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Abstract. Federated learning (FL) is a learning paradigm that allows
the central server to learn from different data sources while keeping the
data private locally. Without controlling and monitoring the local data
collection process, the locally available training labels are likely noisy,
i.e., the collected training labels differ from the unobservable ground
truth. Additionally, in heterogenous FL, each local client may only have
access to a subset of label space (referred to as openset label learning),
meanwhile without overlapping with others. In this work, we study the
challenge of FL with local openset noisy labels. We observe that many
existing solutions in the noisy label literature, e.g., loss correction, are
ineffective during local training due to overfitting to noisy labels and
being not generalizable to openset labels. For the methods in FL, dif-
ferent estimated metrics are shared. To address the problems, we design
a label communication mechanism that shares “contrastive labels” ran-
domly selected from clients with the server. The privacy of the shared
contrastive labels is protected by label differential privacy (DP). Both
the DP guarantee and the effectiveness of our approach are theoretically
guaranteed. Compared with several baseline methods, our solution shows
its efficiency in several public benchmarks and real-world datasets under
different noise ratios and noise models. Our code is publicly available at
https://github.com/UCSC-REAL/FedDPCont.

Keywords: Federated Learning · Openset Noisy Labels· Weakly Super-
vised Learning

1 Introduction

Data heterogeneity is a common issue among different data centers. The label
spaces of the data centers are likely different due to the heterogeneity of data
sources. For example, the virus variants during the pandemic may differ in dif-
ferent regions, leading to an extremely heterogeneous data distribution among
data centers. The heterogeneity challenges collaborations among data centers,
e.g., federated learning (FL), where each data center joins as a client to train a
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uniform and stronger global model for all the regions without sharing the sensi-
tive data. In addition to a heterogeneous label space, what makes matters worse
is that the observed label space may be noisy due to the limited knowledge ac-
cess between different data centers, making this problem more challenging. This
paper aims to provide solutions for a practical FL setting where not only do each
client’s training labels carry different noise ratios5, but the observed label space
at these clients can also be noisy and differ, even though their underlying clean
labels are drawn from the same label space. We call that such an FL system has
local openset noise problems if the observed label space is noisy and differs across
clients. Note the word “local” makes it different from the traditional definition
of openset [12, 44]. From the perspective of every single client, the local label
space is smaller than the global one. Therefore the local clients are dealing with
an openset problem. Under the FL protocol, the model architecture is the same
and shared between all the clients and the server.

The above local openset label noise will pose significant challenges if we apply
the existing learning with noisy label solutions locally at each client. For instance,
a good number of these existing solutions operate with centralized training data
and rely on the design of robust loss functions [10, 14, 35, 37, 47, 60, 63]. Im-
plementing these approaches often requires assumptions, which are likely to be
violated if we directly employ these centralized solutions in a federated learn-
ing setting. For example, loss correction is a popular and fundamental design
of robust loss functions [19, 28, 35, 37, 39, 49], where the key step is to estimate
the label noise transition matrix correctly [5,59,64,67]. Correctly estimating the
label noise transition matrix requires observing the full label space, when the
ground-truth labels are unavailable. In FL, where the transition matrix is often
estimated only with the local openset noisy labels, existing estimators of the
noise transition matrix would fail. Moreover, even though we can have the best
estimate of the noise transition matrix if we have the ground-truth labels for the
local instances, the missing of some label classes would make the estimate dif-
ferent from the ground-truth one, and again leads to failures (detailed example
in Section 3.4).

Because of the limitation of local transition matrix estimation, the existing
FL methods [50, 54] first estimate the transition matrix and share the matrices
to the server and the server will apply different strategies to different servers.
Similarly, we may share some label information among the clients to generalize
some centralized training methods to FL. However, it is against privacy protec-
tion, making it challenging in real usage. Moreover, it is also important to figure
out what kind of label information is sufficient to solve the local openset noisy
problems in FL. In this paper, we use the global label distribution as a hint to
local clients, where the hint is used in a contrastive way to avoid overfitting to
noisy labels. To protect privacy during label communication, we randomly flip
the shared labels to ensure label differential privacy (DP). Our contributions are
summarized as follows.

5 Noise ratio is the ratio of the corrupted (wrong) labels in the local dataset.
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• We formally define the openset noise problem in FL, which is more practical
than the existing heterogeneous noisy label assumptions. The challenges along
with the openset noise are also motivated by analyzing the failure cases of the
existing popular noisy learning solutions such as loss correction or the methods
based on loss correction [28,35,37,63].

• We propose a novel framework, FedDPCont, to solve the openset label noise
problem, which builds on the idea of using globally shared private contrastive
labels to avoid overfitting to local noisy labels.

• To mitigate the gap between the centralized usage of noisy labels and the
federated one, we propose a label communication algorithm with a differential
privacy (DP) guarantee. We also prove that benefiting from label commu-
nication, the gradient update of aggregating local loss with private labels is
guaranteed to be the same as the corresponding centralized loss, and further
establish its robustness to label noise.

• We empirically compare FedDPCont with several baseline methods on both
benchmark datasets and practical scenarios, showing that, in terms of FL with
openset label noise, directly applying centralized solutions locally cannot work
and FedDPCont significantly improves the performance.

Other
methods

FedDPCont

Stage 1: … Stage 2: … ……

Single Stage

Multi-stage

Better Performance

Acc. Of
Ours

Acc. of
Others

SettingsDataset

84.77%64%-79%1CIFAR-10
82.15%59%-76%2
75.75%51%-70%3
82.15%46%-76%4
………

Estimation
Scores, e.g., LID,
per-class loss

Different Strategies
to different clients

Differential-privacy
protected label
distribution

Fig. 1: FedDPCont is a simple but effective method in solving the locally openset noisy
label problem with only one stage (more simple) but higher performance.

2 Related Works

2.1 Federated Learning

Federated learning is a collaborative training method to make full use of data
from every client without sharing the data. FedSGD [40] is the way of FL to pass
the gradient between the server and the clients. To improve the performance,
FedAvg [32] is proposed and the model weight is passed between the server and
the clients. In practice, openset problem is common in FL because the source of
every client may vary a lot and it is very likely to find that some of the classes
are unique in the specific clients. There are a lot of works to analyze and solve
the non-IID problem in FL [3,20,24–26,58,62].
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Table 1: Comparison with other existing FL methods for noisy label. Non IID stands
for whether the method can be used when the data distribution among the clients
is non-IID. Single-stage means that whether the training method remain the same in
the whole training process. For example, if the method needs to estimate the noise
level, the first stage will be pre-training the model and the next stage is to apply
the proposed strategy, which is not single stage. Free of Noise Estimation refers to
whether the method depends on a step of noise estimation. No Private Set means
whether the method retains a clean private set for performance estimation or not.
Our approach, FedDPCont, presents a single-stage Federated Learning (FL) method
designed to address the locally openset noisy label problem without the need for noise
estimation or a private set. The information shared is the label distribution that is
theoretically guaranteed to be protected by differential privacy.

Method Non IID Single-stage Free of Noise Est. No Private Set Shared Info.

FedCorr [54] ✓ ✗ ✗ ✓ LID
FedRN [21] ✓ ✓ ✗ ✓ Reliability score

FedNoRo [50] ✓ ✗ ✗ ✓ Per-Class Loss
RHFL [9] ✓ ✗ ✗ ✗ -

RFLNL [55] ✗ ✓ ✓ ✓ Global Pseudo Labels

FedDPCont (Ours) ✓ ✓ ✓ ✓ DP-protected Label Dist.

2.2 Label Noise Learning

Label noise is common in the real world [2, 31, 42, 48, 53, 57, 65]. Traditional
works on noisy labels usually assume the label noise is class-dependent, where
the noise transition probability from a clean class to a noisy class only depends
on the label class. There are many statistically guaranteed solutions based on this
assumption [28,30,34,35]. However, this assumption fails to model the situation
where different group of data has different noise patterns [45]. For example,
different clients are likely to have different noisy label spaces, resulting totally
different underlying noise transitions. Existing works on FL with noisy labels
mainly assume the noisy label spaces are identical across different clients [54,55].
There are other notable centralized solutions relying on the memorization effect
of a large model (e.g., deep neural network) [7, 23, 27, 29, 41, 51]. However, in a
FL system, simply relying on the memorization effect would fail, i.e., the model
can perfectly memorize all local noisy samples during local training, since the
local data is likely to be imbalanced and with a limited amount [15, 29]. The
representative existing FL methods [9, 18, 21, 50, 54] to solve the openset noisy
label problem are summarized in Table 1 and Section 3.5. Without the trouble
of estimating the noise level globally or applying different strategies to different
clients with different noise levels, the idea of contrastive labels is to punish the
overfitting, which is supposed to avoid memorizing openset local noisy samples.
Besides, the concept “openset” is also used in [43], where the focus is on the out-
of-distribution features and their labels are called openset noise. It is different
from ours since they did not focus on in-distribution mislabeled data.
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3 Formulations

3.1 Federated learning

Consider a K class classification problem in a FL system with C clients. Each
client c ∈ [C] := {1, · · · , C} holds a local dataset Dc := {(xc

n, y
c
n)}n∈[Nc], where

Nc is the number of instances in Dc and Nc := {1, · · · , Nc}. Assume there is
no overlap among Dc,∀c. Denote the union of all the local datasets by D :=
{(xn, yn)}n∈[N ]. Clearly, we have D = ∪c∈[C]Dc and N =

∑
c∈[C] Nc. Denote

by Dc the local data distribution, (Xc, Y c) ∼ Dc the local random variables of
feature and label, D the global/centralized data distribution, and (X,Y ) ∼ D
the corresponding global random variables. Denote by X , Xc, Y, and Yc the
space of X, Xc, Y , and Yc, respectively. FL builds on the following distributed
optimization problem:

argmin
θ

∑
c∈[C]

Nc

N
· Lc(θ),

where f is the classifier, θ is the parameter of f . f and f stand for the same
model but different output. f := argmaxi∈[K] f . To this end, the local train-
ing and global model average are executed iteratively. In local training, each
client learns a model fc : X → Y with its local dataset Dc by minimizing the
empirical loss Lc(θc) defined as: Lc(θc) := 1

Nc

∑
n∈[Nc]

ℓ(fc(x
c
n; θc), y

c
n), where

for classification problems, the loss function is usually the cross-entropy (CE)
loss: ℓ(f(X; θ), Y ) = − ln (f(X;θ)[Y ]), Y ∈ [K], indicating taking the negative
logarithm of the Y -th element of f given input X and model parameter θ.
In the following global model average, each client c sends its model parame-
ter θc to the central server, which is further aggregated following FedAvg [32]:
θ =

∑
c∈[C]

Nc

N · θc.

3.2 Openset Noise in Federated Learning

When the label y is corrupted, the clean dataset D becomes the noisy dataset
D̃ := {(xn, ỹn}n∈[N ] where ỹn is the noisy label and possibly different from
yn. The noisy data (xn, ỹn) can be viewed as the specific point of the random
variables (X, Ỹ ) which is from the distribution D̃. Noise transition matrix T
characterizes the relationship between (X,Y ) and (X, Ỹ ). The shape of T is
K×K where K is the number of classes in D. The (i, j)-th element of T represents
the probability of flipping a clean label Y = i to noisy label Ỹ = j, i.e., Tij :=

P(Ỹ = j|Y = i). If Ỹ = Y always holds, T is an identity matrix. Note the above
definition builds on the assumption that T is class-dependent, which is a common
assumption in centralized learning with noisy labels [28, 34, 35]. However, in
FL, T is likely to be different for different clients (a.k.a. group-dependent [45]).
Specifically, we use T to denote the global noise transition matrix for D̃ and
Tc to denote the local noise transition matrix for D̃c. In a practical federated
learning scenario where the data across different clients are non-IID, different
clients may have different label spaces. When the labels are noisy, we naturally
have the following definition of openset label noise in FL.
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Definition 1 (Openset noisy labels in FL). The label noise in client c is called
openset if Ỹc ̸= Ỹ.

3.3 Generation of Openset noise

We propose the following noise generation process to model openset label noise
in practical FL systems. Denote by 1c,k the indicator random variable that label
class k is included in client c, where 1c,k = 1 (w.p. Qc,k) indicates client c has
data belonging to class k and 1c,k = 0, otherwise. The indicators {1c,k | ∀c ∈
[C], k ∈ [K]} are generated independently with the probability matrix Q, where
the (c, k)-th element is Qc,k := E[1c,k]. In practice, if all the elements in {1c,k|k ∈
[K]} are identical, meaning the client c can observe nothing or all the classes,
then {1c,k|k ∈ [K]} will be re-generated until client c is an openset client. For
example, that all the elements in {1c,k|k ∈ [K]} are 0 indicates none of the class
in the label space and vice versa.

Denote by Ik := {c|1c,k = 1, c ∈ [C]} the set of clients that include class k.
Denote by D̃(k) = {n|ỹn = k} the indices of instances that are labeled as class
k. For each k ∈ [K], instances in D̃(k) will be distributed to clients with 1c,k = 1
either uniformly or non-uniformly as follows.
• Uniform allocation: Randomly sample (without replacement) |D̃(k)|/|Ik| in-

dices from D̃(k) and allocate the corresponding instances to client c. Repeat
for all c ∈ Ik.

• Non-uniform allocation: Generate probabilities {uc|c ∈ Ik} from Dirichlet
distribution Dir(1) with parameter 1 := [1, · · · , 1] (|Ik| values). Randomly
sample (without replacement) |D̃(k)| · uc indices from D̃(k) and allocate the
corresponding instances to client c. Repeat for all c ∈ Ik.
In this way, all the clients have openset label noise, i.e., Yc ̸= Ỹ,∀c ∈ [C].

3.4 Why is Locally Openset Noisy Label Challenging using Local Transition
Matrix Estimation?

Transition matrix estimation is a fundamental tool to build the noisy label
methods [64, 66, 67]. Consider the following example. For a data distribution
(X,Y ) ∼ D where Y ∈ Y := {1, 2, · · · ,K}, the set of all the opensets is the
combination of Y except the full set of Y and the empty set. For example, if
Y is {1, 2, 3}, there would be 2K − 2 = 6 different combinations of the noisy
label space: {1, 2, 3, (1, 2), (1, 3), (2, 3)}. It should be noted that it is still possible
that the union of all the clients still cannot cover Y. An example of the real and
openset T in the 3-class classification problem is as follows. Suppose the real
noise transition matrix Treal is shown on the LHS. However, if we only observe
Ỹc = {1, 2} in client c, the optimal estimate of T relying only on D̃c could only
be TOptEst even though we know Dc. This is because when Ỹc = {1, 2}, we have
P(Ỹ = 3) = 0 ⇒ P(Ỹ = 3|Y = 3) = 0, resulting that the other two probabilities
have to be normalized from (1/16, 3/16) to (1/4, 3/4) to get a total probability
of 1.
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Treal =

 1 0 0
1/3 2/3 0
1/16 3/16 3/4

 , TOptEst =

 1 0 0
1/3 2/3 0
1/4 3/4 0


A good number of correction approaches in the learning with noisy labels

literature would require using the transition matrix T . For instance, loss correc-
tion [37] is a popular tool to solve the noisy label problem as

ℓ→(f(X), Ỹ ) := ℓ(T⊤f(X), Ỹ ) (1)

where T⊤ is the transpose of T . The key step of the loss correction approach is to
estimate a correct T . However, if the label space is openset, the best estimated
T will lead to a wrong prediction result. Based on the example above, the best
corrected output is

T⊤f(X) =

1 1/3 1/4
0 2/3 3/4
0 0 0

f1(X; θ)
f2(X; θ)
f3(X; θ)

 =

f1(X; θ) + f2(X; θ)/3 + f3(X; θ)/4
2f2(X; θ)/3 + 3f3(X; θ)/4

0

 ,

where f = [f1, f2, f3]
⊤ and fn is the n-th element of f . The model cannot

distinguish class 3 which is reasonable. However, it will misclassify class 2 to class
3 because class 3 has a larger weight. For example, given an instance (x, y = 2),
the cross entropy loss is − ln(2f2(x; θ)/3 + 3f3(x; θ)/4) where f3(x; θ) = 1 leads
to the minimization of the loss, making the loss correction fail.

3.5 How Locally Openset Noisy Label Problem is Solved in FL?

We summarize the existing FL methods solving locally openset noisy label in
Table 1. Most of the methods solve openset problems by sharing the information
to the server or across the clients to get the correct observation of the limited
noisy label space and get a “pre-trained” model to estimate the noise ratio,
identify the noise level of the clients and apply different strategies to the clients,
which is the multi-stage method. Robust FL with noisy labels (RFLNL) [55] is
an FL noisy label method only for IID dataset, which natrually cannot solve the
openset noisy label problem in FL. Our method, FedDPCont, is a single-stage FL
method for openset (extremely non-IID) noisy labels without noise estimation or
a private set. The information shared by FedDPCont is the provable differential
privacy protected label distribution.

4 Proposed Method

4.1 Motivation

The main difficulty of local openset label noise exists in the mismatch of clean
and noisy label spaces within a local client. Changing the label space is challeng-
ing in FL since it often requires sharing data with the server or among clients.
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Fig. 2: The framework of FedDPCont. Step 1 is the TDP generation where the server
generates TDP according to ϵ and sends it to each client. After receiving TDP, Step 2
is the label communication. Every client c calculates DP label Y̌c according to TDP

and the noisy label Ỹc. Clients send Y̌c to the server. The server aggregates every Y̌c,
calculates the posterior label distribution p̌ and sends (T⊤

DP)
−1p̌ to every client for the

contrastive term sampling. Step 3 is the loss calculation using the noisy label Ỹc on
every client c, the model prediction Ŷc and Y ′

c sampled from (T⊤
DP)

−1p̌ and calculate
loss. Step 4 is the back-propagation for contrastive gradient updates.

Therefore, we need to solve two technical challenges here: 1) What kind of infor-
mation can be shared to mitigate the heterogeneity introduced by local openset
label noise? 2) How do we use the shared information to help training?

For the first challenge, we consider sharing the “private labels” since only
sharing the label without disclosing features is usually less sensitive than shar-
ing features in many cases, e.g., face recognition. Additionally, it is relatively
easier to protect the label privacy by random responses [13]. For the second
challenge, given only the private labels, we propose to use them “contrastively”
to punish the overfitting of noisy labels. Intuitively, for a multi-class classifica-
tion task, e.g., 10 classes, a randomly picked private label y̌n′ is likely to be a
wrong label for a randomly picked feature xn. Therefore, rather than guiding the
model to memorize this pattern, we can just use it contrastively or negatively,
i.e., −ℓ(f(xn), y̌n′). Therefore, the new loss function with Private Labels (PL)
becomes

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn), y̌n′). (2)

The design is related to works such as [7, 30, 46], while the key difference is the
selection of the labels for the second term, i.e., the private labels are drawn from
the whole label space while directly using the above approach requires getting
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labels locally. Intuitively, the “new” label has to be sampled globally; otherwise,
the global information is missing and the negative effect of local openset label
noise would induce performance degradation. Additionally, label communications
in FL should be private. We defer the detailed explanation of its necessity to
Appendix.

We propose the following label communication-aided algorithm FedDPCont,
which we also illustrate in Fig. 2. There are two critical components to guarantee
the success of the proposed methods with good DP protection:
• Component 1: Privacy-preserving global label communication given in Section

4.2.
• Component 2: Contrastive gradient updates at the local client using ℓPL given

in Section 4.3 and the shared label information from Stage 1.
It should be noted that these both components will be executed sequentially

in every communication round and the every global epoch remains the same,
which illustrate the single-stage in Table 1 and Fig. 1.

4.2 Label Communication

Label privacy protection is an essential feature of FL so we cannot pass Ỹ to the
other clients, directly. To protect privacy, we adopt the label differential privacy
(DP) as Definition 2.

Definition 2 (Label Differential Privacy [13]). Let ϵ > 0. A randomized algorithm
A is said to be ϵ-label differentially private (ϵ-labelDP) if for any two training
datasets D and D′ that differ in the label of a single example, and for any subset
S of outputs of A,

P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S).

The high-level idea is to achieve label privacy (DP), each client c will use a
symmetric noise transition matrix TDP to flip their local labels to protect their
labelDP:

TDP[y, ỹ] := P(Ỹ = ỹ|Y = y) =

{
eϵ

eϵ+K−1 , if ỹ = y,
1

eϵ+K−1 , if ỹ ̸= y.

where K is the number of classes. Then only the flipped labels are shared between
the clients and the server. It is easy to show that sharing the flipped labels using
TDP suffices to preserve labelDP:

Theorem 1 (Label Privacy in FedDPCont). Label sharing in FedDPCont is ϵ-
labelDP.

Denote by p̃c
n the one-hot encoding of ỹcn. The whole label communication

process is presented in Algorithm 1. At the beginning of the algorithm, the server
will initialize TDP according to ϵ and broadcast TDP to all C clients. For each
client c, it calculates the DP label distribution of every data point (xc

n, ỹ
c
n) as

p̌c
n = T⊤

DPp̃
c
n, where p̌c

n is the distribution of DP label in client c. With this dis-
tribution, the client generates the DP private label y̌cn, n ∈ [Nc] for every data
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Algorithm 1 Label Communication in FedDPCont
1: Initialization: The server initialize TDP according to ϵ and broadcast TDP to all

clients.
# Client label differential privacy protection

2: for c in C clients do
3: calculate p̌c

n = T⊤
DPp̃

c
n,∀n ∈ [Nc].

4: generate the private label y̌c
n using P(y̌c

n = i) = p̌c
n[i], ∀i ∈ [K], n ∈ [Nc].

5: send {y̌c
n}n∈[Nc] to the server

6: end for
7: The server aggregates the label {y̌c

n}n∈[Nc] sent from all C clients.
8: The server calculates the posterior label distribution p̌:

p̌[i] :=
1

N

C∑
c=1

N∑
n=1

1(y̌c
n = i).

9: The server calculates (T⊤
DP)

−1p̌ and sends it to each client c.
10: The client c samples the ỹn′ in Eqn. (2) following P(Ỹ = ỹn′) = ((T⊤

DP)
−1p̌)[ỹn′ ].

point and every client sends all y̌cn back to the server. After obtaining all y̌cn
from the clients, the server aggregates the label and calculates the posterior la-
bel distribution p̌. To restore the correct distribution of Ỹ , the server calculates
(T⊤

DP)
−1p̌. Note that (T⊤

DP )
−1T⊤

DP (
∑C

i=1 p̃
c
n)/C = p̃. To apply TDP and (TDP)

−1

sequentially, FedDPCont enables the clients to share the information with the
others while DP is guaranteed. Finally, the client calculates the local loss ac-
cording to Equation (2) where Ỹ is sampled from P(Ỹ = i) := ((T⊤

DP)
−1p̌)[i].

This label communication procedures guarantees ϵ-DP.

4.3 FedDPCont

Based on the distribution P(Ỹ |D̃), we propose FedDPCont, a novel framework
based on FedAvg, to solve the local openset noise problem. P(Ỹ |D̃) represents the
noisy label distribution given a corrupted dataset D̃. Denote by ∆

(r)
c := θr+1

c −θrc ,
the variation of model parameters in the r-th round of the local training in client
c. Recall θc is the parameter of fc.

Denote by ∆(r) := θr+1 − θr the variation of model parameters in the r-
th round of the corresponding global gradient descent update assuming the
local data are collected to a central server. Define P(Dc|D) := P((X,Y ) ∼
Dc | (X,Y ) ∼ D). Numerically, it is calculated as Nc/N for client c given D. We
have the following theorem for the calibration property of FedDPCont.

Theorem 2 (Local clients with FedAvg). The aggregated model update of Fed-
DPCont is the same as the corresponding centralized model update, i.e.,∑

c∈[C]

P(Dc|D) ·∆(r)
c = ∆(r),
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Theorem 2 shows that the extra effect of local openset label noise can be
mitigated by sharing private labels and FedAvg. Note the theorem only discusses
the case in the expectation level (infinite data size), meaning the gap between
distributed learning and centralized learning given limited data still exists. Given
Theorem 2, we can further show ℓPL is robust to label noise as what has been
done for centralized training [30].

Algorithm 2 FedDPCont.
1: Server: initialize model fg, global step size αg and global communication round R.

2: Each Client c: initialize model fc , the dataset Dc = {(xc
n, ỹ

c
n)}n∈[Nc], local learning

rate αc and local updating iterations E.
3: The server generates and broadcasts TDP to all clients according to Definition 2.
4: Clients generate DP labels y̌c

n and send y̌c
n to the server according to Section 4.2.

5: The server aggregates y̌c
n and calculate the posterior label distribution p̌.

6: The server send (T⊤
DP)

−1p̌ to each client.
7: for i = 1→ R do
8: Randomly select C′ clients from C according to the federated fraction λ
9: for c in C′ clients do

10: fc ← fg

11: for j = 1→ E do
12: ŷc

n ← fc(x
c
n), ∀n ∈ [Nc]

13: Sample (yn
c )

′ following (T⊤
DP)

−1p̌,∀n ∈ [Nc].
14: Lc ← 1

Nc

∑Nc
n=1(ℓ(ŷ

c
n, ỹ

c
n)− ℓ(ŷc

n, (y
n
c )

′))
15: fc ← fc − αc · ∇Lc

16: end for
17: end for
18: fg ← fg − αg ·

∑C′

c=1(fc − fg)
19: end for

4.4 Privacy Issue

We are aware that the label distribution recovered by our algorithm may also be
a concern of privacy. However, the existing works about the attack in federated
learning are mainly from embedding layers [33], fully-connected layers [11,36,61],
and model gradients [4, 33]. Different from the leakage of individual labels, the
recovered label distribution by our algorithm has much less information. There
is no direct evidence of the harm of leaking an imperfect label distribution to the
best of our knowledge. In Table 4, we will illustrate that different DP privacy
level ϵ corresponds to different performance, indicating that, even though we
have restored the distribution of Ỹ (Algorithm 1, Line 9), it is still different
from the original one.
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Table 2: The performance (the best accuracy) of all methods on CIFAR-10. FedDPCont
is always the best method. The similar observation can be found for CIFAR-100 dataset
which is given in Table 6.

Dataset Methods Symmetric Random
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

FedAvg 76.84±0.91 63.34±1.82 43.83±0.51 22.13±1.25 76.24±1.58 59.19±1.01 46.80±2.63 21.80±0.28

LC 79.14±0.35 63.57±0.61 44.33±1.13 22.98±1.60 74.96±1.92 61.49±3.02 40.52±2.18 23.84±3.37

FedProx 70.54±0.57 59.35±0.65 45.61±0.97 22.70±1.10 68.51±0.92 58.61±0.38 43.97±1.06 24.64±2.59

Co-teaching 78.64±0.45 70.60±0.47 48.63±0.57 21.06±2.10 75.11±0.39 59.00±1.19 31.30±2.03 17.10±3.78

T-revision 69.16±6.20 51.86±6.64 31.93±2.56 15.27±1.87 64.69±5.08 46.22±1.17 31.81±2.83 17.12±0.73

FedDyn 70.88±0.77 58.58±1.14 42.83±1.23 20.70±1.66 70.13±0.99 58.91±3.06 42.11±2.84 25.21±2.98

FedBN 67.82±0.91 53.49±0.85 39.33±2.52 19.50±0.99 66.66±4.69 58.20±1.58 41.38±1.89 22.66±2.03

CIFAR-10 Scaffold 64.02±0.13 55.50±0.96 37.48±2.16 15.10±0.43 59.13±0.83 50.36±1.54 34.73±4.12 18.23±1.66

FedCorr 73.33±4.82 62.68±1.18 45.21±2.25 21.70±0.30 70.14±4.01 55.42±7.26 39.64±5.43 19.47±0.97

FedRN 73.00±0.20 55.75±0.24 41.31±1.24 20.98±0.57 67.77±1.13 52.66±1.11 36.33±0.91 19.01±0.79

RoFL 73.22±0.04 68.16±3.19 46.63±1.85 24.23±0.45 65.90±2.82 59.73±3.60 37.39±1.34 20.26±1.56

FedNoRo 57.49±0.88 43.97±1.73 22.15±2.89 14.10±1.50 51.64±2.13 34.16±0.61 24.63±0.44 15.07±2.40

RHFL 53.49±0.57 40.17±0.95 21.90±1.15 12.45±0.24 49.32±1.55 30.80±0.47 20.11±0.28 10.98±0.13

FedDPCont 84.77±0.12 75.75±1.96 55.50±1.33 24.64±0.55 82.15±0.24 72.69±1.57 54.06±1.38 27.55±1.49

5 Experiments and Results

5.1 Experiments Setup

To validate the generality and effectiveness of FedDPCont, we select several
public datasets with various levels of difficulties, including CIFAR-10, CIFAR-
100 [22] as benchmark datasets and CIFAR-N [48], Clothing-1M [53] as real-
world datasets. To simulate the practical usage, we first apply the noise on the
label and generate the openset candidates according to the number of classes
K for every client because only the noisy label is visible to the client in the
real world. On CIFAR-10 and CIFAR-100, we apply the symmetric noise for
benchmark testing while we apply random noise for practical simulation. Fur-
thermore, we also test the performance using Clothing-1M and CIFAR-N to test
the performance of FedDPCont in real-world scenarios.

For baseline methods, we use FedAvg [32], forward loss correction (LC) [37],
FedProx [24], Co-teaching [16] and T-revision [52], FedBN [26], FedDyn [1], Scaf-
fold [20], FedCorr [54] and FedRN [21]. We are aware that there are other noisy
learning methods that achieve impressive performance, e.g., DivideMix [23].
However, their underlying semi-supervised learning mechanisms and mix-up data
augmentation [56] methods introduce massive training cost and are out of the
scope of this paper. We leave discussions related to the computation cost and
performance comparisons with such method to Section 12.2 in Appendix. We
exclude the mixup method for the fair comparison. The local updating iteration
E is 5 and the federated fraction λ is 0.1. The architecture of the network is
ResNet-18 [17] for CIFAR dataset and ResNet-50 [17] with ImageNet [8] pre-
trained weight for Clothing-1M. The local learning rate αl is 0.01 and the batch
size is 32. The total communication round with the server R is 300 and differen-
tial privacy ϵ are 0.81, 3.21 and 1.17 for CIFAR-10, CIFAR-100 and Clothing-1M,
respectively to keep eϵ/(eϵ +K − 1) 0.2 in Section 4.2. All the experiments are
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Table 3: The performance (the best accuracy) of all the methods on CIFAR-N and
Clothing-1M.

Datasets CIFAR-10 CIFAR-100 Clothing-1M

Methods Worst Random Aggregate Fine 1M Noisy Training

FedAvg 46.55±7.82 59.69±4.88 66.41±6.52 22.65±2.29 70.27
LC 46.67±8.21 59.27±5.72 67.27±4.76 22.59±1.66 70.05

FedProx 58.47±0.97 69.35±0.62 74.48±1.00 35.33±0.35 65.96
Co-teaching 24.80±2.27 47.34±21.05 62.04±11.26 17.83±0.39 40.33
T-revision 57.85±19.44 55.06±8.40 63.40±9.99 22.18±1.44 66.95

FedBN 63.07±3.29 73.02±1.45 77.55±2.16 37.59±0.61 67.43
FedCorr 49.36±4.66 58.18±9.97 64.06±7.58 50.42±0.37 69.55
FedRN 49.96±0.86 59.70±0.69 64.08±1.00 43.31±0.20 62.78

FedDPCont 63.50±5.63 73.68±4.35 81.86±1.09 52.60±1.91 70.88

Table 4: The influence of different ϵ on the performance on CIFAR-10 corrupted by ran-
dom noise whose ratio is 0.4, where No DP indicates the upper bound of FedDPCont.

ϵ = 0.01 ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 100 ϵ = 0.81 No DP

75.19±1.00 72.47±2.64 71.60±1.96 72.27±1.87 73.00±1.96 73.75±2.38 72.44±1.52 74.03±1.19

run with 3 different random seeds to validate the generality of our methods. The
details of the implementation of every baseline method in the FL setting can be
found in Section 9 in the Appendix.

5.2 Synthetic Open-Set Label Noise

There are two strategies:
• Symmetric: We first add symmetric label noise [16,52] to dataset D and get D̃,

then distribute D̃ to D̃c,∀c following the uniform allocation in Section 3.2. The
transition matrix T for the symmetric label noise satisfies Tij = η/(K−1),∀i ̸=
j and Tii = 1 − η,∀i ∈ [K], where η ∈ {0.2, 0.4, 0.6, 0.8} is the average noise
rate.

• Random: We first add random label noise [67] to dataset D and get D̃, then
distribute D̃ to D̃c,∀c following the non-uniform allocation in Section 3.2.
The T of random noise is generated as follows. The diagonal elements of T for
the random label noise is generated by η + Unif(−0.05, 0.05), where η is the
average noise rate, Unif(−0.05, 0.05) is the uniform distribution bounded by
−0.05 and 0.05. The off-diagonal elements in each row of T follow the Dirichlet
distribution (1−Tii) ·Dir(1), where 1 = [1, · · · , 1] (K−1 values). The random
strategy is more practical than the symmetric one.

Results and Discussion Table 2 shows FedDPCont is significantly better than
all the baseline methods in the symmetric strategy across all the noise rate
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settings. It is also better than the other methods in all the settings of the random
strategy. FedDPCont is very competitive in all the settings. Table 2 also shows
directly applying the methods for centralized learning with noisy labels cannot be
statistically better than the traditional federated learning solution (FedAvg) and
its adapted version (FedProx), indicating the openset label noise in FL is indeed
challenging and special treatments are necessary to generalize the centralized
solution to the FL setting.

5.3 Real-World Label Noise

We also test the performance on two real-world datasets: CIFAR-N [48] and
Clothing-1M [53]. Different from the benchmark datasets, these datasets are
corrupted naturally. Clothing-1M is collected from the real website where both
data and labels are from the real users. The noisy ratio is about 0.4 in Clothing-
1M. CIFAR-N consists of CIFAR-10 and CIFAR-100. D̃c is generated according
to the random setting given in Section 5.2. The labels of CIFAR-N are collected
from the human annotation. There are three levels of noisy ratio in CIFAR-10,
worst, aggregate and random while there is only one noisy level in CIFAR-100.
It can be found that FedDPCont outperforms all the baseline methods in the
real-world dataset, showing great potential in practical usage.

5.4 Effect of DP Level

According to Section 4.2 and 4.3, label communication and peer gradient up-
dates at local clients are two key steps in FedDPCont. ϵ is the parameter to
control the level of DP protection. Following [13], we study the influence of ϵ
on the performance. We select the CIFAR-10 corrupted by random noise whose
ratio is 0.4. All the experiments are run with 10 random seeds. In terms of the
randomness of model initialization and the noise generation, it can be found
that FedDPCont is stable with the change of ϵ, which agrees with our theoreti-
cal guarantee. If we skip the DP process and directly pass the label distribution
to the server, FedDPCont reaches its upper bound. We select the correspond-
ing upper bound of FedDPCont in Table 4. Although the upper bound will be
slightly higher than that with DP process, there is no big difference regarding the
performance and the security can also be guaranteed, showing the superiority of
the FedDPCont design.

6 Conclusion

We have defined openset label noise in FL and proposed FedDPCont to use glob-
ally communicated contrastive labels to prevent local models from memorizing
openset noise patterns. We have proved that FedDPCont is able to approximate a
centralized solution with strong theoretical guarantees. Our experiments also ver-
ified the advantage of FedDPCont. Future works include testing FedDPCont with
real-world FL data partitions and real-world clients such as mobile devices.
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Supplementary Materials

Roadmap The appendix is composed as follows. Section 7 presents all the no-
tations and their meaning we use in this paper. Section 8 gives the proof and
analysis omitted in the main paper. Section 9 introduces the implementation
details of the experiments and how to apply the centralized training methods to
FL. Section 10 visualizes the data distribution of CIFAR-10 across 100 clients
and shows how difficult the openset noisy label problem is. Section 11 discusses
the connection between FedDPContand personal federated learning. Section 12
shows the experiment results with more details that are not given in the main
paper due to the page limit.

7 Notation Table

Table 5: Table of notations used in the paper

Notation Explanation

η Noisy ratio
C Total number of clients
c Client c in federated learning
Ỹ Random variables for the noisy label
Ŷ Random variables for the output of the model
K Number of classes in Y
T Transition matrix
P The probability
E The expectation
λ Federated fraction to control the number of clients in every round
αg The global step size on the server side
αl The local learning rate on the client side
L, ℓ The loss, the loss function
R The global communication round
E The local updating round
TDP Differential privacy transition matrix
T Transition matrix
A The label communication algorithm
Y̌c Labels protected by differential privacy
p̃c
n one-hot encoding of ỹc

n

p̌ The posterior label distribution after differential privacy corruption
θ, θrc The model parameters, the model parameters of client c at r-th round
e1, e2 The noisy ratio of class 1 and 2 of the global dataset in binary classification
ek1 , e

k
2 The noisy ratio of class 1 and 2 of the local client k in binary classification

m1 The number of samples which are wrongly labeled from 1 to 2 in binary classification
m2 The number of samples which are wrongly labeled from 2 to 1 in binary classification
∆

(r)
c The variation of model parameters in r-th round of the client c

X, Y Random variables for the feature and label
X ,Y The space of X, Y
fc,fg The client model, The global model
N,Nc Total number of samples, number of samples in client c
(xc

n, y
c
n) The n-th example in the client c

Dc := {(xc
n, y

c
n)}n∈[Nc] Dataset of client c

D := {(xn, yn)}n∈[N ] Dataset
Ik := {c|1c,k = 1, c ∈ [C]} The vector indicating whether client c can access class k or not
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8 Proofs and Analyses

In this section, we present all the proofs of the theorems.

8.1 Proof of Theorem 1

Proof. Denote by A the label communication algorithm, where the input is y
and the output is yDP . Then after flipping the label y according to the noise
transition matrix T , we have

P(A(y) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y,
1

eϵ+K−1 , if yDP ̸= y.

Accordingly, for another label y′, we have

P(A(y′) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y′,
1

eϵ+K−1 , if yDP ̸= y′.

Then the quotient of two probabilities can be upper bounded by

P(A(y) = yDP)

P(A(y′) = yDP)
≤ eϵ.

With Definition 2, we know the above equation is exactly the definition of ϵ-
labelDP, i.e., the label communication algorithm is ϵ-labelDP.

8.2 Proof of Theorem 2

Proof. The centralized private loss on D is

ED[ℓPL(f(X), Ỹ )] = ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
,

where Ỹ ′ is the random variable whose distribution is the noisy label distribution.
For each client c, the local FedDPCont loss is

EDc
[ℓFedDPCont(f(Xc), Ỹc)] = EDc

[
ℓ(f(Xc), Ỹc)− β · ED

Ỹ ′|D̃
[ℓ(f(Xc), Ỹ

′)]
]
,

.
Denote by P(Dc|D) the probability of drawing a data point from client c. We

have ∑
c∈[C]

P(Dc|D) = 1.
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Then ∑
c∈[C]

P(Dc|D)EDc
[ℓFedDPCont(f(Xc), Ỹc)]

=
∑
c∈[C]

P(Dc|D)EDc

[
ℓ(f(Xc), Ỹc)− β · ED

Ỹ ′|D̃
[ℓ(f(Xc), Ỹ

′)]
]

=ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
= ED[ℓpeer(f(X), Ỹ )].

Each round may include multiple epochs. Suppose there are t local epochs.
The variation of model parameters in the r-th round of the local training in
client c can be decomposed by

∆(r)
c :=θ(r+1)

c − θ(r)c = θ(r+1,t)
c − θ(r+1,t−1)

c + θ(r+1,t−1)
c + · · · − θ(r,1)c

=
∂EDc [ℓFedDPCont(f(Xc), Ỹc; θc)]

∂θc

∣∣∣∣
θ=θ

(r+1,t−1)
c

+ · · ·

+
∂EDc

[ℓFedDPCont(f(Xc), Ỹc; θc)]

∂θc

∣∣∣∣
θ=θ

(r+1,1)
c

.

Therefore,

∑
c∈[C]

P(Dc|D)∆(r)
c =

∂
∑

c∈[C] P(Dc|D)EDc [ℓFedDPCont(f(Xc), Ỹc; θ
(r+1,t−1)
c )]

∂θc

+ · · ·+
∂
∑

c∈[C] P(Dc|D)EDc [ℓFedDPCont(f(Xc), Ỹc; θ
(r+1,1)
c )]

∂θc

=
∂ED[ℓPL(f(X), Ỹ ; θ(r+1,t−1))]

∂θ
+ · · ·+ ∂ED[ℓPL(f(X), Ỹ ; θ(r+1,1))]

∂θ

=∆(r).

8.3 Details about the Necessity of Using a Global Private Label

To be more concrete, in [30], for each example (xn, ỹn), the private loss defines
as (an equivalent form):

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn), ỹn′), (3)

where ỹn′ is a randomly sampled constrastive label. Later as a follow-up work
[7], ℓCORES was proposed as a more stable version of ℓPL which has the same
expectation as ℓPL:

ℓCORES(f(xn), ỹn) = ℓ(f(xn), ỹn)− EDỸ |D̃
[ℓ(f(xn), Ỹ ], (4)

where DỸ |D̃ is the distribution of Ỹ given dataset D̃. Private loss and ℓCORES
have strong consistency guarantees. Consider a binary classification problem and
let e1 := P(Ỹ = 2|Y = 1) and e2 = P(Ỹ = 1|Y = 2). Then it was proved in [30]
the following robustness of peer loss:
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Proposition 1 (Robustness of peer loss [30]). Peer loss is invariant to label
noise:

ED̃[ℓPL(f(X), Ỹ )] = (1− e1 − e2) · ED[ℓPL(f(X), Y )].

Moreover, when P(Y = 1) = 0.5 and ℓ is the 0-1 loss, minimizing peer loss on
noisy distribution D̃ is equivalent to minimizing 0-1 loss on clean distribution
D.

Can we then follow the above idea and implement either ℓPL or ℓCORES by
requiring each client to sample the “contrastive labe” ỹn′ locally? Unfortunately,
the answer is no. There are two technical challenges:

First, sampling contrastive labels locally leads to wrong results. A local sam-
pling for the private label will lead to a distribution that does not capture the
global one on P(Ỹ ), then challenge the theoretical guarantees of the existing
results. To see this, we consider a binary classification problem. Assume that we
have two clients c = 1 and c = 2, where client 1 can only access noisy labels
1 and client 2 only accesses noisy labels 2, respectively. Suppose the number of
data points in each class (globally) is N1 = N2 = N/2. If there are m1 samples
that are wrongly labeled from Y = 1 to Ỹ = 2 and m2 samples that are wrongly
labeled from Y = 2 to Ỹ = 1, respectively, we can know the global noisy ratios
are e1 = P(Ỹ = 2|Y = 1) = 2m1/N and e2 = P(Ỹ = 1|Y = 2) = 2m2/N, respec-
tively. For centralized training, we know from Proposition 1 that there is an in-
variant property. However, due to the openset, the locally noisy ratio differs from
the globally noisy ratio and the invariant property is broken. Specifically, the
local noisy ratios are e11 = P(Ỹ1 = 2|Y1 = 1) = 0 and e12 = P(Ỹ1 = 1|Y1 = 2) = 1
where Y1 is the label and Ỹ1 is the corrupted label in client 1. Then the invariant
property in Proposition 1 becomes

ED̃1
[ℓPL(f(X), Ỹ )] = (1− e11 − e12) = 0,

which is a constant for any model f . Therefore, peer labels need to be redesigned
in FL with openset noisy labels.

Second, there are privacy concerns in redesigning contrastive labels. Intu-
itively, since we know local sampling fails, the global information is inevitable
in redesigning peer labels. Therefore, the privacy issues need to be addressed in
label communications.

9 Implementation Details

9.1 Platform and Programming Environment

We train our model on NVIDIA RTX A5000 server with torch and torchvision
1.10 and 0.11, respectively. The details of the baseline methods are as follows.

9.2 Loss correction

We apply FedAvg in the first 150 rounds to make the weight stable. At the
150th round, the transition matrix of every client will be estimated according
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to the confidential score of 95%. The predicted label whose confidential score is
over 95% is considered as the ground truth so that we can get every transition
matrix of every client. We apply loss correction in the rest 150 rounds according
to Equation 1.

9.3 Co-teaching

Co-teaching uses two same networks to distinguish the noisy data and the clean
data. Similarly, we initialize two same networks when the client initializes and
update the two clients in the same way as the original co-teaching network. The
server also keeps two models. In every communication round, the weights of the
two models will average correspondingly.

9.4 T-revision

T-revision consists of three steps: estimation of T , loss correction, and T-revision.
In the first 20 communication rounds, the selected clients update the weight
at every communication round and all the clients estimate Tc. After the 20th
round, the selected clients at every communication apply forward loss correction
for another 140 rounds. After the 160th round, we apply T-revision.

9.5 DivideMix

DivideMix uses two same networks to distinguish the noisy label. One network
is used to assign the pseudo label, the other network is used to the classification.
The pseudo label is generated by a Gaussian mixture process. In addition, Di-
videMix uses mix-up data augmentation to boost performance. In FL paradigm,
every client will maintain two clients and do the same operation as the central-
ized training in DivideMix.

For the other baseline methods, we follow the original settings in their papers.

10 Openset Noisy Label Visualization

We visualize the data distribution across the 100 clients in CIFAR-10 when
the noise types are both symmetric and random in Fig. 3 and 4, respectively.
It should be noted that the observed label space is corrupted and does not
cover the whole label space. For each client, the true label is unknown. The
data distribution is uniform when the noise is symmetric while the the data
distribution is chaotic when the noise is random.

11 The Relationship to Personalized Federated Learning

It would be interesting to investigate the robustness of noisy label in personalized
FL (pFL) because pFL provides more flexibility for the local model [6,38]. More-
over, FedDPCont is a loss-based method which is independent from the model
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(a) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.2 and the noise type is
symmetric

(b) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.4 and the noise type is
symmetric

(c) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.6 and the noise type is
symmetric

(d) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.8 and the noise type is
symmetric

Fig. 3: The data distribution of CIFAR-10 across 100 clients under different noise ratio
when the noise is symmetric.

architecture. The combination of FedDPCont and pFL is also worth investiga-
tion. In particular, we hypothesize that by only partially sharing the contrastive
label distribution, our noise correction loss will induce a personalized correction
at local clients, instead of “over-correcting" using a global one.
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(a) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.2 and the noise type is
random

(b) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.4 and the noise type is
random

(c) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.6 and the noise type is
random

(d) The data distribution across the 100
clients of CIFAR-10 dataset when the
noise ratio is 0.8 and the noise type is
random

Fig. 4: The data distribution of CIFAR-10 across 100 clients under different noise ratio
when the noise is random.

12 Experiment Results

12.1 More Results

Due to the page limit in the main text, we report the full results on CIFAR-100,
CIFAR-N and Clothing1M in Table 6 and 7.
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Table 6: The performance (the best accuracy) of all the methods on CIFAR-100.
FedDPCont is always the best method.

Dataset Methods Symmetric Random
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

FedAvg 47.78±0.50 32.63±0.27 20.32±0.51 10.62±0.26 47.75±0.29 31.06±0.79 20.14±0.32 9.71±0.43

LC 48.92±0.42 33.15±0.23 20.39±0.36 10.43±0.45 49.03±0.17 32.67±0.75 19.78±0.67 10.13±0.36

FedProx 32.14±0.27 24.68±0.11 16.52±0.77 8.85±0.60 31.77±0.30 25.03±0.47 17.16±0.64 8.84±0.50

Co-teaching 41.15±0.28 29.81±0.72 18.01±0.28 8.73±1.08 40.55±1.79 28.51±1.41 18.47±1.95 6.56±1.38

T-revision 48.21±0.56 31.35±0.46 17.41±0.22 7.79±0.28 48.24±0.47 30.91±0.55 16.95±0.78 7.46±0.20

FedDyn 31.73±0.79 23.35±0.23 15.53±0.21 7.82±0.04 32.22±0.35 23.83±0.42 16.27±0.59 7.86±0.10

CIFAR-100 FedBN 40.71±1.19 25.61±0.53 14.52±0.18 6.64±0.32 38.96±0.86 24.54±0.86 13.52±0.73 6.63±0.17

Scaffold 31.56±0.20 24.85±0.38 14.42±0.93 2.10±0.35 28.49±0.75 21.74±0.48 11.19±1.23 1.97±0.44

FedCorr 57.65±0.37 44.48±1.04 27.37±0.25 12.09±0.23 55.04±0.79 43.71±2.05 25.91±0.14 11.96±0.71

FedRN 46.84±0.71 34.40±0.68 22.63±0.44 11.30±0.13 46.24±0.66 33.48±1.30 21.33±0.59 10.41±0.14

RoFL 40.23±1.33 32.86±2.68 21.90±0.03 13.24±0.10 39.44±0.96 30.10±0.26 21.53±1.52 11.46±0.03

FedNoRo 16.85±0.35 9.80±0.32 5.62±0.10 2.04±0.48 15.56±0.47 7.47±0.44 5.17±0.24 1.29±0.06

RHFL 16.56±0.72 11.92±0.75 5.09±0.09 3.58±0.57 14.99±0.45 9.34±0.41 4.30±0.62 1.75±0.59

FedDPCont 58.55±0.65 46.65±0.53 29.27±0.79 14.04±0.96 57.73±0.36 45.43±0.72 27.35±0.72 12.64±0.43

Table 7: The performance (the best accuracy) of all methods on CIFAR-N and Clothing-
1M.

Datasets CIFAR-10 CIFAR-100 Clothing-1M

Methods Worst Random Aggregate Fine 1M Noisy Training

FedAvg 46.55±7.82 59.69±4.88 66.41±6.52 22.65±2.29 70.27
LC 46.67±8.21 59.27±5.72 67.27±4.76 22.59±1.66 70.05

FedProx 58.47±0.97 69.35±0.62 74.48±1.00 35.33±0.35 65.96
Co-teaching 24.80±2.27 47.34±21.05 62.04±11.26 17.83±0.39 40.33
T-revision 57.85±19.44 55.06±8.40 63.40±9.99 22.18±1.44 66.95

FedBN 63.07±3.29 73.02±1.45 77.55±2.16 37.59±0.61 67.43
FedCorr 49.36±4.66 58.18±9.97 64.06±7.58 50.42±0.37 69.55
FedRN 49.96±0.86 59.70±0.69 64.08±1.00 43.31±0.20 62.78

FedNoRo 33.33±1.30 44.48±2.25 47.13±1.51 17.01±0.56 41.11
RHFL 34.15±0.54 44.23±2.38 45.69±1.20 15.49±0.68 39.93
RoFL 17.75±0.89 20.58±0.38 16.19±0.41 35.17±2.21 -

FedDPCont 63.50±5.63 73.68±4.35 81.86±1.09 52.60±1.91 70.88

12.2 DivideMix Details

Compared with DivideMix, FedDPCont is a lightweight method. Due to the
mix-up augmentation method and dual-model architecture design, DivideMix
needs more time to converge. We compare the performance of DivideMix and
FedDPCont in terms of the epoch and the training time. All the experiments are
done on a server with an AMD EPYC 7513 32-Core Processor and RTX A5000
NVIDIA GPU to guarantee the training time is calculated fairly. The results on
benchmark and real-world datasets are given in Table 8 and 9.

We can find that FedDPCont needs much less time than DivideMix in all
cases and outperforms on all CIFAR-10 datasets for both benchmark and real-
world cases. FedDPCont depends heavily on the estimation of the distribution
of the dataset from label communication as given in Section 4.2. When the data
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belonging to each class is fewer or the noisy ratio is higher, the difficulty of precise
estimation becomes much larger. Compared with FedDPCont, DivideMix uses
another model to generate the pseudo label so that the performance can be less
sensitive to the heterogeneity but will be much slower. In the practical usage,
FedDPCont is a reliable choice in terms of speed and performance.

Table 8: Comparison of DivideMix and FedDPCont in terms of time and number of
epochs on benchmark dataset. R stands for random noise in Section 5.2. Compared
with DivideMix, FedDPCont is lightweight and can produce relatively reliable results.

Dataset Methods 0.2 0.4 0.6 0.8 Epochs Time (hr)

DivideMix 79.28±0.33 65.62±4.48 53.28±2.16 20.70±5.00 300 22.33
CIFAR-10 FedDPCont 84.77±0.12 75.75±1.96 55.50±1.33 24.64±0.55 300 4.17

DivideMix 70.31±2.19 59.24±1.90 48.91±4.59 24.29±2.19 300 27.67
CIFAR-10 (R) FedDPCont 82.15±0.24 72.69±1.57 54.06±1.38 27.55±1.49 300 3.90

DivideMix 58.31±0.47 46.62±0.37 31.90±0.85 19.87±0.52 300 30.33
CIFAR-100 FedDPCont 58.55±0.65 46.65±0.53 29.27±0.79 14.04±0.96 300 3.87

DivideMix 57.31±0.08 45.60±0.51 30.95±0.57 19.40±0.53 300 29.33
CIFAR-100 (R) FedDPCont 57.73±0.36 45.43±0.72 27.35±0.72 12.64±0.43 300 4.28

Table 9: Comparison of DivideMix and FedDPCont in terms of time and number of
epochs on the noisy real-world dataset. Compared with DivideMix, FedDPCont is
lightweight and can produce relatively reliable results.

Dataset Methods Accuracy Epochs Time (hr)

DivideMix 59.50±5.90 300 33.00
CIFAR-10-N-Worst FedDPCont 63.50±5.63 300 3.76

DivideMix 66.45±2.69 300 21.50
CIFAR-10-N-Random FedDPCont 73.68±4.35 300 3.43

DivideMix 71.98±2.27 300 25.50
CIFAR-10-N-Aggregate FedDPCont 81.86±1.09 300 3.83

DivideMix 45.66±0.15 300 13.85
CIFAR-100-N FedDPCont 52.60±1.91 300 2.63

12.3 More Results about the Effect of Differential Privacy Level

In addition to the results in Table 4, we also do a comprehensive experiment for
the influence of ϵ on the performance on different dataset with different noise
ratio. The results on CIFAR-10, CIFAR-100 and Clothing1M are given in Table
10, 11 and 12, where p = eϵ

eϵ+K−1 , ϵ > 0.
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Table 10: The performance of FedDPCont on different differential privacy levels. The
number indicates the noise ratio. R indicates the random noise. The last three columns
are the results from the CIFAR-10 subset in CIFAR-N. The last row in gray is the
number we report in the main paper.

ϵ p 0.2 0.4 0.6 0.8 0.2 (R) 0.4 (R) 0.6 (R) 0.8 (R) Worst Aggre Random

0.01 0.1 85.03±0.35 75.19±1.00 56.01±0.03 24.31±0.45 82.20±0.62 72.12±1.08 53.79±0.92 25.10±0.66 63.71±3.31 73.21±2.22 81.11±0.98

0.81 0.2 83.43±0.04 75.23±0.05 55.85±0.42 24.07±0.10 81.79±0.76 72.99±1.01 54.11±0.63 25.03±1.71 64.59±2.70 73.04±3.43 81.79±0.79

- - 84.77±0.12 75.75±1.96 55.50±1.33 24.64±0.55 82.15±0.24 72.69±1.57 54.06±1.38 27.55±1.49 63.50±5.63 73.68±4.35 81.86±1.09

Table 11: The performance of FedDPCont on different differential privacy levels. The
number indicates the noise ratio. R indicates the random noise. The last columns are
the results from the CIFAR-100 subset in CIFAR-N. The last row in gray is the number
we report in the main paper.

ϵ p 0.2 0.4 0.6 0.8 0.2 (R) 0.4 (R) 0.6 (R) 0.8 (R) Fine

0.01 0.01 58.05±0.98 46.71±0.29 29.01±0.24 13.51±0.01 56.79±0.33 45.43±0.63 27.75±0.42 12.70±0.87 53.06±0.02

3.21 0.2 58.17±0.93 46.86±0.22 28.93±0.26 13.62±0.94 56.44±0.51 44.31±0.52 27.89±0.99 13.01±0.40 52.11±0.53

- - 58.55±0.65 46.65±0.53 29.27±0.79 14.04±0.96 57.73±0.36 45.43±0.72 27.35±0.72 12.64±0.43 52.60±1.91

Table 12: The performance of FedDPCont on different differential privacy levels on
Clothin1M. The last column in gray is the number we report in the main paper.

ϵ = 0.01, p = 0.071 ϵ = 1.18, p = 0.2 Main Text

70.80 70.79 70.88
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