum of the absolute differences between consecutive
rows (i.e., row-wise TV). For an m× n matrix, it’s defined as:

TVout(W) =

m−1∑
i=1

n∑
j=1

|wi+1,j − wi,j | (2)

With these notations, the total variation of W can be expressed as:

TV (W) = TVin(W) + TVout(W)

Proof: When considering a permutation matrix P , we observe its effects on
matrix W in terms of column and row permutations.

Case 1: Permutation of columns (PW)
Column permutation, executed by P , rearranges the columns of W but does

not affect the relative differences within each row. Consequently, the total vari-
ation within rows, TVin, remains constant:

TVin(PW) = TVin(W) (row TV are unchanged) (3)

Case 2: Permutation of rows (WP )
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Algorithm 2 Neural Metamorphosis – INR Training

Input: A trained neural network f(·;W(smooth)), a training set Dtr = {xi, yi}Mi=1 and
predefined configuration pool {ik}Kk=1, total train iteration T .

Output: Implicit neural network F (·; θ)
1: for t to T do
2: Sample a config from pool i ∈ {ik}Kk=1.
3: for j such that j ∈ Ji do
4: (i′, j′)← (i, j) + ϵ where ϵ ∼ U(−a,a).
5: v′ ←

[
l′

L′ ,
c′in
C′

in
,
c′out
C′

out
, L′

N
,
C′

in
N

,
C′

out
N

]
.

6: Generate weight w(i,j) ← F (γPE(v
′); θ).

7: end for
8: Sample a batch of train data (X,Y ).
9: Inference with the generated weights Ŷ = f(X;W).

10: Calculate total loss L = Ltask + λ1Lrecon + λ2Lreg.
11: Calculate gradient∇θL = ∂Ltask

∂W
∂W
∂θ

+ λ1
∂Lrecon

∂θ
+ λ2

∂Lreg
∂θ

.
12: Update the INR’s weight θ ← θ − α∇θL
13: end for
14: return F (·; θ).

Algorithm 3 Neural Metamorphosis – Weight Sampling
Input: Trained INR F (·; θ), number of sampling K and desired architecture i.
Output: Weight W corresponds to i.
1: Initialize all elements in W to be 0.
2: for k = 1 to K do
3: (i′, j′)← (i, j) + ϵ where ϵ ∼ U(−a,a).
4: v′ ←

[
l′

L′ ,
c′in
C′

in
,
c′out
C′

out
, L′

N
,
C′

in
N

,
C′

out
N

]
.

5: Generate and average w(i,j) ← w(i,j) +
1
K
F (γPE(v

′); θ).
6: end for
7: return W.

Conversely, row permutation modifies the order of rows in W without altering
the internal composition of each row. Thus, the total variation between rows,
TVout, stays unchanged:

TVout(WP ) = TVout(W) (column TV are unchanged) (4)

From the aforementioned cases, we can clearly infer that a permutation ap-
plied to one dimension of the matrix does not influence the total variation in its
orthogonal dimension.

This proof underscores the axis-alignment characteristic of Total Variation
(TV). However, this property may not be extended to other smoothness mea-
surements. For example, in cases where smoothness is evaluated with respect to
diagonal neighbors, defined by the expression

∑m−1
i=1

∑n−1
j=1 |wi+1,j+1 − wi,j |, the

measurement is not axis-aligned anymore.



4 X. Yang et al.

3 INR as Generalized Continuous Function

Currently, two methods exist for representing neural network weights as contin-
uous functions: the piece-wise linear function approach [2] and as using kernel
method [3]. This section aims to establish that the Implicit Neural Represen-
tation (INR) offers a more generalized approach compared to these traditional
methods.

We show the proof in 1D signal, which can be easily extended to higher-
dimensional scenarios.

3.1 INR Generalizes to Piece-wise Linear Method

In this section, we demonstrate that an INR can be viewed as a generalized
form of Piece-wise Linear Function (PLF). We establish this by showing that a
Multi-Layer Perceptron (MLP) can approximate any PLF, particularly using a
single-layer neural network with ReLU activation.
Definition of Piece-wise Linear Function

A Piece-wise Linear Function is defined as a function consisting of several
linear segments. Formally, for a PLF f(x) over an interval [a, b], it is expressed
as:

f(x) =


a1x+ b1 if x ∈ [x0, x1],

a2x+ b2 if x ∈ (x1, x2],
...

anx+ bn if x ∈ (xn−1, xn],

where x0 = a and xn = b, and ai, bi are constants.
Construction Using a Single-Layer Neural Network:

Consider a neural network with a single layer having n neurons, each with a
ReLU activation function. The output of the i-th neuron for an input x is

yi = ReLU(wix+ bi) = max(0, wix+ bi),

where wi and bi are the weight and bias of the i-th neuron, respectively.
To approximate the PLF, we align wi = ai and choose bi so that the line

y = wix+ bi aligns with the i-th segment of the PLF. As such, The final output
of the neural network is exactly the same as the original PLF

fNN (x) =

n∑
i=1

yi =

n∑
i=1

ReLU(aix+ bi).

Proof of Approximation:
For any given PLF, we can find a set of weights and biases {wi, bi} for a single-
layer neural network with ReLU activation such that its output fNN (x) approx-
imates the PLF f(x) over the interval [a, b]. This leverages the property of ReLU
to emulate piece-wise linear segments.
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3.2 INR Generalizes to Kernel Method

To demonstrate that an INR generalizes to any kernel method, we show that ker-
nel method can be implemented using a neural network with the kernel function
as the activation function.
Definition of Kernel Method

Kernel methods are a class of algorithms used in machine learning for pattern
analysis. A kernel function takes two inputs and outputs a similarity measure.
In mathematical terms, a kernel K(x, y) is a function that for all x, y ∈ X ,
where X is the input space, satisfies certain properties (e.g., symmetry, positive
definiteness).

For example, In [3], they use a bicubic kernel K(x, y) that computes the
weighted average of points around a given position y from x. The kernel typically
employs cubic polynomials and is defined as:

K(x, y) =

{
(1.5|x − y|3 − 2.5|x − y|2 + 1) for |x − y| < 1,

(−0.5|x − y|3 + 2.5|x − y|2 − 4|x − y| + 2) for 1 ≤ |x − y| < 2,

0 otherwise.

Construction Using Neural Network:
In an INR framework, a neural network can utilize the kernel function as its last
layer’s activation function. For an input x and a set of data points {yi}Ni=1, the
network’s output is formulated as:

fNN (x) =

N∑
i=1

wiK(MLP (x),MLP (yi)) + b,

where wi are the weights, b is the bias, and N is the number of data points.
Proof of Approximation:
The Universal Approximation Theorem implies that if the MLP is used to replace
the learned sampling points as described in [3], the two formulations essentially
become identical. By adjusting the weights {wi} and bias b, the network can
replicate traditional kernel methods.

In the preceding two subsections, we demonstrated that our INR serves as
a generalized parameterization method for traditional continuous weight neu-
ral networks. This provides a strong theoretical foundation that reinforces the
superior empirical results observed with our approach.

4 Extension: Depth Morphing

In this extension study, we explore the concept of morphing network depth as
opposed to network width done in the main paper. This advances our goal of
morphing arbitrary network weights beyond just the channel number.
Experiment Setup. This experiment utilizes the MNIST dataset with a spe-
cially structured ResNet. This ResNet is constructed in two stages, each com-
prising a variable number of residual blocks, denoted as L1 for stage 1 and L2
for stage 2, respectively. Each residual block contains two 3 × 3 convolutional
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Fig. 1: Experiments on Depth Morphing. Configurations enclosed in the red rectangle
represent those encountered during training. All other configurations displayed were
not included in the training phase.

layers with ReLU activation. We initiate our process with a pretrained model
where L1 = 2 and L2 = 2. We then train an INR by varying L1 and L2. During
training, we sample L1, L2 ∈ {1, 2, 3}, but for testing, we evaluate performance
across a wider range with L1, L2 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. In this experiment, we
employ a single INR to fit all layers.
Results. The performance are reported in Figure 1 as a heatmap. As expected,
the models maintain a comparable performance, approximately 99% accuracy,
across different depth configuration L1, L2 ∈ {1, 2, 3}. Interestingly, we observe
that NeuMeta is capable of smoothly extrapolating to unseen architectural con-
figurations. For example, with a ResNet configuration of L1 = L2 = 7, the
accuracy remains to 56.97%, largely better than random guess. We believe this
still showcases a positive signal that, NeuMeta presents some degree of zero-shot
generation for unseen configuration. All together, it shows that our NeuMeta is
not confined to width morphing alone, showing further exploration direction.

5 Weight Permutation Strategy

In the main paper, we have reformulated the within-network smoothness problem
as a weight permutation problem, solved through a multi-objective Shortest
Hamilton Path (mSHP) Problem. This section compares our method with the
existing layer-wise Traveling Salesman Problem (TSP) permutation strategies.
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Method Accuracy TV

Original (No Permute) 91.62 58141.80

Layer-TSP Greedy 91.67 50271.82
Layer-TSP 2-Opt 91.31 49132.78
mSHP (Ours) 91.87 45576.02

Table 1: Ablation results with different weight permutation strategies.

Baselines and Measurement. For comparison, we consider the original, un-
permuted weights and three different permutation strategies. The first is the
Random permutation, which shuffles the weights based on a randomly gener-
ated order. We also compare our results with two layer-wise TSP strategies: the
2-Opt algorithm [3], and a Greedy solver approach [1]. Starting from the same
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Fig. 2: The average total variation for model weights after different permutation strate-
gies. We show the mean± over 5 runs.

trained network, we apply each permutation algorithm and measure the result-
ing total variation, averaged across all parameters. We repeat these experiments
five times for each strategy and report the mean and standard deviation (mean
± std). Besides, we train the INR model on weights modified by these permu-
tations using the CIFAR10 dataset, to assess the impact of weight permutation
on final model performance.

Results. The results are presented in Figure 2. We evaluated our mSHP solution
across eight different network architectures on three datasets. The results demon-
strate that our mSHP approach consistently achieves the best performance in
terms of TV score after permutation. These results are highlighted in Purple in
the figure.

Furthermore, we investigated the performance of permuted weights on the
CIFAR10 dataset, as detailed in Table 1. Our finding indicates that compared
to existing permutation strategies, our approach yields a slight improvement in
performance.
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6 Additional Ablation Studies

6.1 Model Architecture

Fig. 3: Prototype of net-
work architecture.

In the paper, we utilize a residual MLP with ReLU
activation, as depicted in Figure 3. The input di-
mension, represented as input_dim, is computed as
(num_freq× 2 + 1)× 6. This formulation indicates
that the input is expanded by Fourier features. In this
section, our discussion mainly revolves around three
critical parameters of the network: the number of lay-
ers (k), the number of frequencies, the hidden channel
number (d), and the usage of residual connection.
Experiment Setup. In our experimental analysis,
we explored the impact of varying model architectures
on accuracy. The primary variables altered in these ex-
periments were the number of layers, the number of
hidden units, and the number of frequencies within the model. Specifically, we
tested models with 5, 8, and 12 layers, each with either 256 or 512 hidden units,
and frequency counts of 16 and 32. Additionally, we conducted comparisons be-
tween models with and without residual connections to understand their impact
on performance.
Results and Findings. As shown in Figure 2, the results provided insights into
the optimal model architecture. The best performance was observed in models
with 8 layers and 512 hidden units at 32 frequencies, achieving a peak accu-
racy of 91.87%. Models with 5 layers and 256 hidden units also performed well,
particularly at 16 frequencies, reaching an accuracy of 91.76%. However, models
with 12 layers and 256 hidden units experienced a decline in accuracy, regardless
of frequency count. This indicates that a configuration of 8 layers, 512 hidden
units, and 32 frequencies is most conducive to high accuracy in our model setup.

The results comparing performances with and without residual connections
are presented in Table 3. It is observed that incorporating residual connections
enhances performance by an increase of 1.69% in accuracy.

Num Layer Num Hidden Num Freq Accuracy

5 256 16 91.76
5 256 32 91.23
8 256 16 91.68
8 256 32 91.27
8 512 16 91.84
8 512 32 91.87
12 256 16 91.27
12 256 32 91.03

Table 2: Ablation study on model architectures hyper-parameter.
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Method Accuracy

W/o residual 90.18
W residual 91.87

Table 3: Ablation study on residual connection.

6.2 Block-Based INR

In our efforts to enhance the capacity of the implicit function, we have imple-
mented a block-based INR. This approach involves designating distinct MLP
networks for predicting the different parameters (each weight or bias). The
effectiveness of this method is assessed by comparing it against a conventional
approach, where a singular INR is utilized to predict the weights for all layers.

Method Accuracy

W/o block-based INR 91.74
W block-based INR 91.87

Table 4: Ablation study on block-based INR.

Results. The comparison is illustrated in Table 4. Our finding indicates that
employing the block-based INR strategy leads to enhancement in performance.
Specifically, there is an observed improvement of 0.13% in accuracy on the CI-
FAR10 dataset when using the block-based INR, highlighting its efficacy.

6.3 Exponential Moving Average (EMA)

In our study, we incorporate the Exponential Moving Average (EMA) technique
during the training phase of the INR. This approach updates the weights of the
INR using θt ← γθt−1 + (1 − γ)θt. We would like to evaluate the efficiency of
the EMA technique and determining the optimal value for the γ parameter.

γ Accuracy (%)

0 91.32
0.99 91.42
0.995 91.87
0.999 91.42

Table 5: Ablation study evaluating different γ values in EMA.
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Results. The results of our ablation study, as shown in Table 5, reveal the
impact of varying γ values on the accuracy of the model. It is evident that the
optimal value of γ = 0.995 significantly enhances the model’s performance.

7 Distinction From NeRN

While there are work that apply INR to fit neuron weight like Neural Represen-
tation for Neural Networks (NeRN) [1], our method, NeuMeta, stands distinct in
several key aspects:

– Memorize vs. Generalize. NeRN is tailored to fit a single network, and
lacks the ability to extrapolate to unseen architectures post-training. In con-
trast, NeuMeta is designed to adapt to the entire manifold. Once trained, it
can generate weight for any network configuration on this manifold, without
retraining.

– Discrete vs. Continuous. Unlike NeRN, which fits a discrete network with
coordinate-wise inputs, NeuMeta embraces a continuous manifold approach.
This allows weight values to be represent by an average over a small neigh-
borhood, enhancing generalization to unseen architectural weights beyond
the training scope.

– Purpose. NeRN focuses on model compression, storing the parameters of a
full model within a smaller MLP to reduce the parameter count. NeuMeta,
however, aims for resizeability and flexibility, enabling on-the-fly sampling
of different network weights.

Given these factors, our NeuMeta represents a significant advancement be-
yond NeRN, moving past the confines of fitting weights for a single, discrete
network.

8 Segmentation Visualization

Building upon our performance analysis of semantic segmentation in the main
paper, we offer an in-depth qualitative comparison in Figure 4. This includes a
comparison with the full-sized model (shown in column 3) and models trained
using the Slimmable Neural Network approach (columns 4 and 6).

We make two major observations

– Enhancement Over Slimmable NN. Notably, our NeuMeta consistently
outperforms the Slimmable NN baseline. In the 50% compression scenario,
NeuMeta achieves more accurate mask predictions. Even in the challenging
75% compression case, where Slimmable NN struggles significantly, NeuMeta
manages to produce reasonable segmentation outputs.

– Comparison with Full-Sized Model: Interestingly, NeuMeta not only
competes with but also surpasses the full-sized model in several instances,
such as in rows 3, 6, and 8. These observations might indicate the potential
efficacy of NeuMeta, especially in terms of how its smoothed weight could
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improve the model’s generalization capabilities across various challenging
contexts.

These findings underscore NeuMeta’s potential in providing more accurate
semantic segmentation, particularly under large compress rate, demonstrating
its value in enhancing model performance and efficiency.

Input Image GT Mask Ours 75%∗Ours 50%Full Model Slimmable 75%∗Slimmable 50%

Fig. 4: Semantic segmentation visualization on VOC2012 dataset. ∗ denotes that the
model has not been trained with a 75% compression rate.

9 Experimental Setup

9.1 Selection of Pretrained Models

For ResNet models applied to CIFAR10 and CIFAR100 datasets, we utilize the
models trained and available at 1. In the case of ResNet on the ImageNet dataset,
1 https://github.com/chenyaofo/pytorch-cifar-models

https://github.com/chenyaofo/pytorch-cifar-models
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we employ the official pretrained models provided by PyTorch. For tasks involv-
ing MNIST, image generation, and VOC segmentation, we have trained the mod-
els ourselves and subsequently integrated them into our Neural Metamorphosis
pipeline.
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