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Abstract. This paper introduces a new learning paradigm termed Neu-
ral Metamorphosis (NeuMeta), which aims to build self-morphable
neural networks. Contrary to crafting separate models for different archi-
tectures or sizes, NeuMeta directly learns the continuous weight manifold
of neural networks. Once trained, we can sample weights for any-sized
network directly from the manifold, even for previously unseen config-
urations, without retraining. To achieve this ambitious goal, NeuMeta
trains neural implicit functions as hypernetworks. They accept coordi-
nates within the model space as input, and generate corresponding weight
values on the manifold. In other words, the implicit function is learned
in a way, that the predicted weights is well-performed across various
models sizes. In training those models, we notice that, the final perfor-
mance closely relates on smoothness of the learned manifold. In pursuit
of enhancing this smoothness, we employ two strategies. First, we per-
mute weight matrices to achieve intra-model smoothness, by solving the
Shortest Hamiltonian Path problem. Besides, we add a noise on the input
coordinates when training the implicit function, ensuring models with
various sizes shows consistent outputs. As such, NeuMeta shows promis-
ing results in synthesizing parameters for various network configurations.
Our extensive tests in image classification, semantic segmentation, and
image generation reveal that NeuMeta sustains full-size performance even
at a 75% compression rate.

Keywords: Weight Manifold · Morphable Neural Network · Implicit
Neural Representation

1 Introduction

The world of neural networks is mostly dominated by the rigid principle: Once
trained, they function as static monoliths with immutable structures and pa-
rameters. Despite the growing intricacy and sophistication of these architectures
over the decades, this foundational approach has remained largely unchanged.

This inherent rigidity presents challenges, especially when deployed in new
scenarios unforeseen during the network’s initial design. Each unique scenario
calls for a new model of distinct configuration, involving repeated design, train-
ing, and storage processes. Such an approach is not only resource-intensive, but
also limits the model’s prompt adaptability in rapidly changing environments.
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In our study, we embark on an ambitious quest to design neural networks that
can, once trained, be continuously morphed for various hardware configurations.
Particularly, our goal is to move beyond the confines of fixed and pre-trained
architectures, and create networks that readily generalize to unforeseen sizes and
configurations during the training phase.

Indeed, this problem has been considered in slightly different setup, , employ-
ing strategies like flexible models [2,56] and network pruning techniques [10,11,
31]. The former ones are designed to self-adapt to various subnetwork configura-
tions, whereas the latter ones aim to eliminate redundant connections, achieving
models that are streamlined yet robust. Nevertheless, these solutions have their
own challenges: flexible models are confined to the their training configurations,
and pruning methods compromise performance and often require further retrain-
ing. Most importantly, they are still building numerous rigid models, without the
ability to be continuously morphed.
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Fig. 1: Pipeline of Neural Metamorphosis.

To this end, we present a new
learning paradigm, termed Neural
Metamorphosis (NeuMeta). That is,
instead of interpreting neural net-
works not as discrete entities, we see
them as points sampled from a con-
tinuous and high-dimensional weight
manifold. This shift allows us to learn
the manifold as a whole, rather than
handling isolated points. As such,
NeuMeta, as its name implies, can
smoothly morphs one network to an-
other, with similar functionality but different architecture, such as width and
depth. Once done, we can generate the weights for arbitrary-sized models, by
sampling directly from this manifold.

At the heart of our paradigm is the use of Implicit Neural Representation
(INR) as hypernetworks to fit the manifold. Intuitively, the INR acts as an in-
dexing function of weights: upon receiving the network configuration and weight
coordinates as inputs, it produce the corresponding weight values. In the training
phase, the INR is assigned two goals: it approximates the weights of the pre-
trained network, while simultaneously minimizing the task loss across a variety
of randomly sampled network configurations. During the testing phase, the INR
receives the weight coordinates for the desired network configuration, outputting
values to parameterize the target network. This implementation is, by nature,
different from existing methods that builds continuous neural networks that rely
on integral operations and explicit continuous weight function [28,49].

Nonetheless, our ambitious effort comes with great challenges, causing the
simplistic solutions to fail. A primary difficulty arises from the inherently non-
smooth properties of network’s weights, which hinders the fitting of the INR.

To overcome this, we put forth two strategic solutions. The first involves the
permutation of weight matrices to enhance the intra-network smoothness.
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Recognizing the flaws of prior attempts, we formulate it as a multi-objective
Shortest Hamiltonian Path problem (mSHP). By solving this problem within
individual network cliques, we enhance the smoothness of the network’s weights.

The second strategy, aimed at cross-network smoothness, involves in-
troducing random noise into the input. During the INR training, we maintain
output consistency of the main model, irrespective of this input noise. During
testing, the expected output value around this sampled coordinates is employed
as the predicted weight value. This strategy moves away from a rigid grid, allow-
ing for greater flexibility in generating new networks. Together, these strategies
simplify the process of modeling the weight manifold, thereby enhancing the
robustness of our approach.

We evaluated NeuMeta on various tasks including image classification, se-
mantic segmentation, and generation. Our findings reveal that NeuMeta not only
matches the performance of original model but also excels across different model
sizes. Impressively, it maintains full-size model performance even with a 75%
compression rate. Remarkably, NeuMeta extrapolates unseen weights. In other
words, it can generates parameters for network sizes outside its training range,
accommodating both larger and smaller models.

This paper’s contributions are summarized as follows:

– We introduce Neural Metamorphosis, a new learning paradim that leverage
INRs to learn neural networks’ continuous weight manifold. Once trained,
this INR can generate weights for various networks without retraining.

– We introduce dual strategies to improve both intra-network and cross-network
smoothness of the weight manifold. This smoothness is key to generate high-
performing networks.

– The proposed method undergoes thorough evaluations across multiple do-
mains, including image classification, segmentation and generation, under-
scoring their versatility and robustness in varied computational setup.

2 Related Work

Efficient Deep Neural Networks. In recourse-limited applications, the effi-
ciency of neural networks becomes a critical concern. Researcher have explored
structure pruning methods [16,34] that trim non-essential neurons to reduce com-
putation. Another development is the flexible neural networks [2,3,14,21,55,56],
which offer modifiable architectures. These networks are trained on various sub-
network setups, allowing for dynamic resizing. In our context, we present a new
type of flexible model that directly learns the continuous weight manifold. This
allows it to generalize to configurations that haven’t been trained on, an infea-
sible quest for existing approaches.
Continuous Deep Learning. Beyond traditional neural networks that dis-
cretize weights and outputs, continuous deep learning models represent these
elements as continuous functions [4, 49]. The concept extends to neural net-
works with infinite hidden width, modeled as Gaussian processes [38]. Further
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Method Continuous HyperNet Resizable Checkpoint-Free Generalize to Unseen

Structure Prune [36] ✗ ✗ ✓∗ ✓ ✓
Network Transform [5,52,54] ✗ ✗ ✓ ✓ ✓
Flexiable NN [2,56] ✗ ✗ ✓ ✓ ✗
Continuous NN [45,49] ✓ ✗ ✓ ✓ ✗
Weight Generator [23] ✗ ✓ ✓ ✗ ✓

NeuMeta (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparing methods for building neural networks but can be resized. Struc-
tural pruning (∗) only reduces network size. Network Transform manipulates weights
to construct a functionally identical version of the source network. Flexible Models are
training-dependent and fail with unseen networks. Existing Continuous NNs are only
valid for specific operators. Weight generators need extensive training checkpoints. Our
NeuMeta uniquely learns a continuous weight manifold with INR hypernet. As such we
can generalize to any neural operator and unseen configurations beyond training.

endeavors replace matrix multiplication with integral operations [45, 49]. Neu-
ral Ordinary Differential Equations (Neural ODEs) [4] build models by defining
dynamical system with differential equations, fostering a continuous transfor-
mation of data. Our method diverges from those above, using an INR to create
a continuous weight manifold. This allows for continous weight sampling and
introduces a new type of continuous network.
Knowledge Transfer. Pre-trained neural networks have become a cornerstone
for advancing deep learning, enabling rapid progress in downstream tasks due to
their transferable learned features [5, 52]. Techniques like network transform [5,
52, 54] and knowledge distillation [20, 53, 57] adapt these features to fit new
architectures and more compact networks. Our approach also transfer knowledge,
but instead of doing a one-to-one transfer, we derive a continuous manifold of
weights from a trained neural network. This enables a one-to-many knowledge
transfer, which can create multiple networks of various sizes.
HyperNetworks. HyperNetworks optimize neural architectures by generating
weights via auxiliary networks [15]. To accommodate weights for new models
or architectures, they are trained on a vast range of checkpoints, learning a
weight distribution [23, 40, 46], facilitating multitask learning [37, 42], continual
learning [39], fewshot learning [47] and process implicit function [6].

Unlike typical hypernetworks producing fix-sized weights, our method uses
an INR as hypernetwork that learns to predict variable-sized weights, offering
dynamic, on-demand weight adaption. Similarly, [1] uses INR as hypernet, but
their approach is confined to fixed-size weight prediction. [42] predicts connec-
tions between layers without accounting for various weight sizes.

We provide a comparative analysis of the aforementioned methods in Table 1.

3 Implicit Representation on Weight Manifold

In this section, we introduce the problem setup of NeuMeta and present our
solution. In short, our idea is to create a neural implicit function to predict
weight for many different neural networks. We achieve this goal by posing the
principle of smoothness in this implicit function.
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3.1 Problem Definition

Let’s imagine the world of neural networks as a big space called F . In this space,
every neural network model fi ∈ F is associated with a set of weight Wi =
{w(i,j)}. Such a model fi is uniquely identified by its configuration i ∈ I, such
as width (channel number) and depth (layer number). Furthermore, each weight
element within the network is indexed by j ∈ J , indicating its specific location,
including aspects like the layer index and channel index. The combination of
configurations and indices, I ×J forms the model space, uniquely indexing each
weight. We say the all weights values that makes up a good model on a dataset
D lies on a weight manifold W. We also assume we have access to a pretrained
model f(·;Woriginal). Our goal is to learn the weight manifold W.
Definition 1. (Neural Metamorphosis) Given a labeled dataset D and a
pretrained model f(·;Woriginal), we aim to develop a function F : I × J → W
that maps any points in the model space to its optimal weight manifold. This is
achieved by minimizing the expected loss across full I × J .

min
F

E∀(i,j)∈I×J
[
Ltask(fi(W

∗
i );D)

]
, s.t.W∗

i = {w∗
(i,j)}, w∗

(i,j) = F (i, j), (1)

where Ltask denotes the task-specific loss function. In other words, F give
us the best set of weights for any model setup in I × J , rather than fitting a
single or a set of neural networks [2,56]. In context neural network, our F , which
inputs coordinates and outputs values, is known as implicit neural representa-
tion (INR) [48]. Consequently, we choose INR as our F , offering a scalable and
continuous method learn this mapping.
Connecting to Continuous NN. NeuMeta can be viewed as a method to build
Continuous NNs, by representing weight values as samples from a continuous
weight manifold. Here, we would like to see how it differs from existing methods.
For example, in continuous-width NNs [45, 49], linear operations are typically
defined by the Riemann integral over inputs and weights:

f(x) = x ·w =
∑
j

(∆jxjW (j)) ≈
∫ 1

0

x(j)W (j)δj, (2)

where x and w represent discrete input and weight vectors. j is the continuous-
valued channel index. W (j) is a continuous weight function, and ∆j is the width
of the sub-interval between sampled points for integral.

Our method offers three key advantages over this traditional approach:

– Integral-Free. NeuMeta requires no integral.
– Learned Continuous Sampling. Our method jointly learns the continuous

weight function and the sampling interval wj = ∆jW (j), rather that learn-
ing W (j) along. This enables us to generate continuous-width NN on-fly, a
feat unachievable with discrete learned sampling [49].

– INR Parameterization. INR offers a generalized form to model the continu-
ous function1.

1 Prior designs using kernel [49] or piece-wise functions [45] can be considered special
cases of INR, as detailed in our supplementary material.
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Fig. 2: Diagram of NeuMeta and our content organization.

Challenge and Solution. Our effort, while ambitious, presents distinct chal-
lenges. First, an INR design for neural network weight is largely unexplored.
Second, it is essential to train on limited samples from the weight manifold and
then generalize to unseen ones. Our solution, as depicted in Figure 2, includes an
INR-based architecture in Section 3.2 and a strategy for learning on a smooth
weight manifold in Sec 3.3. The training process is discussed in Sec 3.4 .

3.2 Network Architecture

At the core of NeuMeta, we employ an INR model, F (·; θ) : Rk → Rd, to param-
eterize the weight manifold. This function, based on a multi-layer perceptron
(MLP), transforms model space into weight values. In our implementation, we
set the parameter k = 6. For convolutional networks, the dimension d = K×K,
the maximum kernel size, whereas for non-convolutional setups, d = 1.

Considering a generalized network with L layers, each layer with an input-
output channel size of (Cin, Cout). Each weight element, w(i,j), is associated with
a unique index within the network. This index is represented as a coordinate pair
(i, j), with i = (L,Cin, Cout) denoting the network structure and j = (l, cin, cout)
indicating the its specific layer, input, and output channel number. To ensure the
same coordinate system is applicable to all (i, j), these raw coordinates undergo
normalization, typically rescaling them with a constant N

v =

[
l

L
,
cin
Cin

,
cout

Cout
,
L

N
,
Cin

N
,
Cout

N

]
, (3)

Similar to prior technique [35], the normalized coordinates undergo a transfor-
mation through sinusoidal position embedding, to extract its Fourier features.

γPE(v) =
[
sin(20πv), cos(20πv), . . . , sin(2L−1πv), cos(2L−1πv)

]
These encoded Fourier features, γPE(v), serve as inputs to the MLP, yielding

the weights:
w(i,j) = F (γPE(v); θ) =

MLP(γPE(v); θ)

Cin
. (4)

In equation (4), the output of the MLP is scaled by the number of input channels
Cin, ensuring that the network’s output maintains scale invariance relative to the
size of the input channel [13,18].

To handle lots of parameters with INR, we adopting a block-based ap-
proach [43, 51]. Instead of a single large INR, weights are divided into a grid,
with each segment controlled by a separate MLP network. The full architecture
will be mentioned in the supplementary material.

In our framework, the weights for standard neural network operations are
defined as follows:
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Linear Operation. For linear operations, we obtain the scalar weight as the
element-wise average of w(i,j).
Convolution Operation. For convolution layers, weights w(i,j) are reshaped
into k × k. If the kernel size k is smaller than the K, only the central k × k
elements are utilized.
Batch Normalization Layer. For batch normalization, we use a re-parameterization
strategy [8], integrating BN weights into adjacent linear or convolution layers.
This method integrates BN operations into a unified framework.

3.3 Maintaining Manifold Smoothness

A critical design within our paradigm is ensuring the weight manifold remains
smooth. We, in this section, discuss why this smoothness is crucial for the model’s
performance, and outline our strategy for achieving this local smoothness.
Intra-Model Smoothness. Modern neural networks heavily rely on their abil-
ity to model smooth signals [41] to ensure convergence. Yet, empirical evidence
suggests that the weight matrices are typically non-smooth. To enable our INR
to reconstruct weights, we must find strategies that promote smoothness.

To address this challenge, previous studies have explored the concept of
weight permutation [1, 49]. It is often likened to the Traveling Salesman Prob-
lem (TSP) [27]. However, such an approach, while seemingly straightforward,
overlooks the crucial inter-dependencies within and between weight matrices.

Let’s consider a weight matrix W ∈ RCout×Cinand measure its smoothness
using total variation, denoted as TV (W). It is defined as the sum of variations
along both channels: TV (W) = TVin(W) + TVout(W). In fact, applying the
TSP formulation presents 3 problems:

– (P1) Loop VS Non-Loop: Unlike TSP, which necessitates returning to
the starting point, ensuring 2D weight matrix smoothness doesn’t require
looping back. Instead, it is better to be considered as a Shortest Hamiltonian
Path (SHP) [12] problem, allowing for an arbitrary starting channel.

– (P2) Breaking Smoothness for the Connecting Layer: Unlike iso-
lated weight matrices, neural networks consist of connected layers, creating
complex inter-layer relationships. This is illustrated in Figure 3, where per-
mutations in one layer necessitate corresponding reversals in adjacent lay-
ers to maintain the network’s functional equivalence. For example, with an
activation function σ(·) and a valid permutation pair P and P−1 (where
PP−1 = I), the following equation holds:

WiPσ(P−1Wi−1X) = Wiσ(Wi−1X) (5)

As a result, P−1 may affect the adjacent layers, with increased TV for WiP .
– (P3) Breaking Smoothness for the Other Dimension: A permuta-

tion enhancing smoothness in output channel, might introduce non-smooth
patterns in the input channel, thus reducing the overall smoothness.

Luckily, we find that the computation of the TV measurement renders (P3)
infeasible, implying our focus should be directed towards (P1) and (P2).
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Fig. 3: Intra-model smoothness via permutation equivalence. Our approach in-
volves permuting weights to minimize total variance within each neural clique graph,
thereby enhancing global smoothness.

Proposition 1. (Axis Alignment) 2 Let W be a given matrix and P be a
permutation. The application of a permutation in one dimension of W does not
influence the total variation in the orthogonal dimension.

TV (WP ) = TVin(WP ) + TVout(W) (6)
TV (PW) = TVin(W) + TVout(PW) (7)

Hence, to tackle global smoothness, we address challenges P1 and P2. We con-
sider a neural network as a dependency graph G = (V,E) [10], where each node
vi ∈ V represents an operation with weight Wi and each edge eij ∈ E indicates
inter-connectivity between vi and vj . Each graph clique C = (VC , EC) ⊂ G is
full-connected, representing a group of operation is connected. As a results, each
C corresponds to a unique permutation matrix P . Our objective is to determine
all P in a way that minimizes the total variation across the whole network.

Luckily, based on the Proposition 1, this complex optimization can be broken
down into multiple independent optimizations, each on a clique. We define this
as a multi-objective Shortest Hamiltonian Path (mSHP) problem:

argmin
P

∑
eij∈EC

(
TVout(PWi) + TVin(WjP

−1)
)

(8)

To address each mSHP problem, we transform it into a TSP problem by
adding a dummy node. This new node has edges with zero-distance to all others
in the clique. We then solve TSP using a 2.5-opt local search [50]. The resulting
permutation P ∗ is applied to all weight matrices within the clique. This promotes
the weight smoothness and preserves the functionality of the network.

Since each individual mSHP problem is only correlated to one clip graph, we
can solve the optimal P in a relative small scale, very efficently. In fact, with
≤ 20 cliques per network, the total computation time is < 4 sec.
Cross-Model Smoothness. Another crucial challenge is to perverse the gen-
eralization behavior of the INR with different network configurations, which
means, a small perturbation in the configuration, will eventually not affect the
main model’s performance. We address this by adding coordinate variation in
the INR’s learning process.

2 Proof in the supplementary material.
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Fig. 4: Cross-model smoothness via co-
ordinate perturbation. Unlike the predict
weights in discrete grid (Left), our INR pre-
dicts weight as the expectation within a small
neighborhood (Right).

During training, rather than us-
ing fixed coordinates and model sizes
as in Equation 4, we introduce slight
variations to the input coordinates.
Specifically, we add a small pertur-
bation ϵ to the input coordinate
(i′, j′) = (i, j) + ϵ, where ϵ is drawn
uniformly from U(−a,a). This strat-
egy aims to minimize the expected
loss Eϵ∈U(−a,a)[L].

For model evaluation, we sam-
pling weight from a small neigh-
borhood, as illustrated in Figure 4.
We compute this by averaging the
weights obtained from multiple input, each perturbed by different ϵ ∈ U(−a,a):

w̄(i,j) = Eϵ∈U(−a,a)[w(i′,j′)] ≈
1

K

∑
K

F (γPE(v
′); θ) (9)

This is implemented by inferring the INR K = 50 times with varied sampled
inputs v′ and then computing the average of these weights to parameterize the
main network. This approach is designed to enhance the stability and reliability
of the INR under different configurations.

3.4 Training and Optimization

Our approach optimizes the INR, denoted as F (·; θ), to accurately predict weights
for the main network of different configurations. It pursues two primary goals:
approximating the weights of the pretrained network f(·;Woriginal), and mini-
mizing task-specific loss across a range of randomly sampled networks. As such,
the optimization leverages a composite loss function, divided into three distinct
components: task-specific loss, reconstruction loss, and regularization loss.
Task-specific Loss. Denoted as Ltask(y, ŷ(W)), this measures the difference
between actual labels y and predictions ŷ, based on weights W from the INR.
Reconstruction Loss. This element, expressed as Lrecon = ||Woriginal||22||W−
Woriginal||2, assesses how close the INR-derived weights W to the ideal weights
Woriginal, weighted by the magnitude ||Woriginal||22.
Regularization Loss. Symbolized as Lreg = ||W||2. This introduces L2 norm
regularization on the predicted weights, to prevent overfitting by controlling the
complexity of the derived model [26,33].

We minimize the composite objective by sampling different points on the
model space

min
θ

Ei,j,ϵ[L] = min
θ

Ei,j,ϵ[Ltask + λ1Lrecon + λ2Lreg] (10)

This loss function ensuring not only proficiency in the primary task through
precise weight, but also bolstering model robustness via regularization. During
training, we iteratively evaluates various combinations (i, j), striving to minimize
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the expected loss. The loss function is backpropagated from the main network
to the INR as follows:

∇θL =
∂Ltask

∂W

∂W

∂θ
+ λ1

∂Lrecon

∂θ
+ λ2

∂Lreg

∂θ
(11)

This equation represents the gradient of the loss with respect to θ.

4 Experiments

In this section, we present our experimental analysis and various applications of
NeuMeta, spanning classification, semantic segmentation, and image generation.
To substantiate our design choices, we conduct different ablation studies. Addi-
tionally, we delve into exploring the properties of the learned weight manifold.

4.1 Experimental Setup

Datasets and Evaluation. We evaluate the proposed method on 3 tasks
across 6 different visual datasets. For image classification, we select 4 dataset:
MNIST [30], CIFAR10, CIFAR100 [25] and ImageNet [7]. Training includes hor-
izontal flip augmentation, and we report top-1 accuracy. We also report the
training time and the final size of stored parameters to evaluate our savings.

In semantic segmentation, we utilize PASCAL VOC2012 [9], a standard
dataset for object segmentation tasks. We utilize its augmented training set [17],
incorporating preprocessing techniques like random resize crop, horizontal flip,
color jitter, and Gaussian blur. Performance is quantified using mean Intersection-
over-Union (mIOU) and F1 score, averaged across 21 classes.

For image generation, we employ MNIST and CelebA [32]. A vanilla vari-
ational auto-encoder (VAE) fits the training data, with evaluation based on
reconstruction MSE and negative log-likelihood (NLL).
Implementation Details. Our INR utilizes MLPs with ReLU activation, com-
prising five layers with residual connections and 256 neurons each. We employ
a block-based INR approach, where each parameter type, such as weights and
biases, is represented by a separate MLP. The positional embedding frequency is
set to 16. Optimization is done using Adam [22] with a 1e-3 initial learning rate
and cosine decay, alongside a 0.995 exponential moving average. During training,
we maintain the balance between different objectives with λ1 = 1 and λ2 = 1e−4.
In each training batch, we sample one network configuration, update a random
subset of layers in the main network, computing gradients for the INR, to speed
up training. The configuration pool, created by varying the channel number of
the original network, utilizes a compression rate γ = 1− sampled channel number

full channel number . We
randomly sample a network width with compress rate γ ∈ [0, 0.5] for training.
For example, a 128-channel layer will have its width sampled from 64 ∼ 128.

For classification tasks, we apply LeNet [29] on MNIST, ResNet20 [19] on CI-
FAR10 and CIFAR100, and ResNet18 and ResNet50 on ImageNet, using batch
sizes of 128 (MNIST, CIFAR) and 512 (ImageNet). We the INR train for 200
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epochs. For segmentation task, we use the U-Net [44] with the ResNet18 back-
bone. The details are mentioned in the supplementary material.
Baselines. Our NeuMeta model is benchmarked against three family of methods:
Structure Pruning, Flexible Models, and Continuous-Width Models.

– Individually Trained Model. Each models is trained separately.
– Structure Pruning. We evaluate against pruning methods that eliminate

channels based on different criteria. This includes Weight-based pruning (re-
moving neurons with low ℓ1/ℓ2-norm), Taylor-based method (using gradients
related to output), Hessian-based pruning (using Hessian trace for sensitiv-
ity), and Random pruning (random channel removal).

– Flexible Model. We compare with the Slimmable network [56], which
trains subnetworks of various sizes within the main model for dynamic test-
time resizing. We train the model on {0%, 25%, 50%} compressed ratio, and
also test on 75% compressed setup.

– Continuous-Width NN. Comparison is made with the Integral Neural
Network [49], which uses kernel representation for continuous weight mod-
eling. For comparison, we focus on the uniform sampling method, as its
learned sampling technique does not support resizing. We train the model
on [0%, 50%] compress rate range, but also test on other values, like 75%.

We ensure that all compression is applied uniformly for all methods, guaranteeing
that all models compared have the exactly same cost for inference.

4.2 Enhancing Efficiency by Morphing the Networks

Image Classification. As depicted in Figure 5, in the realm of image classifica-
tion, NeuMeta consistently surpasses existing pruning-based methods in accuracy
across MNIST, CIFAR10, CIFAR100, and ImageNet datasets at various com-
pression ratios. It is worth-noting that, pruning-based methods show a marked
accuracy decrease, approximately 5% on ImageNet and 6% on CIFAR100, when
the compression ratio exceeds 20%. Conversely, NeuMeta retains stable perfor-
mance up to 40% compression. However, a minor performance reduction is noted
in our full-sized model, highlighting a limitation in the INR’s ability to accurately
recreate the complex pattern of network weights.

Table 2 compares NeuMeta with Slimable NN and INN, including Oracle re-
sults of independently trained models for reference. We stick to the same model
size for all method, to ensure the comparision is fair. Remarkably, NeuMeta often
surpasses even these oracle models on large compress rate. This success is at-
tributed to the preserved smoothness across networks of varying sizes, which in-
advertently enhances smaller networks. Our approach outperforms both Slimable
NN and the kernel representation in INN. Notably, at an untrained compression
ratio of 75%†, other methods significantly underperform.

Furthermore, when evaluating total training time and parameter storage re-
quirements, our approach demonstrates improved efficiency. Unlike the exhaus-
tive individual model training and storage approach, other methods achieve some
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(a) LeNet on MNIST
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(b) R20 on CIFAR10
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(c) R20 on CIFAR100
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(d) R18 on ImageNet

Fig. 5: Accuracy comparison of NeuMeta versus different structure pruning methods
on MNIST, CIFAR10, CIFAR100 and ImageNet. Our method consistently outperforms
pruning-based methods. R18 and R20 are short for ResNet18 and ResNet20.

ResNet20 on CIFAR10

Method γ = 0% γ = 25% γ = 50% γ = 75%† Total Train Cost
(GPU hours)

Stored
ParamsAcc Acc Acc Acc

Individual 92.60 90.65 89.57 87.04 5.3 0.67M
Slimable [56] 90.44 90.44 88.41 18.56 1.6 0.35M
INN [49] 91.33 90.50 89.24 71.70 1.8 0.27M
Ours 91.76 91.32 90.56 89.56 1.3 0.20M

ResNet20 on CIFAR100

Method γ = 0% γ = 25% γ = 50% γ = 75%† Total Train Cost
(GPU hours)

Stored
ParamsAcc Acc Acc Acc

Individual 68.83 66.37 64.87 61.37 5.5 0.70M
Slimable [56] 64.44 64.01 63.38 1.59 1.5 0.37M
INN [49] 65.86 65.53 63.35 27.60 1.9 0.28M
Ours 66.07 66.23 65.36 62.62 1.4 0.20M

Table 2: Accuracy comparison of ResNet20 on CIFAR10 and CIFAR100 at different
compression ratios. † The 75% compression ratio wasn’t applied in training.

level of savings. However, Slimable NN’s separate storage for BN parameters still
renders it less efficient. Our method achieves the least storage size by storing a
few MLPs instead of the original parameters, thus reducing the overall parameter
count even below that of a single model.

Semantic Segmentation. For semantic segmentation on the PASCAL VOC2012
dataset, NeuMeta demonstrates superior performance in Table 8. It surpasses the
Slimmable network that requires hard parameter sharing, especially at an un-
trained 75% compression rate. On this setup, we show a significant improvement
of 20 mIOU. However, for complex tasks like segmentation, a slight performance
drop is observed at smaller compression rate. It is attributed to the INR’s limited
representation ability. More results is provided in the supplementary.

Image Generation. We implement NeuMeta to generate images on MNIST
and CelebA, using VAE. Since Slimable NN and INN haven’t been previously
adapted for VAE before, we only compare with the pruning method, in Figure 7.
Our approach demonstrated superior performance in terms of lower negative
log-likelihood (NLL) across various compression ratios. For example, we visual-
ize the generated results of when compressed by 25% for MNIST and 50% for
CelebA in Figure 6. Compared with the ℓ1-based pruning, our method signif-
icantly improved reconstruction MSE from 53.76→32.58 for MNIST and from
620.87→128.60 for CelebA. Correspondingly, the NLL was reduced by 61.33 for
MNIST and 492.26 for CelebA.
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L1 25% Pruning
MSE=53.76
NLL=211.99

Ours 25% Compress
MSE=32.59
NLL=150.60

(a) Results on MNIST

L1 50% Pruning
MSE=620.87
NLL=814.48

Ours 50% Compress
MSE=128.60
NLL=322.22

(b) Results on CelebA

Fig. 6: VAE Visualizations on MNIST and CelebA Datasets on the same compress
rate. Lower NLL and MSE indicates better performance.
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Rate vs. NLL
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(b) CelebA Compress
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Fig. 7: Comparative analysis of compress
rate and NLL on different datasets. Lower
NLL indicates better performance.

Method
25% 50% 75%†

mIOU F1 mIOU F1 mIOU F1

Individual 84.70 90.63 83.14 89.59 82.79 89.36

Slimmable [56] 81.09 88.14 80.92 88.03 61.19 72.78

Ours 81.94 88.75 81.93 88.74 81.94 88.75

Fig. 8: Comparison of different methods
across compressed ratio for U-Net. † The
75% compression ratio wasn’t seen in
training.

4.3 Exploring the Properties for NeuMeta

As we represent the weights as a smooth manifold, we investigate its effects on
network. Specifically, we compare NeuMeta induced networks, with individually
trained models and models distilled [20] from full-sized versions.
NeuMeta promote feature similarity. We analyzed the last layer features of
ResNet20 trained on CIFAR10, particularly from layer3.2, using linear central
kernel alignment (CKA) [24] score between each resized and the full-sized model.
The result is shown in Figure 9 (Top). It reveals higher feature map correlations
across models compared to other methods, indicating that NeuMeta encourages
similar network representations across different sizes.
NeuMeta as Implicit Knowledge Distillation. We also report the the pair-
wise output KL divergence in Figure 9 (Bottom), a key metric in knowledge
distillation [20]. Individually trained models show higher divergence, whereas
both KD and NeuMeta result in reduced divergence. These results imply that
NeuMeta not only aligns internal representations but also ensures consistent net-
work outputs, as an implicit form of distillation.

4.4 Ablation Study

Weight Permutation. To validate the effectiveness of our permutation strat-
egy, we analyzed its impact on CIFAR10 accuracy. The comparison of Exp 2 and
4 in Table 11 demonstrates a significant 11.51 accuracy increase due to our per-
mutation strategy. Detailed comparisons of our mSHP-based method with the
TSP solution from [49] are presented in the supplementary material. It shows
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Fig. 10: Ablation study with or without
manifold sampling.
No. Weight Permutation λ1 λ2 Accuracy

1 ✗ 0 1e-4 73.56
2 ✗ 1 1e-4 80.33
3 ✓ 1 0 64.37
4 ✓ 1 1e-4 91.84
5 ✓ 10 1e-4 91.73
6 ✓ 100 1e-4 91.47

Fig. 11: Ablation study for weight per-
mutation and objective hyperprameters
on CIFAR10 ResNet20.

that our mSHP-based solution achieved lower weight total variation score, indi-
cating superior with-in model smoothness.
Objective. We verify different terms in our training objective in Eq 10. From
Exp 1, 4-6 in Table 11, we find the optimal reconstruction weight λ1 = 1 yields
the best performance. Comparing Exp 3 and 4, we observe a performance boost
with a weight penalty term at λ2 = 1e− 4.
Manifold Sampling. Figure 10 evaluates our manifold sampling method with
ResNet20 on CIFAR10. Sampling from the weight manifold neighborhood con-
sistently improves performance, especially in untrained model sizes.

5 Conclusion

This paper presents Neural Metamorphosis (NeuMeta), a novel paradigm that
builds self-morphable neural networks. Through the training of neural implicit
functions to fit the continuous weight manifold, NeuMeta can dynamically gen-
erate tailored network weights, adaptable across a variety of sizes and configu-
rations. A core focus of our approach is to maintain the smoothness of weight
manifold, enhancing the model’s fitting ability and adaptability to novel setups.
Experiments on image classification, generation and segmentation indicate that,
our method maintain robust performance, even under large compression rate.
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